File: EmitVISAPass.hpp

package info (click to toggle)
intel-graphics-compiler 1.0.12504.6-1%2Bdeb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 83,912 kB
  • sloc: cpp: 910,147; lisp: 202,655; ansic: 15,197; python: 4,025; yacc: 2,241; lex: 1,570; pascal: 244; sh: 104; makefile: 25
file content (910 lines) | stat: -rw-r--r-- 41,356 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
/*========================== begin_copyright_notice ============================

Copyright (C) 2017-2022 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

#pragma once

#include "BlockCoalescing.hpp"
#include "PatternMatchPass.hpp"
#include "ShaderCodeGen.hpp"
#include "CoalescingEngine.hpp"
#include "Simd32Profitability.hpp"
#include "GenCodeGenModule.h"
#include "VariableReuseAnalysis.hpp"
#include "CastToGASAnalysis.h"
#include "Compiler/MetaDataUtilsWrapper.h"
#include "common/LLVMWarningsPush.hpp"
#include <llvm/IR/DataLayout.h>
#include <llvm/IR/InlineAsm.h>
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/Analysis/CallGraph.h"
#include "common/LLVMWarningsPop.hpp"
#include "Compiler/IGCPassSupport.h"
#include "Probe/Assertion.h"
#include <functional>

namespace llvm
{
    class GenIntrinsicInst;
}

namespace IGC
{
// Forward declaration
class IDebugEmitter;
struct PSSignature;

class EmitPass : public llvm::FunctionPass
{
public:
    EmitPass(CShaderProgram::KernelShaderMap& shaders, SIMDMode mode, bool canAbortOnSpill, ShaderDispatchMode shaderMode, PSSignature* pSignature = nullptr);

    virtual ~EmitPass();

    // Note:  all analysis passes should be function passes. If a module analysis pass
    //        is used, it would invalidate function analysis passes and therefore cause
    //        those analysis passes to be invoked twice, which increases compiling time.
    virtual void getAnalysisUsage(llvm::AnalysisUsage& AU) const override
    {
        AU.addRequired<llvm::DominatorTreeWrapperPass>();
        AU.addRequired<WIAnalysis>();
        AU.addRequired<LiveVarsAnalysis>();
        AU.addRequired<CodeGenPatternMatch>();
        AU.addRequired<DeSSA>();
        AU.addRequired<BlockCoalescing>();
        AU.addRequired<CoalescingEngine>();
        AU.addRequired<MetaDataUtilsWrapper>();
        AU.addRequired<Simd32ProfitabilityAnalysis>();
        AU.addRequired<CodeGenContextWrapper>();
        AU.addRequired<VariableReuseAnalysis>();
        AU.addRequired<CastToGASWrapperPass>();
        AU.setPreservesAll();
    }

    virtual bool runOnFunction(llvm::Function& F) override;
    virtual llvm::StringRef getPassName() const  override { return "EmitPass"; }

    void CreateKernelShaderMap(CodeGenContext* ctx, IGC::IGCMD::MetaDataUtils* pMdUtils, llvm::Function& F);

    void Frc(const SSource& source, const DstModifier& modifier);
    void Floor(const SSource& source, const DstModifier& modifier);
    void Mad(const SSource sources[3], const DstModifier& modifier);
    void Lrp(const SSource sources[3], const DstModifier& modifier);
    void Cmp(llvm::CmpInst::Predicate pred, const SSource sources[2], const DstModifier& modifier, uint8_t clearTagMask = 0);
    void Sub(const SSource[2], const DstModifier& mofidier);
    void Xor(const SSource[2], const DstModifier& modifier);
    void FDiv(const SSource[2], const DstModifier& modifier);
    void Pow(const SSource sources[2], const DstModifier& modifier);
    void Avg(const SSource sources[2], const DstModifier& modifier);
    void Rsqrt(const SSource& source, const DstModifier& modifier);
    void Sqrt(const SSource& source, const DstModifier& modifier);
    void Select(const SSource sources[3], const DstModifier& modifier);
    void PredAdd(const SSource& pred, bool invert, const SSource sources[2], const DstModifier& modifier);
    void Mul(const SSource[2], const DstModifier& modifier);
    void Mov(const SSource& source, const DstModifier& modifier);
    void Unary(e_opcode opCode, const SSource sources[1], const DstModifier& modifier);
    void Binary(e_opcode opCode, const SSource sources[2], const DstModifier& modifier);
    void Tenary(e_opcode opCode, const SSource sources[3], const DstModifier& modifier);
    void Bfn(uint8_t booleanFuncCtrl, const SSource sources[3], const DstModifier& modifier);
    void CmpBfn(llvm::CmpInst::Predicate predicate, const SSource cmpSources[2], uint8_t booleanFuncCtrl,
        const SSource bfnSources[3], const DstModifier& modifier);

    void Mul64(CVariable* dst, CVariable* src[2], SIMDMode simdMode, bool noMask = false) const;

    template<int N>
    void Alu(e_opcode opCode, const SSource sources[N], const DstModifier& modifier);

    void BinaryUnary(llvm::Instruction* inst, const  SSource source[2], const DstModifier& modifier);
    void CmpBoolOp(Pattern* cmpPattern,
        llvm::BinaryOperator* inst,
        const SSource& bitSource,
        const DstModifier& modifier);
    void emitAluConditionMod(Pattern* aluPattern, llvm::Instruction* alu, llvm::CmpInst* cmp, int aluOprdNum);

