1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2022 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#pragma once
#include "BlockCoalescing.hpp"
#include "PatternMatchPass.hpp"
#include "ShaderCodeGen.hpp"
#include "CoalescingEngine.hpp"
#include "Simd32Profitability.hpp"
#include "GenCodeGenModule.h"
#include "VariableReuseAnalysis.hpp"
#include "CastToGASAnalysis.h"
#include "Compiler/MetaDataUtilsWrapper.h"
#include "common/LLVMWarningsPush.hpp"
#include <llvm/IR/DataLayout.h>
#include <llvm/IR/InlineAsm.h>
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/Analysis/CallGraph.h"
#include "common/LLVMWarningsPop.hpp"
#include "Compiler/IGCPassSupport.h"
#include "Probe/Assertion.h"
#include <functional>
namespace llvm
{
class GenIntrinsicInst;
}
namespace IGC
{
// Forward declaration
class IDebugEmitter;
struct PSSignature;
class EmitPass : public llvm::FunctionPass
{
public:
EmitPass(CShaderProgram::KernelShaderMap& shaders, SIMDMode mode, bool canAbortOnSpill, ShaderDispatchMode shaderMode, PSSignature* pSignature = nullptr);
virtual ~EmitPass();
// Note: all analysis passes should be function passes. If a module analysis pass
// is used, it would invalidate function analysis passes and therefore cause
// those analysis passes to be invoked twice, which increases compiling time.
virtual void getAnalysisUsage(llvm::AnalysisUsage& AU) const override
{
AU.addRequired<llvm::DominatorTreeWrapperPass>();
AU.addRequired<WIAnalysis>();
AU.addRequired<LiveVarsAnalysis>();
AU.addRequired<CodeGenPatternMatch>();
AU.addRequired<DeSSA>();
AU.addRequired<BlockCoalescing>();
AU.addRequired<CoalescingEngine>();
AU.addRequired<MetaDataUtilsWrapper>();
AU.addRequired<Simd32ProfitabilityAnalysis>();
AU.addRequired<CodeGenContextWrapper>();
AU.addRequired<VariableReuseAnalysis>();
AU.addRequired<CastToGASWrapperPass>();
AU.setPreservesAll();
}
virtual bool runOnFunction(llvm::Function& F) override;
virtual llvm::StringRef getPassName() const override { return "EmitPass"; }
void CreateKernelShaderMap(CodeGenContext* ctx, IGC::IGCMD::MetaDataUtils* pMdUtils, llvm::Function& F);
void Frc(const SSource& source, const DstModifier& modifier);
void Floor(const SSource& source, const DstModifier& modifier);
void Mad(const SSource sources[3], const DstModifier& modifier);
void Lrp(const SSource sources[3], const DstModifier& modifier);
void Cmp(llvm::CmpInst::Predicate pred, const SSource sources[2], const DstModifier& modifier, uint8_t clearTagMask = 0);
void Sub(const SSource[2], const DstModifier& mofidier);
void Xor(const SSource[2], const DstModifier& modifier);
void FDiv(const SSource[2], const DstModifier& modifier);
void Pow(const SSource sources[2], const DstModifier& modifier);
void Avg(const SSource sources[2], const DstModifier& modifier);
void Rsqrt(const SSource& source, const DstModifier& modifier);
void Sqrt(const SSource& source, const DstModifier& modifier);
void Select(const SSource sources[3], const DstModifier& modifier);
void PredAdd(const SSource& pred, bool invert, const SSource sources[2], const DstModifier& modifier);
void Mul(const SSource[2], const DstModifier& modifier);
void Mov(const SSource& source, const DstModifier& modifier);
void Unary(e_opcode opCode, const SSource sources[1], const DstModifier& modifier);
void Binary(e_opcode opCode, const SSource sources[2], const DstModifier& modifier);
void Tenary(e_opcode opCode, const SSource sources[3], const DstModifier& modifier);
void Bfn(uint8_t booleanFuncCtrl, const SSource sources[3], const DstModifier& modifier);
void CmpBfn(llvm::CmpInst::Predicate predicate, const SSource cmpSources[2], uint8_t booleanFuncCtrl,
const SSource bfnSources[3], const DstModifier& modifier);
void Mul64(CVariable* dst, CVariable* src[2], SIMDMode simdMode, bool noMask = false) const;
template<int N>
void Alu(e_opcode opCode, const SSource sources[N], const DstModifier& modifier);
void BinaryUnary(llvm::Instruction* inst, const SSource source[2], const DstModifier& modifier);
void CmpBoolOp(Pattern* cmpPattern,
llvm::BinaryOperator* inst,
const SSource& bitSource,
const DstModifier& modifier);
void emitAluConditionMod(Pattern* aluPattern, llvm::Instruction* alu, llvm::CmpInst* cmp, int aluOprdNum);
void EmitGenericPointersCmp(llvm::Instruction* inst, const SSource source[2], const DstModifier& modifier, uint8_t clearTagMask);
