1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
/*========================== begin_copyright_notice ============================
This file is distributed under the University of Illinois Open Source License.
See LICENSE.TXT for details.
============================= end_copyright_notice ===========================*/
//===-------- DeSSA.cpp - divide phi variables into congruent class -------===//
//
// Intel LLVM Extention
//===----------------------------------------------------------------------===//
//
// This pass is originated from the StrongPHIElimination on the machine-ir.
// We have adopted it to work on llvm-ir. Also note that we have changed it
// from a transformation to an analysis, meaning which only divides phi-vars
// into congruent classes, and does NOT insert the copies. A separate code-gen
// pass can use this analysis to emit non-ssa target code.
//
// Algorithm and References:
//
// This pass consider how to eliminates PHI instructions by aggressively
// coalescing the copies that would otherwise be inserted by a naive algorithm
// and only inserting the copies that are necessary. The coalescing technique
// initially assumes that all registers appearing in a PHI instruction do not
// interfere. It then eliminates proven interferences, using dominators to only
// perform a linear number of interference tests instead of the quadratic number
// of interference tests that this would naively require.
// This is a technique derived from:
//
// Budimlic, et al. Fast copy coalescing and live-range identification.
// In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language
// Design and Implementation (Berlin, Germany, June 17 - 19, 2002).
// PLDI '02. ACM, New York, NY, 25-32.
//
// The original implementation constructs a data structure they call a dominance
// forest for this purpose. The dominance forest was shown to be unnecessary,
// as it is possible to emulate the creation and traversal of a dominance forest
// by directly using the dominator tree, rather than actually constructing the
// dominance forest. This technique is explained in:
//
// Boissinot, et al. Revisiting Out-of-SSA Translation for Correctness, Code
// Quality and Efficiency,
// In Proceedings of the 7th annual IEEE/ACM International Symposium on Code
// Generation and Optimization (Seattle, Washington, March 22 - 25, 2009).
// CGO '09. IEEE, Washington, DC, 114-125.
//
// Careful implementation allows for all of the dominator forest interference
// checks to be performed at once in a single depth-first traversal of the
// dominator tree, which is what is implemented here.
//===----------------------------------------------------------------------===//
#include "Compiler/CISACodeGen/DeSSA.hpp"
#include "Compiler/CISACodeGen/ShaderCodeGen.hpp"
#include "Compiler/CISACodeGen/PatternMatchPass.hpp"
#include "Compiler/MetaDataApi/MetaDataApi.h"
#include "common/debug/Debug.hpp"
#include "common/debug/Dump.hpp"
#include "Compiler/IGCPassSupport.h"
#include "common/LLVMWarningsPush.hpp"
#include "llvmWrapper/IR/Instructions.h"
#include <llvm/IR/InstIterator.h>
#include <llvm/IR/InlineAsm.h>
#include <llvmWrapper/IR/DerivedTypes.h>
#include "common/LLVMWarningsPop.hpp"
#include <algorithm>
#include "Probe/Assertion.h"
using namespace llvm;
using namespace IGC;
using namespace IGC::Debug;
using namespace IGC::IGCMD;
#define PASS_FLAG "DeSSA"
#define PASS_DESCRIPTION "coalesce moves coming from phi nodes"
#define PASS_CFG_ONLY true
#define PASS_ANALYSIS true
IGC_INITIALIZE_PASS_BEGIN(DeSSA, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(WIAnalysis)
IGC_INITIALIZE_PASS_DEPENDENCY(LiveVarsAnalysis)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenPatternMatch)
IGC_INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
IGC_INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
IGC_INITIALIZE_PASS_END(DeSSA, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
char DeSSA::ID = 0;
DeSSA::DeSSA() : FunctionPass(ID)
{
initializeDeSSAPass(*PassRegistry::getPassRegistry());
}
void DeSSA::print(raw_ostream& OS, const Module*) const
{
// Assign each inst/arg a unique integer so that the output
// would be in order. It is useful when doing comparison.
DenseMap<const Value*, int> Val2IntMap;
int id = 0;
if (m_F) {
// All arguments
for (auto AI = m_F->arg_begin(), AE = m_F->arg_end(); AI != AE; ++AI) {
Value* aVal = &*AI;
Val2IntMap[aVal] = (++id);
}
// All instructions
for (auto II = inst_begin(m_F), IE = inst_end(m_F); II != IE; ++II) {
Instruction* Inst = &*II;
Val2IntMap[(Value*)Inst] = (++id);
}
}
bool doSort = (!Val2IntMap.empty());
auto valCmp = [&](const Value* V0, const Value* V1) -> bool {
int n0 = Val2IntMap[V0];
int n1 = Val2IntMap[V1];
return n0 < n1;
};
SmallVector<Value*, 64> ValKeyVec;
DenseMap<Value*, SmallVector<Value*, 8> > output;
if (IGC_IS_FLAG_ENABLED(EnableDeSSAAlias))
{
OS << "---- AliasMap ----\n\n";
for (auto& I : AliasMap) {
Value* aliaser = I.first;
Value* aliasee = I.second;
SmallVector<Value*, 8> & allAliasers = output[aliasee];
if (aliaser != aliasee) {
allAliasers.push_back(aliaser);
}
}
for (auto& I : output) {
Value* key = I.first;
ValKeyVec.push_back(key);
}
if (doSort) {
std::sort(ValKeyVec.begin(), ValKeyVec.end(), valCmp);
}
for (auto& I : ValKeyVec) {
Value* aliasee = I;
SmallVector<Value*, 8> & allAliasers = output[aliasee];
if (doSort) {
std::sort(allAliasers.begin(), allAliasers.end(), valCmp);
}
OS << " Aliasee: ";
aliasee->print(OS);
OS << "\n";
for (int i = 0, sz = (int)allAliasers.size(); i < sz; ++i)
{
OS << " ";
allAliasers[i]->print(OS);
OS << "\n";
}
}