    void EmitGenericPointersCmp(llvm::Instruction* inst, const SSource source[2], const DstModifier& modifier, uint8_t clearTagMask);
    void EmitAluIntrinsic(llvm::CallInst* I, const SSource source[2], const DstModifier& modifier);
    void EmitSimpleAlu(llvm::Instruction* inst, const SSource source[2], const DstModifier& modifier);
    void EmitSimpleAlu(llvm::Instruction* inst, CVariable* dst, CVariable* src0, CVariable* src1);
    void EmitSimpleAlu(EOPCODE opCode, const SSource source[2], const DstModifier& modifier);
    void EmitSimpleAlu(EOPCODE opCode, CVariable* dst, CVariable* src0, CVariable* src1);
    void EmitMinMax(bool isMin, bool isUnsigned, const SSource source[2], const DstModifier& modifier);
    void EmitUAdd(llvm::BinaryOperator* inst, const DstModifier& modifier);
    void EmitFullMul32(bool isUnsigned, const SSource srcs[2], const DstModifier& dstMod);
    void EmitFPToIntWithSat(bool isUnsigned, bool needBitCast, VISA_Type type, const SSource& source, const DstModifier& modifier);
    void EmitNoModifier(llvm::Instruction* inst);
    void EmitIntrinsicMessage(llvm::IntrinsicInst* inst);
    void EmitGenIntrinsicMessage(llvm::GenIntrinsicInst* inst);
    void EmitSIToFPZExt(const SSource& source, const DstModifier& dstMod);
    void EmitIntegerTruncWithSat(bool isSignedDst, bool isSignedSrc, const SSource& source, const DstModifier& dstMod);
    void EmitAddPair(llvm::GenIntrinsicInst* GII, const SSource Sources[4], const DstModifier& DstMod);
    void EmitSubPair(llvm::GenIntrinsicInst* GII, const SSource Sources[4], const DstModifier& DstMod);
    void EmitMulPair(llvm::GenIntrinsicInst* GII, const SSource Sources[4], const DstModifier& DstMod);
    void EmitPtrToPair(llvm::GenIntrinsicInst* GII, const SSource Sources[1], const DstModifier& DstMod);
    void EmitInlineAsm(llvm::CallInst* inst);

    void emitPairToPtr(llvm::GenIntrinsicInst* GII);

    void emitMulAdd16(llvm::Instruction* I, const SSource source[2], const DstModifier& dstMod);
    void emitCall(llvm::CallInst* inst);
    void emitReturn(llvm::ReturnInst* inst);
    void EmitInsertValueToStruct(llvm::InsertValueInst* II, bool forceVectorInit, const DstModifier& DstMod);
    void EmitExtractValueFromStruct(llvm::ExtractValueInst* EI, const DstModifier& DstMod);

    /// stack-call code-gen functions
    void emitStackCall(llvm::CallInst* inst);
    void emitStackFuncEntry(llvm::Function* F);
    void emitStackFuncExit(llvm::ReturnInst* inst);
    void InitializeKernelStack(llvm::Function* pKernel);

    /// stack-call functions for reading and writing argument/retval data to stack
    typedef SmallVector<std::tuple<CVariable*, uint32_t, uint32_t, uint32_t>, 8> StackDataBlocks;
    uint CalculateStackDataBlocks(StackDataBlocks& blkData, std::vector<CVariable*>& Args);
    void ReadStackDataBlocks(StackDataBlocks& blkData, uint offsetS);
    void WriteStackDataBlocks(StackDataBlocks& blkData, uint offsetS);

    // emits the visa relocation instructions for function/global symbols
    void emitSymbolRelocation(llvm::Function& F);

    void emitOutput(llvm::GenIntrinsicInst* inst);

    // TODO: unify the functions below and clean up
    void emitStore(llvm::StoreInst* inst, llvm::Value* varOffset, llvm::ConstantInt* immOffset);
    void emitStore3D(llvm::StoreInst* inst, llvm::Value* elemIdxV);
    void emitStore3DInner(llvm::Value* pllValToStore, llvm::Value* pllDstPtr, llvm::Value* pllElmIdx);

    void emitLoad(llvm::LoadInst* inst, llvm::Value* varOffset, llvm::ConstantInt* immOffset);   // single load, no pattern
    void emitLoad3DInner(llvm::LdRawIntrinsic* inst, ResourceDescriptor& resource, llvm::Value* elemIdxV);

    // when resource is dynamically indexed, load/store must use special intrinsics
    void emitLoadRawIndexed(llvm::LdRawIntrinsic* inst, llvm::Value* varOffset, llvm::ConstantInt* immOffset);
    void emitStoreRawIndexed(llvm::StoreRawIntrinsic* inst, llvm::Value* varOffset, llvm::ConstantInt* immOffset);
    void emitGetBufferPtr(llvm::GenIntrinsicInst* inst);
    // \todo, remove this function after we lower all GEP to IntToPtr before CodeGen.
    // Only remaining GEPs are for scratch in GFX path
    void emitGEP(llvm::Instruction* inst);


    // Emit lifetime start right before inst V. If ForAllInstance is true, emit lifestart
    // for both instances; otherwise, just the current instance set in the calling context.
    void emitLifetimeStart(CVariable* Var, llvm::BasicBlock* BB, llvm::Instruction* I, bool ForAllInstance);
    bool waveShuffleCase(CVariable* Var, BasicBlock* BB, Instruction* I, bool ForAllInstance);