void EmitAluIntrinsic(llvm::CallInst* I, const SSource source[2], const DstModifier& modifier);
void EmitSimpleAlu(llvm::Instruction* inst, const SSource source[2], const DstModifier& modifier);
void EmitSimpleAlu(llvm::Instruction* inst, CVariable* dst, CVariable* src0, CVariable* src1);
void EmitSimpleAlu(EOPCODE opCode, const SSource source[2], const DstModifier& modifier);
void EmitSimpleAlu(EOPCODE opCode, CVariable* dst, CVariable* src0, CVariable* src1);
void EmitMinMax(bool isMin, bool isUnsigned, const SSource source[2], const DstModifier& modifier);
void EmitUAdd(llvm::BinaryOperator* inst, const DstModifier& modifier);
void EmitFullMul32(bool isUnsigned, const SSource srcs[2], const DstModifier& dstMod);
void EmitFPToIntWithSat(bool isUnsigned, bool needBitCast, VISA_Type type, const SSource& source, const DstModifier& modifier);
void EmitNoModifier(llvm::Instruction* inst);
void EmitIntrinsicMessage(llvm::IntrinsicInst* inst);
void EmitGenIntrinsicMessage(llvm::GenIntrinsicInst* inst);
void EmitSIToFPZExt(const SSource& source, const DstModifier& dstMod);
void EmitIntegerTruncWithSat(bool isSignedDst, bool isSignedSrc, const SSource& source, const DstModifier& dstMod);
void EmitAddPair(llvm::GenIntrinsicInst* GII, const SSource Sources[4], const DstModifier& DstMod);
void EmitSubPair(llvm::GenIntrinsicInst* GII, const SSource Sources[4], const DstModifier& DstMod);
void EmitMulPair(llvm::GenIntrinsicInst* GII, const SSource Sources[4], const DstModifier& DstMod);
void EmitPtrToPair(llvm::GenIntrinsicInst* GII, const SSource Sources[1], const DstModifier& DstMod);
void EmitInlineAsm(llvm::CallInst* inst);
void emitPairToPtr(llvm::GenIntrinsicInst* GII);
void emitMulAdd16(llvm::Instruction* I, const SSource source[2], const DstModifier& dstMod);
void emitCall(llvm::CallInst* inst);
void emitReturn(llvm::ReturnInst* inst);
void EmitInsertValueToStruct(llvm::InsertValueInst* II, bool forceVectorInit, const DstModifier& DstMod);
void EmitExtractValueFromStruct(llvm::ExtractValueInst* EI, const DstModifier& DstMod);
/// stack-call code-gen functions
void emitStackCall(llvm::CallInst* inst);
void emitStackFuncEntry(llvm::Function* F);
void emitStackFuncExit(llvm::ReturnInst* inst);
void InitializeKernelStack(llvm::Function* pKernel);
/// stack-call functions for reading and writing argument/retval data to stack
typedef SmallVector<std::tuple<CVariable*, uint32_t, uint32_t, uint32_t>, 8> StackDataBlocks;
uint CalculateStackDataBlocks(StackDataBlocks& blkData, std::vector<CVariable*>& Args);
void ReadStackDataBlocks(StackDataBlocks& blkData, uint offsetS);
void WriteStackDataBlocks(StackDataBlocks& blkData, uint offsetS);
// emits the visa relocation instructions for function/global symbols
void emitSymbolRelocation(llvm::Function& F);
void emitOutput(llvm::GenIntrinsicInst* inst);
// TODO: unify the functions below and clean up
void emitStore(llvm::StoreInst* inst, llvm::Value* varOffset, llvm::ConstantInt* immOffset);
void emitStore3D(llvm::StoreInst* inst, llvm::Value* elemIdxV);
void emitStore3DInner(llvm::Value* pllValToStore, llvm::Value* pllDstPtr, llvm::Value* pllElmIdx);
void emitLoad(llvm::LoadInst* inst, llvm::Value* varOffset, llvm::ConstantInt* immOffset); // single load, no pattern
void emitLoad3DInner(llvm::LdRawIntrinsic* inst, ResourceDescriptor& resource, llvm::Value* elemIdxV);
// when resource is dynamically indexed, load/store must use special intrinsics
void emitLoadRawIndexed(llvm::LdRawIntrinsic* inst, llvm::Value* varOffset, llvm::ConstantInt* immOffset);
void emitStoreRawIndexed(llvm::StoreRawIntrinsic* inst, llvm::Value* varOffset, llvm::ConstantInt* immOffset);
void emitGetBufferPtr(llvm::GenIntrinsicInst* inst);
// \todo, remove this function after we lower all GEP to IntToPtr before CodeGen.
// Only remaining GEPs are for scratch in GFX path
void emitGEP(llvm::Instruction* inst);
// Emit lifetime start right before inst V. If ForAllInstance is true, emit lifestart
// for both instances; otherwise, just the current instance set in the calling context.
void emitLifetimeStart(CVariable* Var, llvm::BasicBlock* BB, llvm::Instruction* I, bool ForAllInstance);
bool waveShuffleCase(CVariable* Var, BasicBlock* BB, Instruction* I, bool ForAllInstance);
// set the predicate with current active channels
void emitPredicateFromChannelIP(CVariable* dst, CVariable* alias = NULL);
// Helper methods for message emit functions.
