File: AdvMemOpt.cpp

package info (click to toggle)
intel-graphics-compiler 1.0.12504.6-1%2Bdeb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 83,912 kB
  • sloc: cpp: 910,147; lisp: 202,655; ansic: 15,197; python: 4,025; yacc: 2,241; lex: 1,570; pascal: 244; sh: 104; makefile: 25
file content (435 lines) | stat: -rw-r--r-- 15,491 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
/*========================== begin_copyright_notice ============================

Copyright (C) 2018-2021 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

#include "common/LLVMWarningsPush.hpp"
#include <llvm/ADT/PostOrderIterator.h>
#include <llvm/Analysis/LoopInfo.h>
#include <llvm/Analysis/ScalarEvolution.h>
#include <llvm/Analysis/ScalarEvolutionExpressions.h>
#include <llvm/IR/CFG.h>
#include <llvm/IR/PatternMatch.h>
#include <llvm/Pass.h>
#include <llvm/Support/Debug.h>
#include <llvm/Support/raw_ostream.h>
#include <llvm/Transforms/Utils/Local.h>
#include "llvmWrapper/Transforms/Utils/LoopUtils.h"
#include "common/LLVMWarningsPop.hpp"
#include "GenISAIntrinsics/GenIntrinsics.h"
#include "Compiler/CISACodeGen/ShaderCodeGen.hpp"
#include "Compiler/IGCPassSupport.h"
#include "Compiler/MetaDataUtilsWrapper.h"
#include "Compiler/CISACodeGen/AdvMemOpt.h"
#include "Compiler/CISACodeGen/WIAnalysis.hpp"
#include "Compiler/CISACodeGen/PrepareLoadsStoresUtils.h"
#include "Probe/Assertion.h"

using namespace llvm;
using namespace llvm::PatternMatch;
using namespace IGC;
using namespace IGC::IGCMD;

namespace {

    class AdvMemOpt : public FunctionPass {
        DominatorTree* DT;
        LoopInfo* LI;
        PostDominatorTree* PDT;
        ScalarEvolution* SE;
        WIAnalysis* WI;

    public:
        static char ID;

        AdvMemOpt() : FunctionPass(ID) {
            initializeAdvMemOptPass(*PassRegistry::getPassRegistry());
        }

        bool runOnFunction(Function& F) override;

        StringRef getPassName() const override { return "Advanced MemOpt"; }

    private:
        void getAnalysisUsage(AnalysisUsage& AU) const override {
            AU.setPreservesCFG();
            AU.addPreservedID(WIAnalysis::ID);
            AU.addRequired<CodeGenContextWrapper>();
            AU.addRequired<MetaDataUtilsWrapper>();
            AU.addRequired<WIAnalysis>();
            AU.addRequired<DominatorTreeWrapperPass>();
            AU.addRequired<LoopInfoWrapperPass>();
            AU.addRequired<PostDominatorTreeWrapperPass>();
            AU.addRequired<ScalarEvolutionWrapperPass>();
        }

        bool collectOperandInst(SmallPtrSetImpl<Instruction*>&,
            Instruction*, BasicBlock*) const;
        bool collectTrivialUser(SmallPtrSetImpl<Instruction*>&,
            Instruction*) const;
        bool hoistUniformLoad(ArrayRef<BasicBlock*>) const;

        bool hoistInst(Instruction *inst, BasicBlock*) const;

        bool isLeadCandidate(BasicBlock*) const;

        bool hasMemoryWrite(BasicBlock* BB) const;
        bool hasMemoryWrite(BasicBlock* Entry, BasicBlock* Exit) const;
    };

    char AdvMemOpt::ID = 0;