    // set the predicate with current active channels
    void emitPredicateFromChannelIP(CVariable* dst, CVariable* alias = NULL);

    // Helper methods for message emit functions.
    template <typename T>
    void prepareRenderTargetWritePayload(
        T* inst,
        llvm::DenseMap<llvm::Value*, CVariable**>& valueToVariableMap,
        llvm::Value* color[],
        uint8_t colorCnt,
        //output:
        CVariable** src,
        bool* isUndefined,
        CVariable*& source0Alpha,
        CVariable*& oMaskOpnd,
        CVariable*& outputDepthOpnd,
        CVariable*& vStencilOpnd);


    ResourceDescriptor GetSampleResourceHelper(llvm::SampleIntrinsic* inst);

    void interceptSamplePayloadCoalescing(
        llvm::SampleIntrinsic* inst,
        uint numPart,
        llvm::SmallVector<CVariable*, 4> & payload,
        bool& payloadCovered
    );

    // message emit functions
    void emitSimdLaneId(llvm::Instruction* inst);
    void emitSimdSize(llvm::Instruction* inst);
    void emitSimdShuffle(llvm::Instruction* inst);
    void emitCrossInstanceMov(const SSource& source, const DstModifier& modifier);
    void emitSimdShuffleDown(llvm::Instruction* inst);
    void emitSimdShuffleXor(llvm::Instruction* inst);
    void emitSimdBlockRead(llvm::Instruction* inst, llvm::Value* ptrVal = nullptr);
    void emitSimdBlockWrite(llvm::Instruction* inst, llvm::Value* ptrVal = nullptr);
    void emitLegacySimdBlockWrite(llvm::Instruction* inst, llvm::Value* ptrVal = nullptr);
    void emitLegacySimdBlockRead(llvm::Instruction* inst, llvm::Value* ptrVal = nullptr);
    void emitLSCSimdBlockWrite(llvm::Instruction* inst, llvm::Value* ptrVal = nullptr);
    void emitLSCSimdBlockRead(llvm::Instruction* inst, llvm::Value* ptrVal = nullptr);
    void emitSimdMediaBlockRead(llvm::Instruction* inst);
    void emitSimdMediaBlockWrite(llvm::Instruction* inst);
    void emitMediaBlockIO(const llvm::GenIntrinsicInst* inst, bool isRead);
    void emitMediaBlockRectangleRead(llvm::Instruction* inst);
    void emitSampleInstruction(llvm::SampleIntrinsic* inst);
    void emitLdInstruction(llvm::Instruction* inst);
    void emitInfoInstruction(llvm::InfoIntrinsic* inst);
    void emitGather4Instruction(llvm::SamplerGatherIntrinsic* inst);
    void emitLdmsInstruction(llvm::Instruction* inst);
    void emitTypedRead(llvm::Instruction* inst);
    void emitTypedWrite(llvm::Instruction* inst);
    void emitThreadGroupBarrier(llvm::Instruction* inst);
    void emitThreadGroupNamedBarriersInit(llvm::Instruction* inst);
    void emitThreadGroupNamedBarriersBarrier(llvm::Instruction* inst);
    void emitCastSelect(CVariable* flag, CVariable* dst, CVariable* src0, CVariable* src1);
    void emitMemoryFence(llvm::Instruction* inst);
    void emitMemoryFence(void);
    void emitTypedMemoryFence(llvm::Instruction* inst);
    void emitFlushSamplerCache();
    void emitSurfaceInfo(llvm::GenIntrinsicInst* intrinsic);

    static uint64_t getFPOffset() { return SIZE_OWORD; }
    void emitStackAlloca(llvm::GenIntrinsicInst* intrinsic);
    void emitVLAStackAlloca(llvm::GenIntrinsicInst* intrinsic);

    void emitUAVSerialize();

    void emitScalarAtomics(
        llvm::Instruction* pInst,
        ResourceDescriptor& resource,
        AtomicOp atomic_op,
        CVariable* pDstAddr,
        CVariable* pU,
        CVariable* pV,
        CVariable* pR,
        CVariable* pSrc,
        bool isA64,
        int bitSize);

    void emitScalarAtomicLoad(
        llvm::Instruction* pInst,
        ResourceDescriptor& resource,
        CVariable* pDstAddr,
        CVariable* pU,
        CVariable* pV,
        CVariable* pR,
        CVariable* pSrc,
        bool isA64,
        int bitSize);