OS << "\n\n";
}
OS << "---- InsEltMap ----\n\n";
output.clear();
ValKeyVec.clear();
for (auto& I : InsEltMap) {
Value* val = I.first;
Value* rootV = I.second;
SmallVector<Value*, 8> & allVals = output[rootV];
if (rootV != val) {
allVals.push_back(val);
}
}
for (auto& I : output) {
Value* key = I.first;
ValKeyVec.push_back(key);
}
if (doSort) {
std::sort(ValKeyVec.begin(), ValKeyVec.end(), valCmp);
}
for (auto& I : ValKeyVec) {
Value* rootV = I;
SmallVector<Value*, 8> & allVals = output[rootV];
if (doSort) {
std::sort(allVals.begin(), allVals.end(), valCmp);
}
OS << " Root Value : ";
rootV->print(OS);
OS << "\n";
for (int i = 0, sz = (int)allVals.size(); i < sz; ++i)
{
OS << " ";
allVals[i]->print(OS);
OS << "\n";
}
}
OS << "\n\n";
if (IGC_IS_FLAG_ENABLED(EnableDeSSAAlias))
{
OS << "---- Multi-value Alias (value in both AliasMap & InsEltMap) ----\n";
// All InsElt output has been sorted
for (auto& I : ValKeyVec) {
Value* rootV = I;
SmallVector<Value*, 8> & allVals = output[rootV];
OS << " Root Value: ";
rootV->printAsOperand(OS);
if (isAliasee(rootV)) {
OS << " [aliasee]";
}
int num = 0;
for (int i = 0, sz = (int)allVals.size(); i < sz; ++i)
{
Value* val = allVals[i];
if (!isAliasee(val))
continue;
if ((num % 8) == 0) {
OS << "\n ";
}
allVals[i]->printAsOperand(OS);
OS << " [aliasee] ";
++num;
}
OS << "\n";
}
}
OS << "\n\n";
OS << "---- Phi-Var Isolations ----\n";
SmallVector<Node*, 64> NodeKeyVec;
std::map<Node*, SmallVector<Node*, 8> > nodeOutput;
//std::map<Node*, int> LeaderVisited;
for (auto I = RegNodeMap.begin(),
E = RegNodeMap.end(); I != E; ++I) {
Node* N = I->second;
// We don't want to change behavior of DeSSA by invoking
// dumping/printing functions. Thus, don't use getLeader()
// as it has side-effect (doing path halving).
Node* Leader = N->parent;
while (Leader != Leader->parent) {
Leader = Leader->parent;
}
SmallVector<Node*, 8> & allNodes = nodeOutput[Leader];
if (N != Leader) {
allNodes.push_back(N);
}
}
auto nodeCmp = [&](const Node* N0, const Node* N1) -> bool {
const Value* V0 = N0->value;
const Value* V1 = N1->value;
return valCmp(V0, V1);
};
for (auto& I : nodeOutput) {
Node* key = I.first;
NodeKeyVec.push_back(key);
}
if (doSort) {
std::sort(NodeKeyVec.begin(), NodeKeyVec.end(), nodeCmp);
}
for (auto& I : NodeKeyVec) {
Node* Leader = I;
SmallVector<Node*, 8> & allNodes = nodeOutput[Leader];
if (doSort) {
std::sort(allNodes.begin(), allNodes.end(), nodeCmp);
}
Value* VL;
if (isIsolated(Leader)) {
IGC_ASSERT_MESSAGE(allNodes.size() == 0, "ICE: isolated node still in multi-value CC!");
VL = Leader->value;
OS << "\nVar isolated : ";
VL->print(OS);
OS << "\n";
}
else {
OS << "\nLeader : ";
Leader->value->print(OS);
OS << "\n";
for (auto& II : allNodes) {
Node* N = II;
VL = N->value;
OS << " ";
VL->print(OS);
OS << "\n";
N = N->next;
}
}
}
}
void DeSSA::dump() const {
print(dbgs());
}
bool DeSSA::runOnFunction(Function& MF)
{
m_F = &MF;
CurrColor = 0;
MetaDataUtils* pMdUtils = nullptr;
pMdUtils = getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils();
if (pMdUtils->findFunctionsInfoItem(&MF) == pMdUtils->end_FunctionsInfo())
{
return false;
}
CTX = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
WIA = &getAnalysis<WIAnalysis>();
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
CG = &getAnalysis<CodeGenPatternMatch>();
DL = &MF.getParent()->getDataLayout();
LV = &getAnalysis<LiveVarsAnalysis>().getLiveVars();
// make sure we do not run WIAnalysis between CodeGen and DeSSA,
// therefore m_program's Uniform Helper is still valid, which is
// used indirectly in DeSSA::GetPhiTemp().
// If we cannot maintain this assertion, then we should do
// m_program->SetUniformHelper(WIA);
if (IGC_IS_FLAG_ENABLED(EnableDeSSAAlias))
{
//
// The DeSSA/Coalescing procedure:
// 1. Follow Dominance tree to set up alias map. While setting up alias map,
// update liveness for aliasee so that alasee's liveness is the sum of
// all its aliasers.
// By aliaser/aliasee, it means the following:
// aliaser = bitcast aliasee
// (Most aliasing is from bitcast, some can be from other cast instructions
// such as inttoptr/ptrtoint. It could be also from insElt/extElt.)
//
// By traversing dominance tree depth-first (DF), it is guaranteed that
// a def will be visited before its use except PHI node. Since PHI inst
// is not a candidate for aliasing, this means that the def of aliasee has
// been visited before the aliaser instruction. For example,
// x = bitcast y
// The def of y should be visited before visiting this bitcast inst.
// Let alias(v0, v1) denote that v0 is an alias to v1. DF dominance-tree
// traversal may not handle aliasing in the following order:
// alias(v0, v1)
// alias(v1, v2)
// rather, it must be in the order
// alias(v1, v2)
// alias(v0, v1)
// By doing DF dominance-tree traversal, this kind of aliasing chain will
// be handled directly.
//
// 2. Set up InsEltMap, which coalesces vector values used in InsertElement
// instructions. It is treated as "alias", meaning the root value's
// liveness is the sum of all its non-root values. The difference b/w
// AliasMap and InsEltMap is that AliasMap is pure alias in that all
// aliasers have the same values as its aliasee (single-valued, like SSA);
// while InsElt has multiple-valued values. This difference does not matter
// in dessa, but it would matter when handling sub-vector aliasing later.
//
// We could remove InsEltMap by adding each value into DeSSA node. To do
// so, dessa traversal needs to be modified to have def of those values
// in PhiSrcDefs. This will generally have a larger CC, which means more
// compiling time.
