File: barrier.cl

package info (click to toggle)
intel-graphics-compiler 1.0.12504.6-1%2Bdeb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 83,912 kB
  • sloc: cpp: 910,147; lisp: 202,655; ansic: 15,197; python: 4,025; yacc: 2,241; lex: 1,570; pascal: 244; sh: 104; makefile: 25
file content (305 lines) | stat: -rw-r--r-- 9,978 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
/*========================== begin_copyright_notice ============================

Copyright (C) 2017-2022 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

#include "../Languages/OpenCL/IBiF_SPIRV_Utils.cl"

extern __constant int __OptDisable;

// EmitVISAPass support for __builtin_IB_memfence/__builtin_IB_typedmemfence requires some arguments to
// be constants as those are used to prepare a message descriptor, so must be known at compile time.
// To assure that all the arguments are constants for O0 path, there is a special function
// marked with __attribute__((optnone)) which implements seperate call instruction created for each
// arguments configuration.

// MEMFENCE IMPLEMENTATION

void __attribute__((optnone)) __intel_memfence_optnone(bool flushRW, bool isGlobal, bool invalidateL1)
{
#define MEMFENCE_IF(V1, V5, V6)                                    \
if (flushRW == V1 && isGlobal == V5 && invalidateL1 == V6)         \
{                                                                  \
    __builtin_IB_memfence(true, V1, false, false, false, V5, V6);  \
} else

// Generate combinations for all MEMFENCE_IF cases, e.g.:
// true, true, true
// true, true, false etc.
#define MF_L2(...) MF_L1(__VA_ARGS__,false) MF_L1(__VA_ARGS__,true)
#define MF_L1(...) MEMFENCE_IF(__VA_ARGS__,false) MEMFENCE_IF(__VA_ARGS__,true)
MF_L2(false)
MF_L2(true) {}

#undef MEMFENCE_IF
#undef MF_L2
#undef MF_L1
}
void __intel_memfence(bool flushRW, bool isGlobal, bool invalidateL1)
{
    __builtin_IB_memfence(true, flushRW, false, false, false, isGlobal, invalidateL1);
}

void __intel_memfence_handler(bool flushRW, bool isGlobal, bool invalidateL1)
{
    if (__OptDisable)
        __intel_memfence_optnone(flushRW, isGlobal, invalidateL1);
    else
        __intel_memfence(flushRW, isGlobal, invalidateL1);
}

// TYPEDMEMFENCE IMPLEMENTATION

void __attribute__((optnone)) __intel_typedmemfence_optnone(bool invalidateL1)
{
    if (invalidateL1)
        __builtin_IB_typedmemfence(true);
    else
        __builtin_IB_typedmemfence(false);
}

void __intel_typedmemfence(bool invalidateL1)
{
    __builtin_IB_typedmemfence(invalidateL1);
}

void __intel_typedmemfence_handler(bool invalidateL1)
{
    if (__OptDisable)
        __intel_typedmemfence_optnone(invalidateL1);
    else
        __intel_typedmemfence(invalidateL1);
}

// Barrier Instructions

static void __intel_atomic_work_item_fence( Scope_t Memory, uint Semantics )
{
    bool fence = Semantics & ( Acquire | Release | AcquireRelease | SequentiallyConsistent );

    bool invalidateL1 = Semantics & ( Acquire | AcquireRelease | SequentiallyConsistent );

    // We always need to 'fence' image memory (aka, flush caches, drain pipelines)
    fence |= ( Semantics & ImageMemory );

    if (fence)
    {
        if (Semantics & ImageMemory)
        {
            // An image fence requires a fence with R/W invalidate (L3 flush) + a flush
            // of the sampler cache
            __intel_typedmemfence_handler(invalidateL1);
        }
        // A global/local memory fence requires a hardware fence in general,
        // although on some platforms they may be elided; platform-specific checks are performed in codegen
        if (Semantics & WorkgroupMemory)
        {
           __intel_memfence_handler(false, false, false);
        }
        if (Semantics & CrossWorkgroupMemory)
        {
           bool flushL3 = Memory == Device || Memory == CrossDevice;
           __intel_memfence_handler(flushL3, true, invalidateL1);
        }
    }
}