} // End anonymous namespace

FunctionPass* IGC::createAdvMemOptPass() {
    return new AdvMemOpt();
}

#define PASS_FLAG     "igc-advmemopt"
#define PASS_DESC     "Advanced Memory Optimization"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
namespace IGC {
    IGC_INITIALIZE_PASS_BEGIN(AdvMemOpt, PASS_FLAG, PASS_DESC, PASS_CFG_ONLY, PASS_ANALYSIS)
        IGC_INITIALIZE_PASS_DEPENDENCY(WIAnalysis)
        IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
        IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
        IGC_INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
        IGC_INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
        IGC_INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
        IGC_INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
    IGC_INITIALIZE_PASS_END(AdvMemOpt, PASS_FLAG, PASS_DESC, PASS_CFG_ONLY, PASS_ANALYSIS)
} // End namespace IGC

bool AdvMemOpt::runOnFunction(Function& F) {
    // Skip non-kernel function.
    MetaDataUtils* MDU = nullptr;
    MDU = getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils();
    auto FII = MDU->findFunctionsInfoItem(&F);
    if (FII == MDU->end_FunctionsInfo())
        return false;

    DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    PDT = &getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
    LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
    WI = &getAnalysis<WIAnalysis>();

    SmallVector<Loop*, 8> InnermostLoops;
    for (auto I = LI->begin(), E = LI->end(); I != E; ++I)
        for (auto DFI = df_begin(*I), DFE = df_end(*I); DFI != DFE; ++DFI) {
            Loop* L = *DFI;
            if (IGCLLVM::isInnermost(L))
                InnermostLoops.push_back(L);
        }

    for (Loop* L : InnermostLoops) {
        SmallVector<BasicBlock*, 8> Line;
        BasicBlock* BB = L->getHeader();
        while (BB) {
            Line.push_back(BB);
            BasicBlock* CurrBB = BB;
            BB = nullptr;
            for (auto BI = succ_begin(CurrBB),
                BE = succ_end(CurrBB); BI != BE; ++BI) {
                BasicBlock* OtherBB = *BI;
                if (CurrBB == OtherBB || !L->contains(OtherBB))
                    continue;
                if (DT->dominates(CurrBB, OtherBB) && PDT->dominates(OtherBB, CurrBB)) {
                    BB = OtherBB;
                    break;
                }
            }
        }
        hoistUniformLoad(Line);
    }

    auto* Ctx = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
    if (Ctx->platform.isProductChildOf(IGFX_DG2)) {
        // split 64-bit uniform store into <2 x i32>, so it has better chance
        // to merge with other i32 stores in order to form 16-byte stores that
        // can use L1 cache
        auto& DL = F.getParent()->getDataLayout();
        IRBuilder<> IRB(F.getContext());
        for (auto II = inst_begin(&F), EI = inst_end(&F); II != EI; /* empty */) {
            auto* I = &*II++;
            if (auto* SI = dyn_cast<StoreInst>(I)) {
                if (!WI->isUniform(SI))
                    continue;

                unsigned AS = SI->getPointerAddressSpace();
                if (AS != ADDRESS_SPACE_PRIVATE &&
                    AS != ADDRESS_SPACE_GLOBAL)
                    continue;

                IRB.SetInsertPoint(SI);

                if (auto NewSI = expand64BitStore(IRB, DL, SI)) {
                    WI->incUpdateDepend(NewSI, WIAnalysis::UNIFORM_THREAD);
                    WI->incUpdateDepend(NewSI->getValueOperand(), WIAnalysis::UNIFORM_THREAD);
                    WI->incUpdateDepend(NewSI->getPointerOperand(), WIAnalysis::UNIFORM_THREAD);
                    SI->eraseFromParent();
                }
            }
        }
    }