template <typename T>
void prepareRenderTargetWritePayload(
T* inst,
llvm::DenseMap<llvm::Value*, CVariable**>& valueToVariableMap,
llvm::Value* color[],
uint8_t colorCnt,
//output:
CVariable** src,
bool* isUndefined,
CVariable*& source0Alpha,
CVariable*& oMaskOpnd,
CVariable*& outputDepthOpnd,
CVariable*& vStencilOpnd);
ResourceDescriptor GetSampleResourceHelper(llvm::SampleIntrinsic* inst);
void interceptSamplePayloadCoalescing(
llvm::SampleIntrinsic* inst,
uint numPart,
llvm::SmallVector<CVariable*, 4> & payload,
bool& payloadCovered
);
// message emit functions
void emitSimdLaneId(llvm::Instruction* inst);
void emitSimdSize(llvm::Instruction* inst);
void emitSimdShuffle(llvm::Instruction* inst);
void emitCrossInstanceMov(const SSource& source, const DstModifier& modifier);
void emitSimdShuffleDown(llvm::Instruction* inst);
void emitSimdShuffleXor(llvm::Instruction* inst);
void emitSimdBlockRead(llvm::Instruction* inst, llvm::Value* ptrVal = nullptr);
void emitSimdBlockWrite(llvm::Instruction* inst, llvm::Value* ptrVal = nullptr);
void emitLegacySimdBlockWrite(llvm::Instruction* inst, llvm::Value* ptrVal = nullptr);
void emitLegacySimdBlockRead(llvm::Instruction* inst, llvm::Value* ptrVal = nullptr);
void emitLSCSimdBlockWrite(llvm::Instruction* inst, llvm::Value* ptrVal = nullptr);
void emitLSCSimdBlockRead(llvm::Instruction* inst, llvm::Value* ptrVal = nullptr);
void emitSimdMediaBlockRead(llvm::Instruction* inst);
void emitSimdMediaBlockWrite(llvm::Instruction* inst);
void emitMediaBlockIO(const llvm::GenIntrinsicInst* inst, bool isRead);
void emitMediaBlockRectangleRead(llvm::Instruction* inst);
void emitSampleInstruction(llvm::SampleIntrinsic* inst);
void emitLdInstruction(llvm::Instruction* inst);
void emitInfoInstruction(llvm::InfoIntrinsic* inst);
void emitGather4Instruction(llvm::SamplerGatherIntrinsic* inst);
void emitLdmsInstruction(llvm::Instruction* inst);
void emitTypedRead(llvm::Instruction* inst);
void emitTypedWrite(llvm::Instruction* inst);
void emitThreadGroupBarrier(llvm::Instruction* inst);
void emitThreadGroupNamedBarriersInit(llvm::Instruction* inst);
void emitThreadGroupNamedBarriersBarrier(llvm::Instruction* inst);
void emitCastSelect(CVariable* flag, CVariable* dst, CVariable* src0, CVariable* src1);
void emitMemoryFence(llvm::Instruction* inst);
void emitMemoryFence(void);
void emitTypedMemoryFence(llvm::Instruction* inst);
void emitFlushSamplerCache();
void emitSurfaceInfo(llvm::GenIntrinsicInst* intrinsic);
static uint64_t getFPOffset() { return SIZE_OWORD; }
void emitStackAlloca(llvm::GenIntrinsicInst* intrinsic);
void emitVLAStackAlloca(llvm::GenIntrinsicInst* intrinsic);
void emitUAVSerialize();
void emitScalarAtomics(
llvm::Instruction* pInst,
ResourceDescriptor& resource,
AtomicOp atomic_op,
CVariable* pDstAddr,
CVariable* pU,
CVariable* pV,
CVariable* pR,
CVariable* pSrc,
bool isA64,
int bitSize);
void emitScalarAtomicLoad(
llvm::Instruction* pInst,
ResourceDescriptor& resource,
CVariable* pDstAddr,
CVariable* pU,
CVariable* pV,
CVariable* pR,
CVariable* pSrc,
bool isA64,
int bitSize);
/// reduction and prefix/postfix facilities
CVariable* ScanReducePrepareSrc(VISA_Type type, uint64_t identityValue, bool negate, bool secondHalf,
CVariable* src, CVariable* dst, CVariable* flag = nullptr);
CVariable* ReductionReduceHelper(e_opcode op, VISA_Type type, SIMDMode simd, CVariable* src);
void ReductionExpandHelper(e_opcode op, VISA_Type type, CVariable* src, CVariable* dst);
void ReductionClusteredSrcHelper(CVariable* (&pSrc)[2], CVariable* src, uint16_t numLanes,
VISA_Type type, uint numInst, bool secondHalf);
CVariable* ReductionClusteredReduceHelper(e_opcode op, VISA_Type type, SIMDMode simd, bool secondHalf,
CVariable* src, CVariable* dst);
void ReductionClusteredExpandHelper(e_opcode op, VISA_Type type, SIMDMode simd, const uint clusterSize,
bool secondHalf, CVariable* src, CVariable* dst);
/// reduction and prefix/postfix emitters
void emitReductionAll(
e_opcode op,
uint64_t identityValue,
VISA_Type type,
bool negate,
CVariable* src,
CVariable* dst);
void emitReductionClustered(
const e_opcode op,
const uint64_t identityValue,
const VISA_Type type,
const bool negate,
const unsigned int clusterSize,
CVariable* const src,
CVariable* const dst);
void emitPreOrPostFixOp(
e_opcode op,
uint64_t identityValue,
VISA_Type type,
bool negateSrc,
CVariable* src,
CVariable* result[2],
CVariable* Flag = nullptr,
bool isPrefix = false,
bool isQuad = false);
void emitPreOrPostFixOpScalar(
e_opcode op,
uint64_t identityValue,
VISA_Type type,
bool negateSrc,
CVariable* src,
CVariable* result[2],
CVariable* Flag,
bool isPrefix);
bool IsUniformAtomic(llvm::Instruction* pInst);