    /// reduction and prefix/postfix facilities
    CVariable* ScanReducePrepareSrc(VISA_Type type, uint64_t identityValue, bool negate, bool secondHalf,
        CVariable* src, CVariable* dst, CVariable* flag = nullptr);
    CVariable* ReductionReduceHelper(e_opcode op, VISA_Type type, SIMDMode simd, CVariable* src);
    void ReductionExpandHelper(e_opcode op, VISA_Type type, CVariable* src, CVariable* dst);
    void ReductionClusteredSrcHelper(CVariable* (&pSrc)[2], CVariable* src, uint16_t numLanes,
        VISA_Type type, uint numInst, bool secondHalf);
    CVariable* ReductionClusteredReduceHelper(e_opcode op, VISA_Type type, SIMDMode simd, bool secondHalf,
        CVariable* src, CVariable* dst);
    void ReductionClusteredExpandHelper(e_opcode op, VISA_Type type, SIMDMode simd, const uint clusterSize,
        bool secondHalf, CVariable* src, CVariable* dst);
    /// reduction and prefix/postfix emitters
    void emitReductionAll(
        e_opcode op,
        uint64_t identityValue,
        VISA_Type type,
        bool negate,
        CVariable* src,
        CVariable* dst);
    void emitReductionClustered(
        const e_opcode op,
        const uint64_t identityValue,
        const VISA_Type type,
        const bool negate,
        const unsigned int clusterSize,
        CVariable* const src,
        CVariable* const dst);
    void emitPreOrPostFixOp(
        e_opcode op,
        uint64_t identityValue,
        VISA_Type type,
        bool negateSrc,
        CVariable* src,
        CVariable* result[2],
        CVariable* Flag = nullptr,
        bool isPrefix = false,
        bool isQuad = false);
    void emitPreOrPostFixOpScalar(
        e_opcode op,
        uint64_t identityValue,
        VISA_Type type,
        bool negateSrc,
        CVariable* src,
        CVariable* result[2],
        CVariable* Flag,
        bool isPrefix);

    bool IsUniformAtomic(llvm::Instruction* pInst);
    void emitAtomicRaw(llvm::GenIntrinsicInst* pInst);
    void emitAtomicTyped(llvm::GenIntrinsicInst* pInst);
    void emitAtomicCounter(llvm::GenIntrinsicInst* pInst);
    void emitFastClear(llvm::LoadInst* inst);
    void emitFastClearSend(llvm::Instruction* pInst);
    void setRovCacheCtrl(llvm::GenIntrinsicInst* inst);
    llvm::Optional<LSC_CACHE_OPTS>
        setCacheOptionsForConstantBufferLoads(Instruction& inst) const;
    bool useRasterizerOrderedByteAddressBuffer(llvm::GenIntrinsicInst* inst);
    void emitUniformAtomicCounter(llvm::GenIntrinsicInst* pInst);

    void emitDiscard(llvm::Instruction* inst);

    void emitcycleCounter(llvm::Instruction* inst);
    void emitSetDebugReg(llvm::Instruction* inst);
    void emitInsert(llvm::Instruction* inst);
    void emitExtract(llvm::Instruction* inst);
    void emitBitCast(llvm::BitCastInst* btCst);
    void emitPtrToInt(llvm::PtrToIntInst* p2iCst);
    void emitIntToPtr(llvm::IntToPtrInst* i2pCst);
    void emitAddrSpaceCast(llvm::AddrSpaceCastInst* addrSpaceCast);
    void emitBranch(llvm::BranchInst* br, const SSource& cond, e_predMode predMode);
    void emitDiscardBranch(llvm::BranchInst* br, const SSource& cond);
    void emitAluNoModifier(llvm::GenIntrinsicInst* inst);


    void emitGradientX(const SSource& source, const DstModifier& modifier);
    void emitGradientY(const SSource& source, const DstModifier& modifier);
    void emitGradientXFine(const SSource& source, const DstModifier& modifier);
    void emitGradientYFine(const SSource& source, const DstModifier& modifier);

    void emitf32tof16_rtz(llvm::GenIntrinsicInst* inst);
    void emitfitof(llvm::GenIntrinsicInst* inst);
    void emitFPOrtz(llvm::GenIntrinsicInst* inst);
    void emitFMArtp(llvm::GenIntrinsicInst* inst);
    void emitFMArtn(llvm::GenIntrinsicInst* inst);
    void emitftoi(llvm::GenIntrinsicInst* inst);
    void emitCtlz(const SSource& source);


    // VME
    void emitVMESendIME(llvm::GenIntrinsicInst* inst);
    void emitVMESendFBR(llvm::GenIntrinsicInst* inst);
    void emitVMESendSIC(llvm::GenIntrinsicInst* inst);
    void emitVMESendIME2(llvm::GenIntrinsicInst* inst);
    void emitVMESendFBR2(llvm::GenIntrinsicInst* inst);
    void emitVMESendSIC2(llvm::GenIntrinsicInst* inst);
    void emitCreateMessagePhases(llvm::GenIntrinsicInst* inst);
    void emitSetMessagePhaseX_legacy(llvm::GenIntrinsicInst* inst);
    void emitSetMessagePhase_legacy(llvm::GenIntrinsicInst* inst);
    void emitGetMessagePhaseX(llvm::GenIntrinsicInst* inst);
    void emitSetMessagePhaseX(llvm::GenIntrinsicInst* inst);
    void emitGetMessagePhase(llvm::GenIntrinsicInst* inst);
    void emitSetMessagePhase(llvm::GenIntrinsicInst* inst);
    void emitSimdGetMessagePhase(llvm::GenIntrinsicInst* inst);
    void emitBroadcastMessagePhase(llvm::GenIntrinsicInst* inst);
    void emitSimdSetMessagePhase(llvm::GenIntrinsicInst* inst);
    void emitSimdMediaRegionCopy(llvm::GenIntrinsicInst* inst);
    void emitExtractMVAndSAD(llvm::GenIntrinsicInst* inst);
    void emitCmpSADs(llvm::GenIntrinsicInst* inst);

    // VA
    void emitVideoAnalyticSLM(llvm::GenIntrinsicInst* inst, const DWORD responseLen);
    // New VA without using SLM and barriers (result is returned in GRF).
    void emitVideoAnalyticGRF(llvm::GenIntrinsicInst* inst, const DWORD responseLen);