// 3. Make sure DeSSA node only use the node value, that is, given value V,
// its Node value:
// V_aliasee = AliasMap[V] if V is in map, or V otherwise
// node_value = InsEltMap[V_aliasee] if in InsEltMap; or V_aliasee
// otherwise.
// Note that since the type of aliasess may be different from aliaser,
// the values in the same CC will have different types. Keep this in mind
// when creating CVariable in GetSymbol().
//
// Note that the algorithem forces coalescing of aliasing inst and InsertElement
// inst before PHI-coalescing, which means it favors coaslescing of those aliasing
// inst and InsertElement instructions. Thus, values in AliasMap/InsEltMap are
// guananteed to be coalesced together at the end of DeSSA. PHI coalescing may
// extend those maps by adding other values.
//
for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
CoalesceAliasInstForBasicBlock(DI->getBlock());
}
}
for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
CoalesceInsertElementsForBasicBlock(DI->getBlock());
}
// checkPHILoopInput
// PreHeader:
// x = ...
// Header:
// phi0 = [x, PreHeader], [t0, End]
// phi1 = [x, PreHeader], [t1, End]
// phi2 = [x, PreHeader], [t2, End]
// ...
// End:
// ...
// goto Header
//
// The algorithme below will start with a largest congruent class possible,
// which unions all phi's with the same source operands. This ends up with
// a single congruent class of all phi's with x as their source operand.
// Later, the algorithm isolates phi's as they interfere with each other,
// causing mov instructions to be generated within the loop at BB End.
//
// However, since all phi instructions are live at the same time, we will
// not be able to coalesce them. In another word, there is no need to put
// all phi's into the same congruent class in the first place. To achieve
// this, we use a Value-to-int map to keep how many times a value is used
// in the phi's, and if the number of uses is over a threshold, we will
// isolate the source operand and do not union it with its phi. In doing
// so it is likely for the algorithm to coalesce the phi's dst and the
// other src that is used in the loop, and therefore remove mov instrutions
// in the loop.
//
// Note that isolating a value introduce additional copy, thus a threshold
// is used here as a heuristic to try to make sure that a benefit is more
// than the cost.
enum { PHI_SRC_USE_THRESHOLD = 3 }; // arbitrary number
DenseMap<Value*, int> PHILoopPreHeaderSrcs;
// build initial congruent class using union-find
for (Function::iterator I = MF.begin(), E = MF.end();
I != E; ++I)
{
// First, initialize PHILoopPreHeaderSrcs map
BasicBlock* MBB = &*I;
Loop* LP = LI ? LI->getLoopFor(MBB) : nullptr;
BasicBlock* PreHeader = LP ? LP->getLoopPredecessor() : nullptr;
bool checkPHILoopInput = LP && (LP->getHeader() == MBB) && PreHeader;
PHILoopPreHeaderSrcs.clear();
if (checkPHILoopInput)
{
for (BasicBlock::iterator BBI = I->begin(), BBE = I->end();
BBI != BBE; ++BBI) {
PHINode* PHI = dyn_cast<PHINode>(BBI);
if (!PHI) {
break;
}
int srcIx = PHI->getBasicBlockIndex(PreHeader);
if (srcIx < 0) {
continue;
}
Value* SrcVal = PHI->getOperand(srcIx);
if (isa<Constant>(SrcVal)) {
continue;
}
if (PHILoopPreHeaderSrcs.count(SrcVal) == 0) {
PHILoopPreHeaderSrcs[SrcVal] = 0; // initialize to zero
}
PHILoopPreHeaderSrcs[SrcVal] += 1;
}
}
for (BasicBlock::iterator BBI = I->begin(), BBE = I->end();
BBI != BBE; ++BBI) {
PHINode* PHI = dyn_cast<PHINode>(BBI);
if (!PHI) {
break;
}
e_alignment DefAlign = GetPreferredAlignment(PHI, WIA, CTX);
IGC_ASSERT(PHI == getNodeValue(PHI));
addReg(PHI, DefAlign);
PHISrcDefs[&(*I)].push_back(PHI);
for (unsigned i = 0; i < PHI->getNumOperands(); ++i) {
Value* OrigSrcVal = PHI->getOperand(i);
// skip constant
if (isa<Constant>(OrigSrcVal))
continue;
// condition for preheader-src-isolation
bool PreheaderSrcIsolation = (checkPHILoopInput &&
!isa<InsertElementInst>(OrigSrcVal) && !isa<PHINode>(OrigSrcVal) &&
PHI->getIncomingBlock(i) == PreHeader &&
PHILoopPreHeaderSrcs.count(OrigSrcVal) > 0 &&
PHILoopPreHeaderSrcs[OrigSrcVal] >= PHI_SRC_USE_THRESHOLD);
// add src to the union
Value* SrcVal;
SrcVal = getNodeValue(OrigSrcVal);
e_alignment SrcAlign = GetPreferredAlignment(OrigSrcVal, WIA, CTX);
Instruction* DefMI = dyn_cast<Instruction>(SrcVal);
if (DefMI) {
if (CG->SIMDConstExpr(DefMI)) {
continue; // special case, simdSize becomes a constant in vISA
}
addReg(SrcVal, SrcAlign);
PHISrcDefs[DefMI->getParent()].push_back(DefMI);
if (WIA->whichDepend(PHI) == WIA->whichDepend(SrcVal) && !PreheaderSrcIsolation) {
unionRegs(PHI, SrcVal);
}
}
else if (isa<Argument>(SrcVal)) {
addReg(SrcVal, SrcAlign);
PHISrcArgs.insert(SrcVal);
if (WIA->whichDepend(PHI) == WIA->whichDepend(SrcVal) && !PreheaderSrcIsolation) {
unionRegs(PHI, SrcVal);
}
}
// cases that we need to isolate source
if (CG->IsForceIsolated(SrcVal) || PreheaderSrcIsolation) {
isolateReg(SrcVal);
}
} // end of source-operand loop
// isolate complex type that IGC does not handle
if (PHI->getType()->isStructTy() ||
PHI->getType()->isArrayTy()) {
isolateReg(PHI);
}
}
}
// \todo, the original paper talks aibout some before-hand quick
// isolation. The idea is to identify those essential splitting first
// in order to avoid unnecessary splitting in the next loop.