void emitAtomicRaw(llvm::GenIntrinsicInst* pInst);
void emitAtomicTyped(llvm::GenIntrinsicInst* pInst);
void emitAtomicCounter(llvm::GenIntrinsicInst* pInst);
void emitFastClear(llvm::LoadInst* inst);
void emitFastClearSend(llvm::Instruction* pInst);
void setRovCacheCtrl(llvm::GenIntrinsicInst* inst);
llvm::Optional<LSC_CACHE_OPTS>
setCacheOptionsForConstantBufferLoads(Instruction& inst) const;
bool useRasterizerOrderedByteAddressBuffer(llvm::GenIntrinsicInst* inst);
void emitUniformAtomicCounter(llvm::GenIntrinsicInst* pInst);
void emitDiscard(llvm::Instruction* inst);
void emitcycleCounter(llvm::Instruction* inst);
void emitSetDebugReg(llvm::Instruction* inst);
void emitInsert(llvm::Instruction* inst);
void emitExtract(llvm::Instruction* inst);
void emitBitCast(llvm::BitCastInst* btCst);
void emitPtrToInt(llvm::PtrToIntInst* p2iCst);
void emitIntToPtr(llvm::IntToPtrInst* i2pCst);
void emitAddrSpaceCast(llvm::AddrSpaceCastInst* addrSpaceCast);
void emitBranch(llvm::BranchInst* br, const SSource& cond, e_predMode predMode);
void emitDiscardBranch(llvm::BranchInst* br, const SSource& cond);
void emitAluNoModifier(llvm::GenIntrinsicInst* inst);
void emitGradientX(const SSource& source, const DstModifier& modifier);
void emitGradientY(const SSource& source, const DstModifier& modifier);
void emitGradientXFine(const SSource& source, const DstModifier& modifier);
void emitGradientYFine(const SSource& source, const DstModifier& modifier);
void emitf32tof16_rtz(llvm::GenIntrinsicInst* inst);
void emitfitof(llvm::GenIntrinsicInst* inst);
void emitFPOrtz(llvm::GenIntrinsicInst* inst);
void emitFMArtp(llvm::GenIntrinsicInst* inst);
void emitFMArtn(llvm::GenIntrinsicInst* inst);
void emitftoi(llvm::GenIntrinsicInst* inst);
void emitCtlz(const SSource& source);
// VME
void emitVMESendIME(llvm::GenIntrinsicInst* inst);
void emitVMESendFBR(llvm::GenIntrinsicInst* inst);
void emitVMESendSIC(llvm::GenIntrinsicInst* inst);
void emitVMESendIME2(llvm::GenIntrinsicInst* inst);
void emitVMESendFBR2(llvm::GenIntrinsicInst* inst);
void emitVMESendSIC2(llvm::GenIntrinsicInst* inst);
void emitCreateMessagePhases(llvm::GenIntrinsicInst* inst);
void emitSetMessagePhaseX_legacy(llvm::GenIntrinsicInst* inst);
void emitSetMessagePhase_legacy(llvm::GenIntrinsicInst* inst);
void emitGetMessagePhaseX(llvm::GenIntrinsicInst* inst);
void emitSetMessagePhaseX(llvm::GenIntrinsicInst* inst);
void emitGetMessagePhase(llvm::GenIntrinsicInst* inst);
void emitSetMessagePhase(llvm::GenIntrinsicInst* inst);
void emitSimdGetMessagePhase(llvm::GenIntrinsicInst* inst);
void emitBroadcastMessagePhase(llvm::GenIntrinsicInst* inst);
void emitSimdSetMessagePhase(llvm::GenIntrinsicInst* inst);
void emitSimdMediaRegionCopy(llvm::GenIntrinsicInst* inst);
void emitExtractMVAndSAD(llvm::GenIntrinsicInst* inst);
void emitCmpSADs(llvm::GenIntrinsicInst* inst);
// VA
void emitVideoAnalyticSLM(llvm::GenIntrinsicInst* inst, const DWORD responseLen);
// New VA without using SLM and barriers (result is returned in GRF).
void emitVideoAnalyticGRF(llvm::GenIntrinsicInst* inst, const DWORD responseLen);
// CrossLane Instructions
void emitWaveBallot(llvm::GenIntrinsicInst* inst);
void emitWaveInverseBallot(llvm::GenIntrinsicInst* inst);
void emitWaveShuffleIndex(llvm::GenIntrinsicInst* inst);
void emitWavePrefix(llvm::WavePrefixIntrinsic* I);
void emitQuadPrefix(llvm::QuadPrefixIntrinsic* I);
void emitWaveAll(llvm::GenIntrinsicInst* inst);
void emitWaveClustered(llvm::GenIntrinsicInst* inst);
// Those three "vector" version shall be combined with
// non-vector version.
bool isUniformStoreOCL(llvm::StoreInst* SI);
bool isUniformStoreOCL(llvm::Value* ptr, llvm::Value* storeVal);
void emitVectorBitCast(llvm::BitCastInst* BCI);
void emitVectorLoad(llvm::LoadInst* LI, llvm::Value* offset, llvm::ConstantInt* immOffset);
void emitVectorStore(llvm::StoreInst* SI, llvm::Value* offset, llvm::ConstantInt* immOffset);
void emitLSCVectorLoad(
llvm::Value* Ptr, llvm::Value* offset, llvm::ConstantInt* immOffset,
llvm::Type* Ty, LSC_CACHE_OPTS cacheOpts, uint64_t align);
void emitLSCVectorStore(
llvm::Value* Ptr, llvm::Value* offset, llvm::ConstantInt* immOffset,
llvm::Value* storedVal, LSC_CACHE_OPTS cacheOpts, uint32_t align, bool dontForceDMask);
void emitGenISACopy(llvm::GenIntrinsicInst* GenCopyInst);
void emitVectorCopy(CVariable* Dst, CVariable* Src, uint32_t nElts,
uint32_t DstSubRegOffset = 0, uint32_t SrcSubRegOffset = 0);
void emitCopyAll(CVariable* Dst, CVariable* Src, llvm::Type* Ty);
void emitPushFrameToStack(unsigned& pushSize);
void emitAddPointer(CVariable* Dst, CVariable* Src, CVariable* offset);
// emitAddPair - emulate 64bit addtition by 32-bit operations.
// Dst and Src0 must be a 64-bit type variable.