    // CrossLane Instructions
    void emitWaveBallot(llvm::GenIntrinsicInst* inst);
    void emitWaveInverseBallot(llvm::GenIntrinsicInst* inst);
    void emitWaveShuffleIndex(llvm::GenIntrinsicInst* inst);
    void emitWavePrefix(llvm::WavePrefixIntrinsic* I);
    void emitQuadPrefix(llvm::QuadPrefixIntrinsic* I);
    void emitWaveAll(llvm::GenIntrinsicInst* inst);
    void emitWaveClustered(llvm::GenIntrinsicInst* inst);

    // Those three "vector" version shall be combined with
    // non-vector version.
    bool isUniformStoreOCL(llvm::StoreInst* SI);
    bool isUniformStoreOCL(llvm::Value* ptr, llvm::Value* storeVal);
    void emitVectorBitCast(llvm::BitCastInst* BCI);
    void emitVectorLoad(llvm::LoadInst* LI, llvm::Value* offset, llvm::ConstantInt* immOffset);
    void emitVectorStore(llvm::StoreInst* SI, llvm::Value* offset, llvm::ConstantInt* immOffset);
    void emitLSCVectorLoad(
        llvm::Value* Ptr, llvm::Value* offset, llvm::ConstantInt* immOffset,
        llvm::Type* Ty, LSC_CACHE_OPTS cacheOpts, uint64_t align);
    void emitLSCVectorStore(
        llvm::Value* Ptr, llvm::Value* offset, llvm::ConstantInt* immOffset,
        llvm::Value* storedVal, LSC_CACHE_OPTS cacheOpts, uint32_t align, bool dontForceDMask);
    void emitGenISACopy(llvm::GenIntrinsicInst* GenCopyInst);
    void emitVectorCopy(CVariable* Dst, CVariable* Src, uint32_t nElts,
        uint32_t DstSubRegOffset = 0, uint32_t SrcSubRegOffset = 0);
    void emitCopyAll(CVariable* Dst, CVariable* Src, llvm::Type* Ty);

    void emitPushFrameToStack(unsigned& pushSize);
    void emitAddPointer(CVariable* Dst, CVariable* Src, CVariable* offset);
    // emitAddPair - emulate 64bit addtition by 32-bit operations.
    // Dst and Src0 must be a 64-bit type variable.
    // Src1 mist be in 32-bit type variable/immediate
    void emitAddPair(CVariable* Dst, CVariable* Src0, CVariable* Src1);

    void emitSqrt(llvm::Instruction* inst);
    void emitUmin(llvm::IntrinsicInst* inst);
    void emitSmin(llvm::IntrinsicInst* inst);
    void emitUmax(llvm::IntrinsicInst* inst);
    void emitSmax(llvm::IntrinsicInst* inst);
    void emitCanonicalize(llvm::Instruction* inst, const DstModifier& modifier);
    void emitRsq(llvm::Instruction* inst);
    void emitFrc(llvm::GenIntrinsicInst* inst);

    void emitLLVMbswap(llvm::IntrinsicInst* inst);
    void emitDP4A(llvm::GenIntrinsicInst* GII,
        const SSource* source = nullptr,
        const DstModifier& modifier = DstModifier(),
        bool isAccSigned = true);

    void emitLLVMStackSave(llvm::IntrinsicInst* inst);
    void emitLLVMStackRestore(llvm::IntrinsicInst* inst);

    void emitUnmaskedRegionBoundary(bool start);
    LSC_CACHE_OPTS getDefaultRaytracingCachePolicy(bool isLoad) const;
    void emitAsyncStackID(llvm::GenIntrinsicInst* I);
    void emitSyncStackID(llvm::GenIntrinsicInst* I);
    void emitTraceRay(llvm::TraceRayIntrinsic *I, bool RayQueryEnable);
    void emitReadTraceRaySync(llvm::GenIntrinsicInst* I);


    void emitBTD(
        CVariable* GlobalBufferPtr,
        CVariable* StackID,
        CVariable* ShaderRecord,
        CVariable* Flag,
        bool releaseStackID);
    void emitBindlessThreadDispatch(llvm::BTDIntrinsic *I);
    void emitStackIDRelease(llvm::StackIDReleaseIntrinsic *I);
    void emitGetShaderRecordPtr(llvm::GetShaderRecordPtrIntrinsic *I);
    void emitGlobalBufferPtr(llvm::GenIntrinsicInst *I);
    void emitLocalBufferPtr(llvm::GenIntrinsicInst *I);
    void emitInlinedDataValue(llvm::GenIntrinsicInst *I);
    void emitTileXOffset(llvm::TileXIntrinsic *I);
    void emitTileYOffset(llvm::TileYIntrinsic *I);
    void emitDpas(llvm::GenIntrinsicInst *GII,
                  const SSource* source,
                  const DstModifier& modifier);
    void emitfcvt(llvm::GenIntrinsicInst *GII);

    void emitSystemMemoryFence(llvm::GenIntrinsicInst* I);
    void emitUrbFence();
    void emitHDCuncompressedwrite(llvm::GenIntrinsicInst* I);
    ////////////////////////////////////////////////////////////////////
    // LSC related functions
    LSC_CACHE_OPTS translateLSCCacheControlsFromValue(
        llvm::Value *value, bool isLoad) const;
    LSC_CACHE_OPTS translateLSCCacheControlsFromMetadata(
        llvm::Instruction* inst, bool isLoad, bool isTGM = 0) const;
    struct LscMessageFragmentInfo {
        LSC_DATA_ELEMS fragElem;
        int            fragElemCount;
        int            addrOffsetDelta;
        int            grfOffsetDelta;
        bool           lastIsV1; // e.g. splitting a V3 up is a V2 + V1
    };
    LscMessageFragmentInfo checkForLscMessageFragmentation(
        LSC_DATA_SIZE size, LSC_DATA_ELEMS elems) const;