void SPIRV_OVERLOADABLE SPIRV_BUILTIN(ControlBarrier, _i32_i32_i32, )(int Execution, int Memory, int Semantics)
{
    if (Execution != Subgroup)
    {
        // sub group barrier requires no fence
        __intel_atomic_work_item_fence( Memory, Semantics );
    }

    if( Execution <= Workgroup )
    {
        __builtin_IB_thread_group_barrier();
    }
    else  if( Execution == Subgroup )
    {
        // nothing will be emited but we need to prevent optimization splitting control flow
        __builtin_IB_sub_group_barrier();
    }
}

void SPIRV_OVERLOADABLE SPIRV_BUILTIN(ControlBarrierArriveINTEL, _i32_i32_i32, )(int Execution, int Memory, int Semantics)
{
    if( Execution == Workgroup )
    {
        __intel_atomic_work_item_fence( Memory, Semantics );
        __builtin_IB_thread_group_barrier_signal();
    }
}

void SPIRV_OVERLOADABLE SPIRV_BUILTIN(ControlBarrierWaitINTEL, _i32_i32_i32, )(int Execution, int Memory, int Semantics)
{
    if( Execution == Workgroup )
    {
        __intel_atomic_work_item_fence( Memory, Semantics );
        __builtin_IB_thread_group_barrier_wait();
    }
}

void SPIRV_OVERLOADABLE SPIRV_BUILTIN(MemoryBarrier, _i32_i32, )(int Memory, int Semantics)
{
    __intel_atomic_work_item_fence( Memory, Semantics );
}


// Named Barrier

void __intel_getInitializedNamedBarrierArray(local uint* id)
{
    *id = 0;
    SPIRV_BUILTIN(ControlBarrier, _i32_i32_i32, )( Workgroup, 0, SequentiallyConsistent | WorkgroupMemory );
}

bool __intel_is_first_work_group_item( void );

local __namedBarrier* __builtin_spirv_OpNamedBarrierInitialize_i32_p3__namedBarrier_p3i32(int SubGroupCount, local __namedBarrier* nb_array, local uint* id)
{
    local __namedBarrier* NB = &nb_array[*id];
    NB->count = SubGroupCount;
    NB->orig_count = SubGroupCount;
    NB->inc = 0;
    SPIRV_BUILTIN(ControlBarrier, _i32_i32_i32, )( Workgroup, 0, SequentiallyConsistent | WorkgroupMemory );
    if (__intel_is_first_work_group_item())
    {
        (*id)++;
    }
    SPIRV_BUILTIN(ControlBarrier, _i32_i32_i32, )( Workgroup, 0, SequentiallyConsistent | WorkgroupMemory );
    return NB;
}


static INLINE OVERLOADABLE
uint AtomicCompareExchange(local uint *Pointer, uint Scope, uint Equal, uint Unequal, uint Value, uint Comparator)
{
    return SPIRV_BUILTIN(AtomicCompareExchange, _p3i32_i32_i32_i32_i32_i32, )((local int*)Pointer, Scope, Equal, Unequal, Value, Comparator);
}

static INLINE
uint SubgroupLocalId()
{
    return SPIRV_BUILTIN_NO_OP(BuiltInSubgroupLocalInvocationId, , )();
}

static INLINE OVERLOADABLE
uint AtomicLoad(local uint *Pointer, uint Scope, uint Semantics)
{
    return SPIRV_BUILTIN(AtomicLoad, _p3i32_i32_i32, )((local int*)Pointer, Scope, Semantics);
}

static INLINE OVERLOADABLE
void AtomicStore(local uint *Pointer, uint Scope, uint Semantics, uint Value)
{
    SPIRV_BUILTIN(AtomicStore, _p3i32_i32_i32_i32, )((local int*)Pointer, Scope, Semantics, Value);
}

static INLINE OVERLOADABLE
uint AtomicInc(local uint *Pointer, uint Scope, uint Semantics)
{
    return SPIRV_BUILTIN(AtomicIIncrement, _p3i32_i32_i32, )((local int*)Pointer, Scope, Semantics);
}