// Src1 mist be in 32-bit type variable/immediate
void emitAddPair(CVariable* Dst, CVariable* Src0, CVariable* Src1);
void emitSqrt(llvm::Instruction* inst);
void emitUmin(llvm::IntrinsicInst* inst);
void emitSmin(llvm::IntrinsicInst* inst);
void emitUmax(llvm::IntrinsicInst* inst);
void emitSmax(llvm::IntrinsicInst* inst);
void emitCanonicalize(llvm::Instruction* inst, const DstModifier& modifier);
void emitRsq(llvm::Instruction* inst);
void emitFrc(llvm::GenIntrinsicInst* inst);
void emitLLVMbswap(llvm::IntrinsicInst* inst);
void emitDP4A(llvm::GenIntrinsicInst* GII,
const SSource* source = nullptr,
const DstModifier& modifier = DstModifier(),
bool isAccSigned = true);
void emitLLVMStackSave(llvm::IntrinsicInst* inst);
void emitLLVMStackRestore(llvm::IntrinsicInst* inst);
void emitUnmaskedRegionBoundary(bool start);
LSC_CACHE_OPTS getDefaultRaytracingCachePolicy(bool isLoad) const;
void emitAsyncStackID(llvm::GenIntrinsicInst* I);
void emitSyncStackID(llvm::GenIntrinsicInst* I);
void emitTraceRay(llvm::TraceRayIntrinsic *I, bool RayQueryEnable);
void emitReadTraceRaySync(llvm::GenIntrinsicInst* I);
void emitBTD(
CVariable* GlobalBufferPtr,
CVariable* StackID,
CVariable* ShaderRecord,
CVariable* Flag,
bool releaseStackID);
void emitBindlessThreadDispatch(llvm::BTDIntrinsic *I);
void emitStackIDRelease(llvm::StackIDReleaseIntrinsic *I);
void emitGetShaderRecordPtr(llvm::GetShaderRecordPtrIntrinsic *I);
void emitGlobalBufferPtr(llvm::GenIntrinsicInst *I);
void emitLocalBufferPtr(llvm::GenIntrinsicInst *I);
void emitInlinedDataValue(llvm::GenIntrinsicInst *I);
void emitTileXOffset(llvm::TileXIntrinsic *I);
void emitTileYOffset(llvm::TileYIntrinsic *I);
void emitDpas(llvm::GenIntrinsicInst *GII,
const SSource* source,
const DstModifier& modifier);
void emitfcvt(llvm::GenIntrinsicInst *GII);
void emitSystemMemoryFence(llvm::GenIntrinsicInst* I);
void emitUrbFence();
void emitHDCuncompressedwrite(llvm::GenIntrinsicInst* I);
////////////////////////////////////////////////////////////////////
// LSC related functions
LSC_CACHE_OPTS translateLSCCacheControlsFromValue(
llvm::Value *value, bool isLoad) const;
LSC_CACHE_OPTS translateLSCCacheControlsFromMetadata(
llvm::Instruction* inst, bool isLoad, bool isTGM = 0) const;
struct LscMessageFragmentInfo {
LSC_DATA_ELEMS fragElem;
int fragElemCount;
int addrOffsetDelta;
int grfOffsetDelta;
bool lastIsV1; // e.g. splitting a V3 up is a V2 + V1
};
LscMessageFragmentInfo checkForLscMessageFragmentation(
LSC_DATA_SIZE size, LSC_DATA_ELEMS elems) const;
// (CVariable* gatherDst, int fragIx, LSC_DATA_ELEMS fragElems, int fragImmOffset)
using LscIntrinsicFragmentEmitter =
std::function<void(CVariable *, int, LSC_DATA_ELEMS, int)>;
void emitLscIntrinsicFragments(
CVariable* gatherDst,
LSC_DATA_SIZE dataSize,
LSC_DATA_ELEMS dataElems,
int immOffsetBytes,
const LscIntrinsicFragmentEmitter &emitter);
void emitLscIntrinsicLoad(llvm::GenIntrinsicInst* GII);
void emitLscIntrinsicPrefetch(llvm::GenIntrinsicInst* GII);
void emitLscIntrinsicStore(llvm::GenIntrinsicInst* GII);
void emitLSCFence(llvm::GenIntrinsicInst* inst);
void emitLSC2DBlockRead(llvm::GenIntrinsicInst* inst);
void emitLSCAtomic(llvm::GenIntrinsicInst* inst);
void emitLSCIntrinsic(llvm::GenIntrinsicInst* GII);
void emitLSCLoad(
llvm::Instruction* inst,
CVariable* dst,
CVariable* offset,
unsigned elemSize,
unsigned numElems,
unsigned blockOffset,
ResourceDescriptor* resource,
LSC_ADDR_SIZE addr_size,
LSC_DATA_ORDER data_order,
int immOffset);
void emitLSCLoad(
LSC_CACHE_OPTS cacheOpts,
CVariable* dst,
CVariable* offset,
unsigned elemSize,
unsigned numElems,
unsigned blockOffset,
ResourceDescriptor* resource,
LSC_ADDR_SIZE addr_size,
LSC_DATA_ORDER data_order,
int immOffset);
void emitLSCStore(
llvm::Instruction* inst,
CVariable* src,
CVariable* offset,
unsigned elemSize,
unsigned numElems,
unsigned blockOffset,
ResourceDescriptor* resource,
LSC_ADDR_SIZE addr_size,
LSC_DATA_ORDER data_order,
int immOffset);
void emitLSCStore(
LSC_CACHE_OPTS cacheOpts,
CVariable* src,
CVariable* offset,
unsigned elemSize,
unsigned numElems,
unsigned blockOffset,
ResourceDescriptor* resource,
LSC_ADDR_SIZE addr_size,
LSC_DATA_ORDER data_order,
int immOffset);
////////////////////////////////////////////////////////////////////
// NOTE: for vector load/stores instructions pass the
// optional instruction argument checks additional constraints
static Tristate shouldGenerateLSCQuery(
const CodeGenContext& Ctx,
llvm::Instruction* vectorLdStInst = nullptr,
SIMDMode Mode = SIMDMode::UNKNOWN);
bool shouldGenerateLSC(llvm::Instruction* vectorLdStInst = nullptr);
bool forceCacheCtrl(llvm::Instruction* vectorLdStInst = nullptr);
uint32_t totalBytesToStoreOrLoad(llvm::Instruction* vectorLdStInst);