// Perform a depth-first traversal of the dominator tree, splitting
// interferences amongst PHI-congruence classes.
if (!RegNodeMap.empty()) {
DenseMap<int, Value*> CurrentDominatingParent;
DenseMap<Value*, Value*> ImmediateDominatingParent;
// first, go through the function arguments
SplitInterferencesForArgument(CurrentDominatingParent, ImmediateDominatingParent);
// Then all the blocks
for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
SplitInterferencesForBasicBlock(DI->getBlock(),
CurrentDominatingParent,
ImmediateDominatingParent);
}
}
// Handle values that have specific alignment requirement.
SplitInterferencesForAlignment();
if (IGC_IS_FLAG_ENABLED(DumpDeSSA))
{
const char* fname = MF.getName().data();
using namespace IGC::Debug;
auto name =
DumpName(GetShaderOutputName())
.Hash(CTX->hash)
.Type(CTX->type)
.Pass("dessa")
.PostFix(fname)
.Retry(CTX->m_retryManager.GetRetryId())
.Extension("txt");
Dump dessaDump(name, DumpType::DBG_MSG_TEXT);
DumpLock();
print(dessaDump.stream());
DumpUnlock();
}
m_F = nullptr;
return false;
}
void DeSSA::addReg(Value* Val, e_alignment Align) {
if (RegNodeMap.count(Val))
return;
RegNodeMap[Val] = new (Allocator) Node(Val, ++CurrColor, Align);
}
// Using Path Halving in union-find
DeSSA::Node*
DeSSA::Node::getLeader() {
Node* N = this;
Node* Parent = parent;
Node* Grandparent = Parent->parent;
while (Parent != Grandparent) {
N->parent = Grandparent;
N = Grandparent;
Parent = N->parent;
Grandparent = Parent->parent;
}
return Parent;
}
Value* DeSSA::getRegRoot(Value* Val, e_alignment* pAlign) const {
auto RI = RegNodeMap.find(Val);
if (RI == RegNodeMap.end())
return nullptr;
Node* TheNode = RI->second;
if (isIsolated(TheNode))
return nullptr;
Node* TheLeader = TheNode->getLeader();
if (pAlign)
* pAlign = TheLeader->alignment;
return TheLeader->value;
}
int DeSSA::getRootColor(Value* V)
{
auto RI = RegNodeMap.find(V);
if (RI == RegNodeMap.end())
return 0;
Node* TheNode = RI->second;
if (isIsolated(TheNode))
return 0;
Node* TheLeader = TheNode->getLeader();
return TheLeader->color;
}
void DeSSA::unionRegs(Node* Nd1, Node* Nd2)
{
Node* N1 = Nd1->getLeader();
Node* N2 = Nd2->getLeader();
Node* NewLeader = nullptr;
Node* Leadee = nullptr;
if (N1 == N2)
return;
if (N1->rank > N2->rank) {
NewLeader = N1;
Leadee = N2;
}
else if (N1->rank < N2->rank) {
NewLeader = N2;
Leadee = N1;
}
else {
NewLeader = N1;
Leadee = N2;
NewLeader->rank++;
}
IGC_ASSERT_MESSAGE(nullptr != NewLeader, "ICE: both leader and leadee shall not be null!");
IGC_ASSERT_MESSAGE(nullptr != Leadee, "ICE: both leader and leadee shall not be null!");
Leadee->parent = NewLeader;
// Link the circular list of Leadee right before NewLeader
Node* Leadee_prev = Leadee->prev;
Node* NewLeader_prev = NewLeader->prev;
NewLeader_prev->next = Leadee;
Leadee->prev = NewLeader_prev;
Leadee_prev->next = NewLeader;
NewLeader->prev = Leadee_prev;
}
void DeSSA::isolateReg(Value* Val) {
Node* ND = RegNodeMap[Val];
splitNode(ND);
}
bool DeSSA::isIsolated(Value* V) const {
auto RI = RegNodeMap.find(V);
if (RI == RegNodeMap.end()) {
return true;
}
Node* DestNode = RI->second;
return isIsolated(DestNode);
}
// Split node ND from its existing congurent class, and the
// node ND itself becomes a new single-value congruent class.
void DeSSA::splitNode(Node* ND)
{
Node* N = ND->next;
if (N == ND) {
// ND is already in a single-value congruent class
return;
}
Node* Leader = ND->getLeader();
// Remove ND from the congruent class
Node* P = ND->prev;
N->prev = P;
P->next = N;
// ND : a new single-value congruent class
ND->parent = ND;
ND->next = ND;
ND->prev = ND;
ND->rank = 0;
// If leader is removed, need to have a new leader.
if (Leader == ND) {
// P will be the new leader. Also swap ND's color with P's
// so that the original congruent class still have the original
// color (this is important as Dom traversal assumes that the
// color of any congruent class remains unchanged).
int t = P->color;
P->color = ND->color;
ND->color = t;
// New leader
Leader = P;
}
// If ND has children, those children need to set their parent.
// Since we don't know if ND has children, we conservatively set
// parent for all remaining nodes using "a path compression", so
// that all nodes remains in the same rooted tree.
N = Leader->next;
Leader->parent = Leader;
Leader->rank = (Leader == N) ? 0 : 1;
while (N != Leader)
{
N->parent = Leader;
N->rank = 0;
N = N->next;
}
}
/// SplitInterferencesForBasicBlock - traverses a basic block, splitting any
/// interferences found between registers in the same congruence class. It
/// takes two DenseMaps as arguments that it also updates:
///
/// 1) CurrentDominatingParent, which maps a color to the register in that
/// congruence class whose definition was most recently seen.
///
/// 2) ImmediateDominatingParent, which maps a register to the register in the
/// same congruence class that most immediately dominates it.
///
/// This function assumes that it is being called in a depth-first traversal
/// of the dominator tree.
///
/// The algorithm used here is a generalization of the dominance-based SSA test
/// for two variables. If there are variables a_1, ..., a_n such that
///
/// def(a_1) dom ... dom def(a_n),
///
/// then we can test for an interference between any two a_i by only using O(n)
/// interference tests between pairs of variables. If i < j and a_i and a_j
/// interfere, then a_i is alive at def(a_j), so it is also alive at def(a_i+1).
/// Thus, in order to test for an interference involving a_i, we need only check
/// for a potential interference with a_i+1.