    // hoist input-based sample instructions in pixel shader into Entry-Block
    unsigned MaxSampleHoisted = IGC_GET_FLAG_VALUE(PixelSampleHoistingLimit);
    if (Ctx->type == ShaderType::PIXEL_SHADER && MaxSampleHoisted)
    {
        auto DL = F.getParent()->getDataLayout();
        BasicBlock& EntryBlk = F.getEntryBlock();
        unsigned LiveOutPressure = 0;
        unsigned NumSampleInsts = 0;
        unsigned NumOtherInsts = 0;
        unsigned MaxLevelDeps = 0;
        std::map<Instruction*, unsigned> InstDepLevel;
        // check several parameters as the indicator of sampler hoisting:
        // the number of sample instructions
        // the number of other instructions
        // the level of dependencies on sample instructions
        // the live-out registers in the entry-block
        for (auto BI = EntryBlk.begin(), BE = EntryBlk.end(); BI != BE; ++BI)
        {
            auto Inst = &*BI;
            // compute instruction's dependency level
            unsigned DepLevel = 0;
            for (Value* Opnd : Inst->operands())
            {
                if (auto SrcI = dyn_cast<Instruction>(Opnd))
                {
                    if (InstDepLevel.find(SrcI) != InstDepLevel.end())
                    {
                        DepLevel = max(DepLevel, InstDepLevel[SrcI]);
                    }
                }
            }
            if (isSampleLoadGather4InfoInstruction(Inst))
            {
                NumSampleInsts++;
                DepLevel++;  // bump up the dependency-level
            }
            else
                NumOtherInsts++;
            InstDepLevel[Inst] = DepLevel;
            MaxLevelDeps = max(MaxLevelDeps, DepLevel);
            if (Inst->isUsedOutsideOfBlock(&EntryBlk))
            {
                LiveOutPressure += (uint)(DL.getTypeAllocSize(Inst->getType()));
            }
        }
        // hoist sampler instructions from the blocks post-dominiating the entry block
        if ((NumSampleInsts * 33) >= NumOtherInsts &&
            MaxLevelDeps >= 2 && LiveOutPressure <= 96)
        {
            auto Node = PDT->getNode(&EntryBlk);
            unsigned NumSampleHoisted = 0;
            while (Node->getIDom() && NumSampleHoisted < MaxSampleHoisted)
            {
                Node = Node->getIDom();
                BasicBlock* SuccBlk = Node->getBlock();
                auto BI = SuccBlk->begin();
                auto BE = SuccBlk->end();
                auto Inst = &*BI;
                while (!isSampleLoadGather4InfoInstruction(Inst) && BI != BE)
                {
                    Inst = &*BI++;
                }
                while (BI != BE && NumSampleHoisted < MaxSampleHoisted)
                {
                    auto NextCand = &*BI++;
                    while (!isSampleLoadGather4InfoInstruction(NextCand) && BI != BE)
                    {
                        NextCand = &*BI++;
                    }
                    if (hoistInst(Inst, &EntryBlk))
                    {
                        NumSampleHoisted++;
                    }
                    if (BI != BE)
                        Inst = NextCand;
                }
            }
        }
    }
    return false;
}

bool AdvMemOpt::isLeadCandidate(BasicBlock* BB) const {
    // A candidate lead should have at least one uniform loads. In addition,
    // there's no instruction might to write memory from the last uniform loads
    // to the end.
    for (auto II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
        if (II->mayWriteToMemory())
            return false;
        LoadInst* LD = dyn_cast<LoadInst>(&*II);
        if (!LD || !WI->isUniform(LD))
            continue;
        // Found uniform loads.
        return true;
    }
    return false;
}

namespace {
    class RegionSubgraph {
        BasicBlock* Exit;
        SmallPtrSet<BasicBlock*, 32> Visited;

    public:
        RegionSubgraph(BasicBlock* E) : Exit(E) {}

        bool preVisit(Optional<BasicBlock*> From, BasicBlock* To) {
            if (To == Exit)
                return false;
            return Visited.insert(To).second;
        }
    };
} // End anonymous namespace

namespace llvm {
    template<>
    class po_iterator_storage<RegionSubgraph, true> {
        RegionSubgraph& RSG;

    public:
        po_iterator_storage(RegionSubgraph& G) : RSG(G) {}

        bool insertEdge(Optional<BasicBlock*> From, BasicBlock* To) {
            return RSG.preVisit(From, To);
        }
        void finishPostorder(BasicBlock*) {}
    };
} // End llvm namespace

bool AdvMemOpt::hasMemoryWrite(BasicBlock* BB) const {
    for (auto II = BB->begin(), IE = BB->end(); II != IE; ++II)
        if (II->mayWriteToMemory())
            return true;
    return false;
}

bool AdvMemOpt::hasMemoryWrite(BasicBlock* Entry, BasicBlock* Exit) const {
    // Entry and Exit must be on line of code.
    IGC_ASSERT(nullptr != DT);
    IGC_ASSERT(DT->dominates(Entry, Exit));
    IGC_ASSERT(nullptr != PDT);
    IGC_ASSERT(PDT->dominates(Exit, Entry));