void emitsrnd(llvm::GenIntrinsicInst* GII);
void emitStaticConstantPatchValue(
llvm::StaticConstantPatchIntrinsic* staticConstantPatch32);
// Debug Built-Ins
void emitStateRegID(uint32_t BitStart, uint32_t BitEnd);
void emitThreadPause(llvm::GenIntrinsicInst* inst);
void MovPhiSources(llvm::BasicBlock* bb);
void InitConstant(llvm::BasicBlock* BB);
void emitLifetimeStartAtEndOfBB(llvm::BasicBlock* BB);
void emitDebugPlaceholder(llvm::GenIntrinsicInst* I);
void emitDummyInst(llvm::GenIntrinsicInst* GII);
void emitLaunder(llvm::GenIntrinsicInst* GII);
void emitImplicitArgIntrinsic(llvm::GenIntrinsicInst* I);
void emitStoreImplBufferPtr(llvm::GenIntrinsicInst* I);
void emitStoreLocalIdBufferPtr(llvm::GenIntrinsicInst* I);
void emitLoadImplBufferPtr(llvm::GenIntrinsicInst* I);
void emitLoadLocalIdBufferPtr(llvm::GenIntrinsicInst* I);
std::pair<llvm::Value*, llvm::Value*> getPairOutput(llvm::Value*) const;
//helper function
void SplitSIMD(llvm::Instruction* inst, uint numSources, uint headerSize, CVariable* payload, SIMDMode mode, uint half);
template<size_t N>
void JoinSIMD(CVariable* (&tempdst)[N], uint responseLength, SIMDMode mode);
CVariable* BroadcastIfUniform(CVariable* pVar, bool nomask = false);
uint DecideInstanceAndSlice(const llvm::BasicBlock& blk, SDAG& sdag, bool& slicing);
bool IsUndefOrZeroImmediate(const llvm::Value* value);
inline bool isUndefOrConstInt0(const llvm::Value* val)
{
if (val == nullptr ||
llvm::isa<llvm::UndefValue>(val) ||
(llvm::isa<llvm::ConstantInt>(val) &&
llvm::cast<llvm::ConstantInt>(val)->getZExtValue() == 0))
{
return true;
}
return false;
}
inline llvm::Value* getOperandIfExist(llvm::Instruction* pInst, unsigned op)
{
if (llvm::CallInst * pCall = llvm::dyn_cast<llvm::CallInst>(pInst))
{
if (op < IGCLLVM::getNumArgOperands(pCall))
{
return pInst->getOperand(op);
}
}
return nullptr;
}
bool IsGRFAligned(CVariable* pVar, e_alignment requiredAlign) const
{
e_alignment align = pVar->GetAlign();
if (requiredAlign == EALIGN_BYTE)
{
// trivial
return true;
}
if (requiredAlign == EALIGN_AUTO || align == EALIGN_AUTO)
{
// Can only assume that AUTO only matches AUTO (?)
// (keep the previous behavior unchanged.)
return align == requiredAlign;
}
return align >= requiredAlign;
}
CVariable* ExtendVariable(CVariable* pVar, e_alignment uniformAlign);
CVariable* BroadcastAndExtend(CVariable* pVar);
CVariable* TruncatePointer(CVariable* pVar);
CVariable* ReAlignUniformVariable(CVariable* pVar, e_alignment align);
CVariable* BroadcastAndTruncPointer(CVariable* pVar);
CVariable* IndexableResourceIndex(CVariable* indexVar, uint btiIndex);
ResourceDescriptor GetResourceVariable(llvm::Value* resourcePtr);
SamplerDescriptor GetSamplerVariable(llvm::Value* samplerPtr);
CVariable* ComputeSampleIntOffset(llvm::Instruction* sample, uint sourceIndex);
void emitPlnInterpolation(CVariable* bary, CVariable* inputvar);
// the number of lanes of the entire dispatch. It is read only as it is cached for reuse.
CVariable* GetNumActiveLanes();
CVariable* GetExecutionMask();
CVariable* GetExecutionMask(CVariable* &vecMaskVar);
CVariable* GetHalfExecutionMask();
CVariable* UniformCopy(CVariable* var, bool doSub = false);
CVariable* UniformCopy(CVariable* var, CVariable*& LaneOffset, CVariable* eMask = nullptr, bool doSub = false);
// generate loop header to process sample instruction with varying resource/sampler
bool ResourceLoopHeader(
ResourceDescriptor& resource,
SamplerDescriptor& sampler,
CVariable*& flag,
uint& label);
bool ResourceLoopHeader(
ResourceDescriptor& resource,
CVariable*& flag,
uint& label);
void ResourceLoopBackEdge(bool needLoop, CVariable* flag, uint label);
template<typename Func>
void ResourceLoop(ResourceDescriptor& resource, Func Fn)
{
uint label = 0;
CVariable* flag = nullptr;
bool needLoop = ResourceLoopHeader(resource, flag, label);
Fn(flag);
ResourceLoopBackEdge(needLoop, flag, label);
}
template<typename Func>
void ResourceLoop(ResourceDescriptor& resource, SamplerDescriptor& sampler, Func Fn)
{
uint label = 0;
CVariable* flag = nullptr;
bool needLoop = ResourceLoopHeader(resource, sampler, flag, label);
Fn(flag);
ResourceLoopBackEdge(needLoop, flag, label);
}
void ForceDMask(bool createJmpForDiscard = true);
void ResetVMask(bool createJmpForDiscard = true);
void setPredicateForDiscard(CVariable* pPredicate = nullptr);
void PackSIMD8HFRet(CVariable* dst);
unsigned int GetPrimitiveTypeSizeInRegisterInBits(const llvm::Type* Ty) const;
unsigned int GetPrimitiveTypeSizeInRegister(const llvm::Type* Ty) const;
unsigned int GetScalarTypeSizeInRegisterInBits(const llvm::Type* Ty) const;
unsigned int GetScalarTypeSizeInRegister(const llvm::Type* Ty) const;
/// return true if succeeds, false otherwise.