///
/// This method can be generalized to arbitrary sets of variables by performing
/// a depth-first traversal of the dominator tree. As we traverse down a branch
/// of the dominator tree, we keep track of the current dominating variable and
/// only perform an interference test with that variable. However, when we go to
/// another branch of the dominator tree, the definition of the current dominating
/// variable may no longer dominate the current block. In order to correct this,
/// we need to use a stack of past choices of the current dominating variable
/// and pop from this stack until we find a variable whose definition actually
/// dominates the current block.
///
/// There will be one push on this stack for each variable that has become the
/// current dominating variable, so instead of using an explicit stack we can
/// simply associate the previous choice for a current dominating variable with
/// the new choice. This works better in our implementation, where we test for
/// interference in multiple distinct sets at once.
void
DeSSA::SplitInterferencesForBasicBlock(
BasicBlock* MBB,
DenseMap<int, Value*>& CurrentDominatingParent,
DenseMap<Value*, Value*>& ImmediateDominatingParent) {
// Sort defs by their order in the original basic block, as the code below
// assumes that it is processing definitions in dominance order.
std::vector<Instruction*>& DefInstrs = PHISrcDefs[MBB];
std::sort(DefInstrs.begin(), DefInstrs.end(), MIIndexCompare(LV));
for (std::vector<Instruction*>::const_iterator BBI = DefInstrs.begin(),
BBE = DefInstrs.end(); BBI != BBE; ++BBI) {
Instruction* DefMI = *BBI;
// If the virtual register being defined is not used in any PHI or has
// already been isolated, then there are no more interferences to check.
int RootC = getRootColor(DefMI);
if (!RootC)
continue;
// The input to this pass sometimes is not in SSA form in every basic
// block, as some virtual registers have redefinitions. We could eliminate
// this by fixing the passes that generate the non-SSA code, or we could
// handle it here by tracking defining machine instructions rather than
// virtual registers. For now, we just handle the situation conservatively
// in a way that will possibly lead to false interferences.
Value* NewParent = CurrentDominatingParent[RootC];
if (NewParent == DefMI)
continue;
// Pop registers from the stack represented by ImmediateDominatingParent
// until we find a parent that dominates the current instruction.
while (NewParent) {
if (getRootColor(NewParent)) {
// we have added the another condition because the domination-test
// does not work between two phi-node. See the following comments
// from the DT::dominates:
// " It is not possible to determine dominance between two PHI nodes
// based on their ordering
// if (isa<PHINode>(A) && isa<PHINode>(B))
// return false;"
if (isa<Argument>(NewParent)) {
break;
}
else if (DT->dominates(cast<Instruction>(NewParent), DefMI)) {
break;
}
else if (cast<Instruction>(NewParent)->getParent() == MBB &&
isa<PHINode>(DefMI) && isa<PHINode>(NewParent)) {
break;
}
}
NewParent = ImmediateDominatingParent[NewParent];
}
// If NewParent is nonzero, then its definition dominates the current
// instruction, so it is only necessary to check for the liveness of
// NewParent in order to check for an interference.
if (NewParent && LV->isLiveAt(NewParent, DefMI)) {
// If there is an interference, always isolate the new register. This
// could be improved by using a heuristic that decides which of the two
// registers to isolate.
isolateReg(DefMI);
CurrentDominatingParent[RootC] = NewParent;
}
else {
// If there is no interference, update ImmediateDominatingParent and set
// the CurrentDominatingParent for this color to the current register.
ImmediateDominatingParent[DefMI] = NewParent;
CurrentDominatingParent[RootC] = DefMI;
}
}
// We now walk the PHIs in successor blocks and check for interferences. This
// is necessary because the use of a PHI's operands are logically contained in
// the predecessor block. The def of a PHI's destination register is processed
// along with the other defs in a basic block.
CurrentPHIForColor.clear();
for (succ_iterator SI = succ_begin(MBB), E = succ_end(MBB); SI != E; ++SI) {
for (BasicBlock::iterator BBI = (*SI)->begin(), BBE = (*SI)->end();
BBI != BBE; ++BBI) {
PHINode* PHI = dyn_cast<PHINode>(BBI);
if (!PHI) {
break;
}
int RootC = getRootColor(PHI);
// check live-out interference
if (IGC_IS_FLAG_ENABLED(EnableDeSSAWA) && !RootC)
{
// [todo] delete this code
if (CTX->type == ShaderType::COMPUTE_SHADER)
{
for (unsigned i = 0; !RootC && i < PHI->getNumOperands(); i++) {
Value* SrcVal = PHI->getOperand(i);
if (!isa<Constant>(SrcVal)) {
SrcVal = getNodeValue(SrcVal);
RootC = getRootColor(SrcVal);
}
}
}
}
if (!RootC) {
continue;
}
// Find the index of the PHI operand that corresponds to this basic block.
unsigned PredIndex;
for (PredIndex = 0; PredIndex < PHI->getNumOperands(); ++PredIndex) {
if (PHI->getIncomingBlock(PredIndex) == MBB)
break;
}
IGC_ASSERT(PredIndex < PHI->getNumOperands());
Value* PredValue = PHI->getOperand(PredIndex);
PredValue = getNodeValue(PredValue);
std::pair<Instruction*, Value*>& CurrentPHI = CurrentPHIForColor[RootC];
// If two PHIs have the same operand from every shared predecessor, then
// they don't actually interfere. Otherwise, isolate the current PHI. This
// could possibly be improved, e.g. we could isolate the PHI with the
// fewest operands.
if (CurrentPHI.first && CurrentPHI.second != PredValue) {
isolateReg(PHI);
continue;
}
else {
CurrentPHI = std::make_pair(PHI, PredValue);
}
// check live-out interference
// Pop registers from the stack represented by ImmediateDominatingParent
// until we find a parent that dominates the current instruction.