    // (CVariable* gatherDst, int fragIx, LSC_DATA_ELEMS fragElems, int fragImmOffset)
    using LscIntrinsicFragmentEmitter =
        std::function<void(CVariable *, int, LSC_DATA_ELEMS, int)>;

    void emitLscIntrinsicFragments(
        CVariable* gatherDst,
        LSC_DATA_SIZE dataSize,
        LSC_DATA_ELEMS dataElems,
        int immOffsetBytes,
        const LscIntrinsicFragmentEmitter &emitter);

    void emitLscIntrinsicLoad(llvm::GenIntrinsicInst* GII);
    void emitLscIntrinsicPrefetch(llvm::GenIntrinsicInst* GII);
    void emitLscIntrinsicStore(llvm::GenIntrinsicInst* GII);

    void emitLSCFence(llvm::GenIntrinsicInst* inst);
    void emitLSC2DBlockRead(llvm::GenIntrinsicInst* inst);
    void emitLSCAtomic(llvm::GenIntrinsicInst* inst);
    void emitLSCIntrinsic(llvm::GenIntrinsicInst* GII);
    void emitLSCLoad(
        llvm::Instruction* inst,
        CVariable* dst,
        CVariable* offset,
        unsigned elemSize,
        unsigned numElems,
        unsigned blockOffset,
        ResourceDescriptor* resource,
        LSC_ADDR_SIZE addr_size,
        LSC_DATA_ORDER data_order,
        int immOffset);
    void emitLSCLoad(
        LSC_CACHE_OPTS cacheOpts,
        CVariable* dst,
        CVariable* offset,
        unsigned elemSize,
        unsigned numElems,
        unsigned blockOffset,
        ResourceDescriptor* resource,
        LSC_ADDR_SIZE addr_size,
        LSC_DATA_ORDER data_order,
        int immOffset);
    void emitLSCStore(
        llvm::Instruction* inst,
        CVariable* src,
        CVariable* offset,
        unsigned elemSize,
        unsigned numElems,
        unsigned blockOffset,
        ResourceDescriptor* resource,
        LSC_ADDR_SIZE addr_size,
        LSC_DATA_ORDER data_order,
        int immOffset);
    void emitLSCStore(
        LSC_CACHE_OPTS cacheOpts,
        CVariable* src,
        CVariable* offset,
        unsigned elemSize,
        unsigned numElems,
        unsigned blockOffset,
        ResourceDescriptor* resource,
        LSC_ADDR_SIZE addr_size,
        LSC_DATA_ORDER data_order,
        int immOffset);
    ////////////////////////////////////////////////////////////////////
    // NOTE: for vector load/stores instructions pass the
    // optional instruction argument checks additional constraints
    static Tristate shouldGenerateLSCQuery(
        const CodeGenContext& Ctx,
        llvm::Instruction* vectorLdStInst = nullptr,
        SIMDMode Mode = SIMDMode::UNKNOWN);
    bool shouldGenerateLSC(llvm::Instruction* vectorLdStInst = nullptr);
    bool forceCacheCtrl(llvm::Instruction* vectorLdStInst = nullptr);
    uint32_t totalBytesToStoreOrLoad(llvm::Instruction* vectorLdStInst);
    void emitsrnd(llvm::GenIntrinsicInst* GII);
    void emitStaticConstantPatchValue(
        llvm::StaticConstantPatchIntrinsic* staticConstantPatch32);
    // Debug Built-Ins
    void emitStateRegID(uint32_t BitStart, uint32_t BitEnd);
    void emitThreadPause(llvm::GenIntrinsicInst* inst);

    void MovPhiSources(llvm::BasicBlock* bb);

    void InitConstant(llvm::BasicBlock* BB);
    void emitLifetimeStartAtEndOfBB(llvm::BasicBlock* BB);
    void emitDebugPlaceholder(llvm::GenIntrinsicInst* I);
    void emitDummyInst(llvm::GenIntrinsicInst* GII);
    void emitLaunder(llvm::GenIntrinsicInst* GII);
    void emitImplicitArgIntrinsic(llvm::GenIntrinsicInst* I);
    void emitStoreImplBufferPtr(llvm::GenIntrinsicInst* I);
    void emitStoreLocalIdBufferPtr(llvm::GenIntrinsicInst* I);
    void emitLoadImplBufferPtr(llvm::GenIntrinsicInst* I);
    void emitLoadLocalIdBufferPtr(llvm::GenIntrinsicInst* I);


    std::pair<llvm::Value*, llvm::Value*> getPairOutput(llvm::Value*) const;