bool setCurrentShader(llvm::Function* F);
/// check if symbol table is needed
bool isSymbolTableRequired(llvm::Function* F);
// Arithmetic operations with constant folding
// Src0 and Src1 are the input operands
// DstPrototype is a prototype of the result of operation and may be used for cloning to a new variable
// Return a variable with the result of the compute which may be one the the sources, an immediate or a variable
CVariable* Mul(CVariable* Src0, CVariable* Src1, const CVariable* DstPrototype);
CVariable* Add(CVariable* Src0, CVariable* Src1, const CVariable* DstPrototype);
// temporary helper function
CVariable* GetSymbol(llvm::Value* v) const;
// Check if stateless indirect access is available
// If yes, increase the counter, otherwise do nothing
void CountStatelessIndirectAccess(llvm::Value* pointer, ResourceDescriptor resource);
// An indirect access happens when GPU loads from an address that was not directly given as one of the kernel arguments.
// It's usually a pointer loaded from memory pointed by a kernel argument.
// Otherwise the access is direct.
bool IsIndirectAccess(llvm::Value* value);
CVariable* GetSrcVariable(const SSource& source, bool fromConstPool = false);
void SetSourceModifiers(unsigned int sourceIndex, const SSource& source);
SBasicBlock* getCurrentBlock() const {
return m_currentBlock < 0 ? nullptr : &(m_pattern->m_blocks[m_currentBlock]);
}
CodeGenContext* m_pCtx = nullptr;
CVariable* m_destination = nullptr;
GenXFunctionGroupAnalysis* m_FGA = nullptr;
CodeGenPatternMatch* m_pattern = nullptr;
DeSSA* m_deSSA = nullptr;
BlockCoalescing* m_blockCoalescing = nullptr;
const SIMDMode m_SimdMode;
const ShaderDispatchMode m_ShaderDispatchMode;
CShaderProgram::KernelShaderMap& m_shaders;
CShader* m_currShader;
CEncoder* m_encoder;
const llvm::DataLayout* m_DL = nullptr;
CoalescingEngine* m_CE = nullptr;
VariableReuseAnalysis* m_VRA = nullptr;
ModuleMetaData* m_moduleMD = nullptr;
bool m_canAbortOnSpill;
PSSignature* const m_pSignature;
// Debug info emitter
IDebugEmitter* m_pDebugEmitter = nullptr;
llvm::DominatorTree* m_pDT = nullptr;
static char ID;
inline void ContextSwitchPayloadSection(bool first = true);
inline void ContextSwitchShaderBody(bool last = true);
private:
uint m_labelForDMaskJmp;
llvm::DenseMap<llvm::Instruction*, bool> instrMap;
// caching the number of instances for the current inst.
int16_t m_currInstNumInstances = -1;
inline void resetCurrInstNumInstances() { m_currInstNumInstances = -1; }
inline void setCurrInstNumInstances(int16_t aV) { m_currInstNumInstances = aV; }
inline int16_t getCurrInstNumInstances() const { return m_currInstNumInstances; }
// Current rounding Mode
// As RM of FPCvtInt and FP could be different, there
// are two fields to keep track of their current values.
//
// Default rounding modes:
// the rounding modes that are pre-defined by each API or
// shaders/kernels.
//
// Not all combinations of FP's RM and FPCvtInt's RM can be
// used as default. Currently, the default RMs have the
// following restrictions:
// 1. If FPCvtInt's RM = ROUND_TO_ZERO, FP's RM can be any;
// 2. Otherwise, FPCvtInt's RM must be the same as FP's RM
//
// The default remains unchanged throughout the entire
// shaders/kernels. Dynamically setting a different default
// rounding mode in the middle of a shader/kernel is not
// supported for now. And the default remains unchanged
// throughout the entire shaders/kernels.
//
// However, each instruction's RM can be set dynamically,
// such as via intrinsics. If an instruction needs setting RMs,
// its RMs must follow the above restrictions. So far, an
// instruction either relies on FP's RM or FPCvtInt's RM, but
// not both, thus setting an instruction's RM dynamically
// cannot violate the above restrictions.
//
ERoundingMode m_roundingMode_FP;
ERoundingMode m_roundingMode_FPCvtInt;
uint m_currentBlock = (uint) -1;
bool m_currFuncHasSubroutine = false;
bool m_canGenericPointToPrivate = false;
bool m_canGenericPointToLocal = false;
// Used to relocate phi-mov to different BB. phiMovToBB is the map from "fromBB"
// to "toBB" (meaning to move phi-mov from "fromBB" to "toBB"). See MovPhiSources.
llvm::DenseMap<llvm::BasicBlock*, llvm::BasicBlock*> phiMovToBB;
bool canRelocatePhiMov(
llvm::BasicBlock* otherBB, llvm::BasicBlock* phiMovBB, llvm::BasicBlock* phiBB);
bool isCandidateIfStmt(
llvm::BasicBlock* ifBB, llvm::BasicBlock*& otherBB, llvm::BasicBlock*& emptyBB);
// Used to check for the constraint types with the actual llvmIR params for inlineASM instructions
bool validateInlineAsmConstraints(llvm::CallInst* inst, llvm::SmallVector<llvm::StringRef, 8> & constraints);
void emitGetMessagePhaseType(llvm::GenIntrinsicInst* inst, VISA_Type type, uint32_t width);
void emitSetMessagePhaseType(llvm::GenIntrinsicInst* inst, VISA_Type type);
void emitSetMessagePhaseType_legacy(llvm::GenIntrinsicInst* inst, VISA_Type type);
void emitScan(llvm::Value* Src, IGC::WaveOps Op,
bool isInclusiveScan, llvm::Value* Mask, bool isQuad);
// Cached per lane offset variables. This is a per basic block data
// structure. For each entry, the first item is the scalar type size in
// bytes, the second item is the corresponding symbol.
llvm::SmallVector<std::pair<unsigned, CVariable*>, 4> PerLaneOffsetVars;
// Helper function to reduce common code for emitting indirect address
// computation.