Value* NewParent = CurrentDominatingParent[RootC];
while (NewParent) {
if (getRootColor(NewParent)) {
if (isa<Argument>(NewParent)) {
break;
}
else if (DT->dominates(cast<Instruction>(NewParent)->getParent(), MBB)) {
break;
}
}
NewParent = ImmediateDominatingParent[NewParent];
}
CurrentDominatingParent[RootC] = NewParent;
// If there is an interference with a register, always isolate the
// register rather than the PHI. It is also possible to isolate the
// PHI, but that introduces copies for all of the registers involved
// in that PHI.
if (NewParent && NewParent != PredValue && LV->isLiveOut(NewParent, *MBB)) {
isolateReg(NewParent);
}
}
}
}
void
DeSSA::SplitInterferencesForArgument(
DenseMap<int, Value*>& CurrentDominatingParent,
DenseMap<Value*, Value*>& ImmediateDominatingParent) {
// No two arguments can be in the same congruent class
for (auto BBI = PHISrcArgs.begin(),
BBE = PHISrcArgs.end(); BBI != BBE; ++BBI) {
Value* AV = *BBI;
// If the virtual register being defined is not used in any PHI or has
// already been isolated, then there are no more interferences to check.
int RootC = getRootColor(AV);
if (!RootC)
continue;
Value* NewParent = CurrentDominatingParent[RootC];
if (NewParent) {
isolateReg(AV);
}
else {
CurrentDominatingParent[RootC] = AV;
}
}
}
// [todo] get rid of alignment-based isolation in dessa.
// Using alignment in isolation seems over-kill. The right approach
// would be one that avoids adding values with conflicting alignment
// requirement in the same congruent, not adding them in the same
// congruent class first and trying to isolate them later.
void DeSSA::SplitInterferencesForAlignment()
{
for (auto I = RegNodeMap.begin(), E = RegNodeMap.end(); I != E; ++I)
{
// Find a root Node
Node* rootNode = I->second;
if (rootNode->parent != rootNode) {
continue;
}
e_alignment Align = EALIGN_AUTO;
// Find the most restrictive alignment, i.e. GRF aligned ones.
Node* N = rootNode;
Node* Curr;
do {
Curr = N;
N = Curr->next;
if (Curr->alignment == EALIGN_GRF) {
Align = EALIGN_GRF;
break;
}
} while (N != rootNode);
if (Align != EALIGN_GRF)
continue;
// Isolate any mis-aligned value.
// Start with Curr node as it cannot be isolated
// (rootNode could be isolated), therefore, it remains
// in the linked list and can be used to test stop looping.
Node* Head = Curr;
N = Head;
do {
Curr = N;
N = N->next;
if (Curr->alignment != EALIGN_AUTO && Curr->alignment != EALIGN_GRF)
{
IGC_ASSERT(nullptr != Curr);
IGC_ASSERT_MESSAGE((Curr != Head), "Head Node cannot be isolated, something wrong!");
isolateReg(Curr->value);
}
} while (N != Head);
// Update root's alignment.
Head->getLeader()->alignment = Align;
}
}
Value*
DeSSA::getInsEltRoot(Value* Val) const
{
auto RI = InsEltMap.find(Val);
if (RI == InsEltMap.end())
return Val;
return RI->second;
}
/// <summary>
/// Identify if an instruction has partial write semantics
/// </summary>
/// <param name="Inst"></param>
/// <returns> the index of the source partial-write operand</returns>
static
int getPartialWriteSource(Value *Inst)
{
if (isa<InsertElementInst>(Inst))
return 0; // source 0 is the original value
if (auto CI = dyn_cast<CallInst>(Inst)) {
// only handle inline-asm with simple destination
if (CI->isInlineAsm() && !CI->getType()->isStructTy()) {
InlineAsm* IA = cast<InlineAsm>(IGCLLVM::getCalledValue(CI));
StringRef constraintStr(IA->getConstraintString());
SmallVector<StringRef, 8> constraints;
constraintStr.split(constraints, ',');
for (int i = 0; i < (int)constraints.size(); i++) {
unsigned destID = 0;
if (constraints[i].getAsInteger(10, destID) == 0) {
// constraint-string indicates that source(i-1) and
// destination should be the same vISA variable
if (i > 0 && destID == 0)
return (i - 1);
}
}
}
}
return -1;
}
void
DeSSA::CoalesceInsertElementsForBasicBlock(BasicBlock* Blk)
{
if (IGC_IS_FLAG_ENABLED(EnableDeSSAAlias))
{
for (BasicBlock::iterator BBI = Blk->begin(), BBE = Blk->end();
BBI != BBE; ++BBI) {
Instruction* Inst = &(*BBI);
if (!CG->NeedInstruction(*Inst)) {
continue;
}
// Only Aliasee needs to be handled.
if (getAliasee(Inst) != Inst) {
continue;
}
// For keeping the existing behavior of InsEltMap unchanged
auto PWSrcIdx = getPartialWriteSource(Inst);
if (PWSrcIdx >= 0)
{
Value* origSrcV = Inst->getOperand(PWSrcIdx);
Value* SrcV = getAliasee(origSrcV);
if (SrcV != Inst && isArgOrNeededInst(origSrcV))
{
// union them
e_alignment InstAlign = GetPreferredAlignment(Inst, WIA, CTX);
e_alignment SrcVAlign = GetPreferredAlignment(SrcV, WIA, CTX);
if (!LV->isLiveAt(SrcV, Inst) &&
!alignInterfere(InstAlign, SrcVAlign) &&
(WIA->whichDepend(SrcV) == WIA->whichDepend(Inst)))
{
InsEltMapAddValue(SrcV);
InsEltMapAddValue(Inst);
Value* SrcVRoot = getInsEltRoot(SrcV);
Value* InstRoot = getInsEltRoot(Inst);
// union them and their liveness info
InsEltMapUnionValue(SrcV, Inst);
LV->mergeUseFrom(SrcVRoot, InstRoot);
}
}
}
}
return;
}
for (BasicBlock::iterator BBI = Blk->begin(), BBE = Blk->end();
BBI != BBE; ++BBI) {
Instruction* Inst = &(*BBI);
// skip phi, phi is handled in the 2nd loop
if (isa<PHINode>(Inst))
{
continue;
}
// extend the liveness of InsertElement due to union
for (unsigned i = 0; i < Inst->getNumOperands(); ++i) {
Value* SrcV = Inst->getOperand(i);
if (getPartialWriteSource(SrcV) >= 0) {
Value* RootV = getInsEltRoot(SrcV);
if (RootV != SrcV) {
LV->HandleVirtRegUse(RootV, Blk, Inst, true);
}
}
}
auto PWSrcIdx = getPartialWriteSource(Inst);
if (PWSrcIdx < 0) {
continue;
}
// handle InsertElement
InsEltMapAddValue(Inst);
Value* SrcV = Inst->getOperand(PWSrcIdx);
if (isa<Instruction>(SrcV) || isa<Argument>(SrcV)) {
if (!LV->isLiveAt(SrcV, Inst)) {
Instruction* SrcDef = dyn_cast<Instruction>(SrcV);
if (SrcDef && WIA->whichDepend(SrcDef) == WIA->whichDepend(Inst)) {
// passed the liveness and alignment test
// may need to create a node for srcv, for example, when srcv is phi/arg
InsEltMapAddValue(SrcV);
InsEltMapUnionValue(SrcV, Inst);
}
}
}
}
// look at all the phis in the successor blocks
// extend live-ranges due to the union of insert-element
for (succ_iterator SI = succ_begin(Blk), E = succ_end(Blk); SI != E; ++SI)
{
for (BasicBlock::iterator BBI = (*SI)->begin(), BBE = (*SI)->end(); BBI != BBE; ++BBI)
{
PHINode* phi = dyn_cast<PHINode>(BBI);
if (phi)
{
// extend the liveness of InsertElement due to union
Value* SrcV = phi->getIncomingValueForBlock(Blk);
if (isa<InsertElementInst>(SrcV)) {
Value* RootV = getInsEltRoot(SrcV);
if (RootV != SrcV) {
BasicBlock* DefBlk = (isa<Instruction>(RootV)) ?