    //helper function
    void SplitSIMD(llvm::Instruction* inst, uint numSources, uint headerSize, CVariable* payload, SIMDMode mode, uint half);
    template<size_t N>
    void JoinSIMD(CVariable* (&tempdst)[N], uint responseLength, SIMDMode mode);
    CVariable* BroadcastIfUniform(CVariable* pVar, bool nomask = false);
    uint DecideInstanceAndSlice(const llvm::BasicBlock& blk, SDAG& sdag, bool& slicing);
    bool IsUndefOrZeroImmediate(const llvm::Value* value);
    inline bool isUndefOrConstInt0(const llvm::Value* val)
    {
        if (val == nullptr ||
            llvm::isa<llvm::UndefValue>(val) ||
            (llvm::isa<llvm::ConstantInt>(val) &&
                llvm::cast<llvm::ConstantInt>(val)->getZExtValue() == 0))
        {
            return true;
        }
        return false;
    }
    inline llvm::Value* getOperandIfExist(llvm::Instruction* pInst, unsigned op)
    {
        if (llvm::CallInst * pCall = llvm::dyn_cast<llvm::CallInst>(pInst))
        {
            if (op < IGCLLVM::getNumArgOperands(pCall))
            {
                return pInst->getOperand(op);
            }
        }
        return nullptr;
    }

    bool IsGRFAligned(CVariable* pVar, e_alignment requiredAlign) const
    {
        e_alignment align = pVar->GetAlign();
        if (requiredAlign == EALIGN_BYTE)
        {
            // trivial
            return true;
        }
        if (requiredAlign == EALIGN_AUTO || align == EALIGN_AUTO)
        {
            // Can only assume that AUTO only matches AUTO (?)
            // (keep the previous behavior unchanged.)
            return align == requiredAlign;
        }
        return align >= requiredAlign;
    }

    CVariable* ExtendVariable(CVariable* pVar, e_alignment uniformAlign);
    CVariable* BroadcastAndExtend(CVariable* pVar);
    CVariable* TruncatePointer(CVariable* pVar);
    CVariable* ReAlignUniformVariable(CVariable* pVar, e_alignment align);
    CVariable* BroadcastAndTruncPointer(CVariable* pVar);
    CVariable* IndexableResourceIndex(CVariable* indexVar, uint btiIndex);
    ResourceDescriptor GetResourceVariable(llvm::Value* resourcePtr);
    SamplerDescriptor GetSamplerVariable(llvm::Value* samplerPtr);
    CVariable* ComputeSampleIntOffset(llvm::Instruction* sample, uint sourceIndex);
    void emitPlnInterpolation(CVariable* bary, CVariable* inputvar);

    // the number of lanes of the entire dispatch. It is read only as it is cached for reuse.
    CVariable* GetNumActiveLanes();

    CVariable* GetExecutionMask();
    CVariable* GetExecutionMask(CVariable* &vecMaskVar);
    CVariable* GetHalfExecutionMask();
    CVariable* UniformCopy(CVariable* var, bool doSub = false);
    CVariable* UniformCopy(CVariable* var, CVariable*& LaneOffset, CVariable* eMask = nullptr, bool doSub = false);

    // generate loop header to process sample instruction with varying resource/sampler
    bool ResourceLoopHeader(
        ResourceDescriptor& resource,
        SamplerDescriptor& sampler,
        CVariable*& flag,
        uint& label);
    bool ResourceLoopHeader(
        ResourceDescriptor& resource,
        CVariable*& flag,
        uint& label);
    void ResourceLoopBackEdge(bool needLoop, CVariable* flag, uint label);
    template<typename Func>
    void ResourceLoop(ResourceDescriptor& resource, Func Fn)
    {
        uint label = 0;
        CVariable* flag = nullptr;
        bool needLoop = ResourceLoopHeader(resource, flag, label);

        Fn(flag);

        ResourceLoopBackEdge(needLoop, flag, label);
    }
    template<typename Func>
    void ResourceLoop(ResourceDescriptor& resource, SamplerDescriptor& sampler, Func Fn)
    {
        uint label = 0;
        CVariable* flag = nullptr;
        bool needLoop = ResourceLoopHeader(resource, sampler, flag, label);

        Fn(flag);

        ResourceLoopBackEdge(needLoop, flag, label);
    }

    void ForceDMask(bool createJmpForDiscard = true);
    void ResetVMask(bool createJmpForDiscard = true);
    void setPredicateForDiscard(CVariable* pPredicate = nullptr);

    void PackSIMD8HFRet(CVariable* dst);
    unsigned int GetPrimitiveTypeSizeInRegisterInBits(const llvm::Type* Ty) const;
    unsigned int GetPrimitiveTypeSizeInRegister(const llvm::Type* Ty) const;
    unsigned int GetScalarTypeSizeInRegisterInBits(const llvm::Type* Ty) const;
    unsigned int GetScalarTypeSizeInRegister(const llvm::Type* Ty) const;

    /// return true if succeeds, false otherwise.
    bool setCurrentShader(llvm::Function* F);

    /// check if symbol table is needed
    bool isSymbolTableRequired(llvm::Function* F);

    // Arithmetic operations with constant folding
    // Src0 and Src1 are the input operands
    // DstPrototype is a prototype of the result of operation and may be used for cloning to a new variable
    // Return a variable with the result of the compute which may be one the the sources, an immediate or a variable
    CVariable* Mul(CVariable* Src0, CVariable* Src1, const CVariable* DstPrototype);
    CVariable* Add(CVariable* Src0, CVariable* Src1, const CVariable* DstPrototype);

    // temporary helper function
    CVariable* GetSymbol(llvm::Value* v) const;