    RegionSubgraph RSG(Exit);
    for (auto SI = po_ext_begin(Entry, RSG),
        SE = po_ext_end(Entry, RSG); SI != SE; ++SI)
        if (*SI != Entry && hasMemoryWrite(*SI))
            return true;
    return false;
}

bool AdvMemOpt::collectOperandInst(SmallPtrSetImpl<Instruction*>& Set,
    Instruction* Inst, BasicBlock* LeadingBlock) const {
    for (Value* V : Inst->operands()) {
        Instruction* I = dyn_cast<Instruction>(V);
        if (!I)
            continue;
        if (isa<PHINode>(I) ||
            I->mayHaveSideEffects() ||
            I->mayReadOrWriteMemory())
            return true;
        if (I->getParent() != Inst->getParent())
        {
            // moving load instruction can be done only if operands
            // comes from the same basic block or a dominator of
            // the destination basic block. The condition is required
            // to counteract using uninitialized or wrong filled registers
            if (DT->dominates(I->getParent(), LeadingBlock))
                continue;
            else
                return true;
        }
        if (collectOperandInst(Set, I, LeadingBlock))
            return true;
    }
    Set.insert(Inst);
    return false;
}

bool AdvMemOpt::collectTrivialUser(SmallPtrSetImpl<Instruction*>& Set,
    Instruction* Inst) const {
    for (auto* U : Inst->users()) {
        Instruction* I = dyn_cast<Instruction>(U);
        if (!I || I->getParent() != Inst->getParent())
            continue;
        if (!isa<BitCastInst>(I) && !isa<ExtractElementInst>(I))
            continue;
        if (collectTrivialUser(Set, I))
            return true;
    }
    Set.insert(Inst);
    return false;
}

bool AdvMemOpt::hoistInst(Instruction* LD, BasicBlock* BB) const {
    SmallPtrSet<Instruction*, 32> ToHoist;
    if (collectOperandInst(ToHoist, LD, BB))
        return false;
    if (collectTrivialUser(ToHoist, LD))
        return false;
    BasicBlock* FromBB = LD->getParent();
    Instruction* Pos = BB->getTerminator();
    for (auto II = FromBB->getFirstNonPHI()->getIterator(),
        IE = FromBB->end(); II != IE; /*EMPTY*/) {
        Instruction* I = &*II++;
        if (ToHoist.count(I)) {
            I->moveBefore(Pos);
            ToHoist.erase(I);
            if (ToHoist.empty())
                break;
        }
    }
    return true;
}

bool AdvMemOpt::hoistUniformLoad(ArrayRef<BasicBlock*> Line) const {
    bool Changed = false;
    // Find the lead BB where to hoist uniform load.
    auto BI = Line.begin();
    auto BE = Line.end();
    while (BI != BE) {
        if (!isLeadCandidate(*BI)) {
            ++BI;
            continue;
        }
        // Found lead.
        BasicBlock* Lead = *BI++;
        BasicBlock* Prev = Lead;
        for (; BI != BE; ++BI) {
            BasicBlock* Curr = *BI;
            // Check whether it's safe to hoist uniform loads from Curr to Lead by
            // checking all blocks between Prev and Curr.
            if (hasMemoryWrite(Prev, Curr))
                break;
            // Hoist uniform loads from Curr into Lead.
            for (auto II = Curr->getFirstNonPHI()->getIterator(),
                IE = Curr->end(); II != IE; /*EMPTY*/) {
                if (II->mayWriteToMemory())
                    break;
                LoadInst* LD = dyn_cast<LoadInst>(&*II++);
                if (!LD || !WI->isUniform(LD))
                    continue;
                if (!hoistInst(LD, Lead))
                    break; // Bail out if any uniform load could not be hoisted safely.
                  // Reset iterator
                II = Curr->getFirstNonPHI()->getIterator();
                Changed = true;
            }
            // After hoisting uniform loads safely, if Curr has memory write, stop
            // hoisting further.
            if (hasMemoryWrite(Curr))
                break;
        }
    }
    return Changed;
}