cast<Instruction>(RootV)->getParent() : NULL;
LV->MarkVirtRegAliveInBlock(LV->getLVInfo(RootV), DefBlk, Blk);
}
}
}
else
{
break;
}
}
}
}
Value* DeSSA::getRootValue(Value* Val, e_alignment* pAlign) const
{
if (IGC_IS_FLAG_ENABLED(EnableDeSSAAlias))
{
Value* mapVal = nullptr;
auto AI = AliasMap.find(Val);
if (AI != AliasMap.end()) {
mapVal = AI->second;
}
auto IEI = InsEltMap.find(mapVal ? mapVal : Val);
if (IEI != InsEltMap.end()) {
mapVal = IEI->second;
}
Value* PhiRootVal = getRegRoot(mapVal ? mapVal : Val, pAlign);
return (PhiRootVal ? PhiRootVal : mapVal);
}
auto RI = InsEltMap.find(Val);
if (RI != InsEltMap.end()) {
Value* InsEltRoot = RI->second;
Value* PhiRootVal = getRegRoot(InsEltRoot, pAlign);
return (PhiRootVal ? PhiRootVal : InsEltRoot);
}
return getRegRoot(Val, pAlign);
}
void DeSSA::getAllValuesInCongruentClass(
Value* V,
SmallVector<Value*, 8> & ValsInCC)
{
// Handle InsertElement specially. Note that only rootValue from
// a sequence of insertElement is in congruent class. The RootValue
// has its liveness modified to cover all InsertElements that are
// grouped together.
Value* RootV = nullptr;
RootV = getNodeValue(V);
IGC_ASSERT_MESSAGE(nullptr != RootV, "ICE: Node value should not be nullptr!");
ValsInCC.push_back(RootV);
auto RI = RegNodeMap.find(RootV);
if (RI != RegNodeMap.end()) {
Node* First = RI->second;
for (Node* N = First->next; N != First; N = N->next)
{
ValsInCC.push_back(N->value);
}
}
return;
}
void DeSSA::CoalesceAliasInstForBasicBlock(BasicBlock* Blk)
{
if (IGC_GET_FLAG_VALUE(EnableDeSSAAlias) < 2) {
return;
}
for (BasicBlock::iterator BBI = Blk->begin(), BBE = Blk->end();
BBI != BBE; ++BBI) {
Instruction* I = &(*BBI);
// Now, better to think of code as a sequence Codegen Patterns,
// not a sequence of llvm instructions.
if (!CG->NeedInstruction(*I)) {
continue;
}
if (InsertElementInst * IEI = dyn_cast<InsertElementInst>(I))
{
if (isa<UndefValue>(I->getOperand(0)))
{
SmallVector<Value*, 16> AllIEIs;
int nelts = checkInsertElementAlias(IEI, AllIEIs);
if (nelts > 1)
{
// Consider the following as an alias if all
// Vi, i=0, n-1 (except Vn) has a single use.
// V0 = InsElt undef, S0, 0
// V1 = InsElt V0, S1, 1
// ...
// Vn = InsElt Vn-1, Sn, n
//
// AliasMap has the following:
// alias(V0, V0)
// alias(V1, V0)
// alias(V2, V0)
// ......
// alias(V0, V0) <-- V0 is the root!
//
// Note that elements could be sparse like
// V0 = InsElt Undef, S1, 1
// V1 = InsElt V0, s3, 2
//
Value* aliasee = AllIEIs[0];
AddAlias(aliasee);
for (int i = 1; i < nelts; ++i) {
Value* V = AllIEIs[i];
AliasMap[V] = aliasee;
// union liveness info
LV->mergeUseFrom(aliasee, V);
}
}
}
}
else if (CastInst * CastI = dyn_cast<CastInst>(I))
{
if (IGC_GET_FLAG_VALUE(EnableDeSSAAlias) < 3) {
continue;
}
Value* D = CastI;
Value* S = CastI->getOperand(0);
if (isArgOrNeededInst(S) &&
WIA->whichDepend(D) == WIA->whichDepend(S) &&
isNoOpInst(CastI, CTX))
{
if (AliasMap.count(D) == 0) {
AddAlias(S);
Value* aliasee = AliasMap[S];
AliasMap[D] = aliasee;
// D will be deleted due to aliasing
NoopAliasMap[D] = 1;
// union liveness info
LV->mergeUseFrom(aliasee, D);
}
else {
// Only src operands of a phi can be visited before
// operands' definition. For other instructions such
// as castInst, this shall never happen
IGC_ASSERT_MESSAGE(0, "ICE: Use visited before definition!");
}
}
}
}
}
int DeSSA::checkInsertElementAlias(
InsertElementInst* IEI, SmallVector<Value*, 16> & AllIEIs)
{
IGC_ASSERT(nullptr != IEI);
IGC_ASSERT_MESSAGE(isa<UndefValue>(IEI->getOperand(0)), "ICE: need to pass first IEI as the argument");
// Find the the alias pattern:
// V0 = IEI UndefValue, S0, 0
// V1 = IEI V0, S1, 1
// V2 = IEI V1, S2, 2
// ......