static INLINE
uint Broadcast(uint Execution, uint Value, uint3 LocalId)
{
    return SPIRV_BUILTIN(GroupBroadcast, _i32_i32_v3i32, )(Execution, as_int(Value), as_int3(LocalId));
}

static INLINE OVERLOADABLE
uint SubgroupAtomicCompareExchange(local uint *Pointer, uint Scope, uint Equal, uint Unequal, uint Value, uint Comparator)
{
    uint result = 0;
    if (SubgroupLocalId() == 0)
        result = AtomicCompareExchange((volatile local uint*)Pointer, Scope, Equal, Unequal, Value, Comparator);
    result = Broadcast(Subgroup, result, (uint3)0);
    return result;
}

static INLINE OVERLOADABLE
uint SubgroupAtomicInc(local uint *Pointer, uint Scope, uint Semantics)
{
    uint result = 0;
    if (SubgroupLocalId() == 0)
        result = AtomicInc((volatile local uint*)Pointer, Scope, Semantics);
    result = Broadcast(Subgroup, result, (uint3)0);
    return result;
}

static void MemoryBarrier(Scope_t Memory, uint Semantics)
{
    SPIRV_BUILTIN(MemoryBarrier, _i32_i32, )(Memory, Semantics);
}

void __builtin_spirv_OpMemoryNamedBarrier_p3__namedBarrier_i32_i32(local __namedBarrier* NB,Scope_t Memory, uint Semantics)
{
    const uint AtomSema = SequentiallyConsistent | WorkgroupMemory;
    while (1)
    {
        const uint cnt = AtomicLoad(&NB->count, Workgroup, AtomSema);
        if (cnt > 0)
        {
            uint before = SubgroupAtomicCompareExchange(&NB->count, Workgroup, AtomSema, AtomSema, cnt - 1, cnt);
            if (before == cnt)
            {
                break;
            }
        }
    }

    while(AtomicLoad(&NB->count, Workgroup, AtomSema) > 0);
    MemoryBarrier(Memory, Semantics);
    uint inc = SubgroupAtomicInc(&NB->inc, Workgroup, AtomSema);
    if(inc == ((NB->orig_count) - 1))
    {
        AtomicStore(&NB->inc, Workgroup, AtomSema, 0);
        AtomicStore(&NB->count, Workgroup, AtomSema, NB->orig_count);
    }
}
void __builtin_spirv_OpMemoryNamedBarrierWrapperOCL_p3__namedBarrier_i32(local __namedBarrier* barrier, cl_mem_fence_flags flags)
{
    __builtin_spirv_OpMemoryNamedBarrier_p3__namedBarrier_i32_i32(barrier, Workgroup, AcquireRelease | get_spirv_mem_fence(flags));
}

void __builtin_spirv_OpMemoryNamedBarrierWrapperOCL_p3__namedBarrier_i32_i32(local __namedBarrier* barrier, cl_mem_fence_flags flags, memory_scope scope)
{
    __builtin_spirv_OpMemoryNamedBarrier_p3__namedBarrier_i32_i32(barrier, get_spirv_mem_scope(scope), AcquireRelease | get_spirv_mem_fence(flags));
}

__global volatile uchar* __builtin_IB_get_sync_buffer();

void global_barrier()
{
    barrier(CLK_GLOBAL_MEM_FENCE);

    __global volatile int* syncBuffer = (__global volatile int*)__builtin_IB_get_sync_buffer();

    bool firstThreadPerWg = (get_local_id(0) == 0) && (get_local_id(1) == 0) && (get_local_id(2) == 0);
    size_t numGroups = get_num_groups(0) * get_num_groups(1) * get_num_groups(2);

    if (firstThreadPerWg) {
        if (get_global_linear_id() == 0) {
            atomic_sub(syncBuffer, numGroups-1);
        }
        else {
            atomic_inc(syncBuffer);
        }

        while(atomic_or(syncBuffer, 0) != 0) {}
    }

    barrier(CLK_GLOBAL_MEM_FENCE);
}

void system_memfence(char fence_typed_memory)
{
    return __builtin_IB_system_memfence(fence_typed_memory);
}