CVariable* getOrCreatePerLaneOffsetVariable(unsigned TypeSizeInBytes)
{
for (auto Item : PerLaneOffsetVars)
{
if (Item.first == TypeSizeInBytes)
{
IGC_ASSERT_MESSAGE(Item.second, "null variable");
return Item.second;
}
}
CVariable* Var = m_currShader->GetPerLaneOffsetsReg(TypeSizeInBytes);
PerLaneOffsetVars.push_back(std::make_pair(TypeSizeInBytes, Var));
return Var;
}
// Emit code in slice starting from (reverse) iterator I. Return the
// iterator to the next pattern to emit.
SBasicBlock::reverse_iterator emitInSlice(SBasicBlock& block,
SBasicBlock::reverse_iterator I);
/**
* Reuse SampleDescriptor for sampleID, so that we can pass it to
* ResourceLoop to generate loop for non-uniform values.
*/
inline SamplerDescriptor getSampleIDVariable(llvm::Value* sampleIdVar)
{
SamplerDescriptor sampler;
sampler.m_sampler = GetSymbol(sampleIdVar);
return sampler;
}
CVariable* UnpackOrBroadcastIfUniform(CVariable* pVar);
int getGRFSize() const { return m_currShader->getGRFSize(); }
void initDefaultRoundingMode();
ERoundingMode GetRoundingMode_FPCvtInt(llvm::Instruction* pInst);
ERoundingMode GetRoundingMode_FP(llvm::Instruction* inst);
void SetRoundingMode_FP(ERoundingMode RM_FP);
void SetRoundingMode_FPCvtInt(ERoundingMode RM_FPCvtInt);
bool setRMExplicitly(llvm::Instruction* inst);
void ResetRoundingMode(llvm::Instruction* inst);
// returns true if the instruction does not care about the rounding mode settings
bool ignoreRoundingMode(llvm::Instruction* inst) const;
// A64 load/store with HWA that make sure the offset hi part is the same per LS call
// addrUnifrom: if the load/store address is uniform, we can skip A64 WA
void emitGatherA64(llvm::Value* loadInst, CVariable* dst, CVariable* offset, unsigned elemSize, unsigned numElems, bool addrUniform);
void emitGather4A64(llvm::Value* loadInst, CVariable* dst, CVariable* offset, bool addrUniform);
void emitScatterA64(CVariable* val, CVariable* offset, unsigned elementSize, unsigned numElems, bool addrUniform);
void emitScatter4A64(CVariable* src, CVariable* offset, bool addrUniform);
// Helper functions that create loop for above WA
void A64LSLoopHead(CVariable* addr, CVariable*& curMask, CVariable*& lsPred, uint& label);
void A64LSLoopTail(CVariable* curMask, CVariable* lsPred, uint label);
// Helper function to check if A64 WA is required
bool hasA64WAEnable() const;
bool isHalfGRFReturn(CVariable* dst, SIMDMode simdMode);
void emitFeedbackEnable();
void emitAddrSpaceToGenericCast(llvm::AddrSpaceCastInst* addrSpaceCast, CVariable* srcV, unsigned tag);
// used for loading/storing uniform value using scatter/gather messages.
CVariable* prepareAddressForUniform(
CVariable* AddrVar, uint32_t EltBytes, uint32_t NElts, uint32_t ExecSz, e_alignment Align);
CVariable* prepareDataForUniform(CVariable* DataVar, uint32_t ExecSz, e_alignment Align);
// sub-function of vector load/store
void emitLSCVectorLoad_subDW(
LSC_CACHE_OPTS cacheOpts, bool UseA32,
ResourceDescriptor& Resource, CVariable* Dest, CVariable* Offset, int ImmOffset,
uint32_t NumElts, uint32_t EltBytes);
void emitLSCVectorLoad_uniform(
LSC_CACHE_OPTS cacheOpts, bool UseA32,
ResourceDescriptor& Resource, CVariable* Dest, CVariable* Offset, int ImmOffset,
uint32_t NumElts, uint32_t EltBytes, uint64_t Align, uint32_t Addrspace);
void emitLSCVectorStore_subDW(
LSC_CACHE_OPTS cacheOpts, bool UseA32,
ResourceDescriptor& Resource, CVariable* StoreVar, CVariable* Offset, int ImmOffset,
uint32_t NumElts, uint32_t EltBytes, int Align);
void emitLSCVectorStore_uniform(
LSC_CACHE_OPTS cacheOpts, bool UseA32,
ResourceDescriptor& Resource, CVariable* StoreVar, CVariable* Offset, int ImmOffset,
uint32_t NumElts, uint32_t EltBytes, int Align);
LSC_FENCE_OP getLSCMemoryFenceOp(bool IsGlobalMemFence, bool InvalidateL1) const;
bool m_isDuplicate;
CVariable* m_tmpDest = nullptr;
std::set<CoalescingEngine::CCTuple*> lifetimeStartAdded;
};
} // namespace IGC
|