// Vn = IEI Vn_1, Sn_1, n
// All Vi (i=0,n_1, except i=n) has a single-use.
//
// If found, return the actual vector size;
// otherwise, return 0.
IGCLLVM::FixedVectorType* VTy = cast<IGCLLVM::FixedVectorType>(IEI->getType());
IGC_ASSERT(nullptr != VTy);
int nelts = (int)VTy->getNumElements();
AllIEIs.resize(nelts, nullptr);
InsertElementInst* Inst = IEI;
IGC_ASSERT(nullptr != WIA);
WIAnalysis::WIDependancy Dep = WIA->whichDepend(Inst);
while (Inst)
{
// Check if Inst has constant index, stop if not.
// (This is for catching a common case, a variable index
// can be handled as well if needed.)
ConstantInt* CI = dyn_cast<ConstantInt>(Inst->getOperand(2));
if (!CI) {
return 0;
}
int ix = (int)CI->getZExtValue();
AllIEIs[ix] = Inst;
if (!Inst->hasOneUse() || Dep != WIA->whichDepend(Inst)) {
break;
}
Inst = dyn_cast<InsertElementInst>(Inst->user_back());
}
// Return the number of elements found
int num = 0;
for (int i = 0; i < nelts; ++i) {
if (AllIEIs[i] == nullptr)
continue;
if (num < i) {
// Pack them
AllIEIs[num] = AllIEIs[i];
AllIEIs[i] = nullptr;
}
++num;
}
return num;
}
Value* DeSSA::getAliasee(Value* V) const
{
auto AI = AliasMap.find(V);
if (AI == AliasMap.end())
return V;
return AI->second;
}
bool DeSSA::isAliaser(Value* V) const
{
auto AI = AliasMap.find(V);
if (AI == AliasMap.end()) {
return false;
}
return AI->first != AI->second;
}
bool DeSSA::isNoopAliaser(Value* V) const
{
return NoopAliasMap.count(V) > 0;
}
bool DeSSA::isAliasee(Value* V) const
{
auto AI = AliasMap.find(V);
if (AI == AliasMap.end()) {
return false;
}
return AI->first == AI->second;
}
// If V is neither InsElt'ed, nor phi-coalesced, it is said to be
// single valued. In another word, if it is at most aliased only,
// it will have a single value during V's lifetime.
bool DeSSA::isSingleValued(llvm::Value* V) const
{
Value* aliasee = getAliasee(V);
Value* insEltRootV = getInsEltRoot(aliasee);
if (InsEltMap.count(aliasee) || !isIsolated(insEltRootV)) {
return false;
}
return true;
}
// The following paper explains an approach to check if two
// congruent classes interfere using a linear approach.
//
// Boissinot, et al. Revisiting Out-of-SSA Translation for Correctness,
// Code Quality and Efficiency,
// In Proceedings of the 7th annual IEEE/ACM International Symposium
// on Code Generation and Optimization (Seattle, Washington,
// March 22 - 25, 2009). CGO '09. IEEE, Washington, DC, 114-125.
//
// Here, we simply use a naive pair-wise comparison.
//
// TODO: check if using linear approach described in the paper is
// necessary; To do so, it needs to get PN (preorder number of BB)
// and sort congruent classes before doing interference checking.
bool DeSSA::interfere(llvm::Value* V0, llvm::Value* V1)
{
SmallVector<Value*, 8> allCC0;
SmallVector<Value*, 8> allCC1;
getAllValuesInCongruentClass(V0, allCC0);
getAllValuesInCongruentClass(V1, allCC1);
for (int i0 = 0, sz0 = (int)allCC0.size(); i0 < sz0; ++i0)
{
Value* val0 = allCC0[i0];
for (int i1 = 0, sz1 = (int)allCC1.size(); i1 < sz1; ++i1)
{
Value* val1 = allCC1[i1];
if (LV->hasInterference(val0, val1)) {
return true;
}
}
}
return false;
}
// Alias interference checking.
// The caller is trying to check if V0 can alias to V1. For example,
// V0 = bitcast V1, or
// V0 = extractElement V1, ...
// As V0 and V1 hold the same value, the interference between these two
// does not matter. Thus, this function is a variant of interfere()
// with V0 and V1 interference ignored.
bool DeSSA::aliasInterfere(llvm::Value* V0, llvm::Value* V1)
{
SmallVector<Value*, 8> allCC0;
SmallVector<Value*, 8> allCC1;
getAllValuesInCongruentClass(V0, allCC0);
getAllValuesInCongruentClass(V1, allCC1);
Value* V0_aliasee = getAliasee(V0);
Value* V1_aliasee = getAliasee(V1);
//
// If aliasee is in InsEltMap, it is not single valued
// and cannot be excluded from interfere checking.
//
// For example:
// x = bitcast y
// z = InsElt y, ...
// = x
// = y
//
// {y, z} are coalesced via InsElt, interfere(x, y)
// must be checked.
// However, if y (and x too) is not in InsEltMap, no need
// to check interfere(x, y) as they have the same value
// as the following:
// x = bitcast y
// = x
// = y
//
bool V0_oneValue = (InsEltMap.count(V0_aliasee) == 0);
bool V1_oneValue = (InsEltMap.count(V1_aliasee) == 0);
bool both_singleValue = (V0_oneValue && V1_oneValue);
for (int i0 = 0, sz0 = (int)allCC0.size(); i0 < sz0; ++i0)
{
Value* val0 = allCC0[i0];
for (int i1 = 0, sz1 = (int)allCC1.size(); i1 < sz1; ++i1)
{
Value* val1 = allCC1[i1];
if (both_singleValue &&
val0 == V0_aliasee && val1 == V1_aliasee) {
continue;
}
if (LV->hasInterference(val0, val1)) {
return true;
}
}
}
return false;
}
// The existing code does align interference checking. Just
// keep it for now. Likely to improve it later.
bool DeSSA::alignInterfere(e_alignment a1, e_alignment a2)
{
if (a1 == EALIGN_GRF && !(a2 == EALIGN_GRF || a2 == EALIGN_AUTO))
{
return true;
}
if (a2 == EALIGN_GRF && !(a1 == EALIGN_GRF || a1 == EALIGN_AUTO))
{
return true;
}
return false;
}
|