1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "Compiler/CISACodeGen/BlockCoalescing.hpp"
#include "Compiler/MetaDataApi/MetaDataApi.h"
#include "common/igc_regkeys.hpp"
#include "Compiler/IGCPassSupport.h"
#include "Probe/Assertion.h"
using namespace llvm;
using namespace IGC;
using namespace IGC::IGCMD;
char BlockCoalescing::ID = 0;
#define PASS_FLAG "BlockCoalescing"
#define PASS_DESCRIPTION "Mark empty blocks after deSSA"
#define PASS_CFG_ONLY true
#define PASS_ANALYSIS true
IGC_INITIALIZE_PASS_BEGIN(BlockCoalescing, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(DeSSA)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenPatternMatch)
IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
IGC_INITIALIZE_PASS_END(BlockCoalescing, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
namespace IGC
{
BlockCoalescing::BlockCoalescing() : FunctionPass(ID)
{
initializeBlockCoalescingPass(*PassRegistry::getPassRegistry());
}
bool BlockCoalescing::runOnFunction(Function& F)
{
MetaDataUtils* pMdUtils = nullptr;
pMdUtils = getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils();
if (pMdUtils->findFunctionsInfoItem(&F) == pMdUtils->end_FunctionsInfo())
{
return false;
}
// If De-SSA is disabled we cannot remove empty blocks as they might contain move instructions
if (IGC_IS_FLAG_ENABLED(DisableEmptyBlockRemoval) || IGC_IS_FLAG_ENABLED(DisableDeSSA))
{
return false;
}
DeSSA* deSSA = &getAnalysis<DeSSA>();
CodeGenPatternMatch* patternMatch = &getAnalysis<CodeGenPatternMatch>();
for (uint i = 0; i < patternMatch->m_numBlocks; i++)
{
SBasicBlock& block = patternMatch->m_blocks[i];
// An empty block would have only one pattern matching the branch instruction
if (block.m_dags.size() == 1)
{
if (BranchInst * br = dyn_cast<BranchInst>(block.m_dags[0].m_root))
{
if (br->isUnconditional())
{
BasicBlock* const succ = br->getSuccessor(0);
IGC_ASSERT_MESSAGE(nullptr != succ, "Branch must have a successor!");
if (block.id >= patternMatch->GetBlockId(succ))
{
if (block.bb->getSinglePredecessor() == nullptr)
{
// do not remove this BB that goes backward, otherwise
// one back edge becomes two back edges, and the
// control-flow reconverge point changes.
continue;
}
else if (IGC_GET_FLAG_VALUE(EnableVISAStructurizer) == FLAG_SCF_Aggressive)
{
// Do not remove the BB that goes backward, otherwise,
// a loop with break will end up with more than one exits,
// which will not be recognized as GEN while
continue;
}
}
// Make sure that if there is any loop, one of BBs in the loop will
// not be in the m_emptyBlocks (eventually condense it to a single BB).
if (!hasEmptyBlockLoop(block.bb))
{
m_emptyBlocks.insert(block.bb);
}
}
}
}
}
for (auto& ConstI : patternMatch->ConstantPlacement)
{
m_emptyBlocks.erase(ConstI.second);
}
for (auto BBI = F.begin(), BBE = F.end(); BBI != BBE; BBI++)
{
BasicBlock* bb = &(*BBI);
for (auto II = BBI->begin(), IE = BBI->end(); II != IE; II++)
{
PHINode* phi = dyn_cast<PHINode>(II);
if (!phi)
{
break;
}
if (deSSA->isIsolated(phi))
{
m_emptyBlocks.erase(bb);
for (pred_iterator PI = pred_begin(bb), PE = pred_end(bb); PI != PE; PI++)
{
m_emptyBlocks.erase(*PI);
}
}
for (unsigned int i = 0, numOperand = phi->getNumIncomingValues(); i != numOperand; i++)
{
if (deSSA->getRootValue(phi->getOperand(i)) == nullptr ||
deSSA->getRootValue(phi->getOperand(i)) != deSSA->getRootValue(phi))
{
if (!isa<UndefValue>(phi->getOperand(i)))
{
m_emptyBlocks.erase(phi->getIncomingBlock(i));
}
}
}
}
}
return false;
}
// Check if EmptyBlock (not in m_emptyBlocks, and has single sucessor)
// could form a loop with BBs in m_emptyBlocks; if so, return true.
inline bool BlockCoalescing::hasEmptyBlockLoop(BasicBlock* EmptyBlock)
{
BasicBlock* succ = EmptyBlock->getTerminator()->getSuccessor(0);
// No loop formed by BBs in m_emptyBlock, so while will stop.
//
// If EmptyBlock would form a loop, it shall go to BBs in
// m_emptyBlocks and one BB in m_emptyBlocks will goto succ.
while (m_emptyBlocks.find(succ) != m_emptyBlocks.end())
{
succ = succ->getTerminator()->getSuccessor(0);
}
return (EmptyBlock == succ);
}
bool BlockCoalescing::IsEmptyBlock(BasicBlock* bb)
{
return m_emptyBlocks.find(bb) != m_emptyBlocks.end();
}
BasicBlock* BlockCoalescing::FollowEmptyBlock(BasicBlock* bb)
{
BasicBlock* block = bb;
while (IsEmptyBlock(block))
{
IGC_ASSERT(block->getTerminator()->getNumSuccessors() == 1);
block = block->getTerminator()->getSuccessor(0);
}
return block;
}
BasicBlock* BlockCoalescing::SkipEmptyBasicBlock(BasicBlock* bb)
{
BasicBlock* block = bb;
while (IsEmptyBlock(block))
{
IGC_ASSERT(block->getTerminator()->getNumSuccessors() == 1);
block = block->getNextNode();
}
return block;
}
}
|