    // Check if stateless indirect access is available
    // If yes, increase the counter, otherwise do nothing
    void CountStatelessIndirectAccess(llvm::Value* pointer, ResourceDescriptor resource);

    // An indirect access happens when GPU loads from an address that was not directly given as one of the kernel arguments.
    // It's usually a pointer loaded from memory pointed by a kernel argument.
    // Otherwise the access is direct.
    bool IsIndirectAccess(llvm::Value* value);

    CVariable* GetSrcVariable(const SSource& source, bool fromConstPool = false);
    void SetSourceModifiers(unsigned int sourceIndex, const SSource& source);

    SBasicBlock* getCurrentBlock() const {
        return m_currentBlock < 0 ? nullptr : &(m_pattern->m_blocks[m_currentBlock]);
    }

    CodeGenContext* m_pCtx = nullptr;
    CVariable* m_destination = nullptr;
    GenXFunctionGroupAnalysis* m_FGA = nullptr;
    CodeGenPatternMatch* m_pattern = nullptr;
    DeSSA* m_deSSA = nullptr;
    BlockCoalescing* m_blockCoalescing = nullptr;
    const SIMDMode m_SimdMode;
    const ShaderDispatchMode m_ShaderDispatchMode;
    CShaderProgram::KernelShaderMap& m_shaders;
    CShader* m_currShader;
    CEncoder* m_encoder;
    const llvm::DataLayout* m_DL = nullptr;
    CoalescingEngine* m_CE = nullptr;
    VariableReuseAnalysis* m_VRA = nullptr;
    ModuleMetaData* m_moduleMD = nullptr;
    bool m_canAbortOnSpill;
    PSSignature* const m_pSignature;

    // Debug info emitter
    IDebugEmitter* m_pDebugEmitter = nullptr;

    llvm::DominatorTree* m_pDT = nullptr;
    static char ID;
    inline void ContextSwitchPayloadSection(bool first = true);
    inline void ContextSwitchShaderBody(bool last = true);

private:
    uint m_labelForDMaskJmp;

    llvm::DenseMap<llvm::Instruction*, bool> instrMap;

    // caching the number of instances for the current inst.
    int16_t m_currInstNumInstances = -1;
    inline void resetCurrInstNumInstances() { m_currInstNumInstances = -1; }
    inline void setCurrInstNumInstances(int16_t aV) { m_currInstNumInstances = aV; }
    inline int16_t getCurrInstNumInstances() const { return m_currInstNumInstances; }

    // Current rounding Mode
    //   As RM of FPCvtInt and FP could be different, there
    //   are two fields to keep track of their current values.
    //
    // Default rounding modes:
    //   the rounding modes that are pre-defined by each API or
    //   shaders/kernels.
    //
    //   Not all combinations of FP's RM and FPCvtInt's RM can be
    //   used as default. Currently, the default RMs have the
    //   following restrictions:
    //      1. If FPCvtInt's RM = ROUND_TO_ZERO, FP's RM can be any;
    //      2. Otherwise, FPCvtInt's RM must be the same as FP's RM
    //
    //   The default remains unchanged throughout the entire
    //   shaders/kernels. Dynamically setting a different default
    //   rounding mode in the middle of a shader/kernel is not
    //   supported for now. And the default remains unchanged
    //   throughout the entire shaders/kernels.
    //
    //   However, each instruction's RM can be set dynamically,
    //   such as via intrinsics. If an instruction needs setting RMs,
    //   its RMs must follow the above restrictions. So far, an
    //   instruction either relies on FP's RM or FPCvtInt's RM, but
    //   not both, thus setting an instruction's RM dynamically
    //   cannot violate the above restrictions.
    //
    ERoundingMode m_roundingMode_FP;
    ERoundingMode m_roundingMode_FPCvtInt;

    uint m_currentBlock = (uint) -1;

    bool m_currFuncHasSubroutine = false;

    bool m_canGenericPointToPrivate = false;
    bool m_canGenericPointToLocal = false;

    // Used to relocate phi-mov to different BB. phiMovToBB is the map from "fromBB"
    // to "toBB" (meaning to move phi-mov from "fromBB" to "toBB"). See MovPhiSources.
    llvm::DenseMap<llvm::BasicBlock*, llvm::BasicBlock*>  phiMovToBB;
    bool canRelocatePhiMov(
        llvm::BasicBlock* otherBB, llvm::BasicBlock* phiMovBB, llvm::BasicBlock* phiBB);
    bool isCandidateIfStmt(
        llvm::BasicBlock* ifBB, llvm::BasicBlock*& otherBB, llvm::BasicBlock*& emptyBB);

    // Used to check for the constraint types with the actual llvmIR params for inlineASM instructions
    bool validateInlineAsmConstraints(llvm::CallInst* inst, llvm::SmallVector<llvm::StringRef, 8> & constraints);

    void emitGetMessagePhaseType(llvm::GenIntrinsicInst* inst, VISA_Type type, uint32_t width);
    void emitSetMessagePhaseType(llvm::GenIntrinsicInst* inst, VISA_Type type);
    void emitSetMessagePhaseType_legacy(llvm::GenIntrinsicInst* inst, VISA_Type type);

    void emitScan(llvm::Value* Src, IGC::WaveOps Op,
        bool isInclusiveScan, llvm::Value* Mask, bool isQuad);

    // Cached per lane offset variables. This is a per basic block data
    // structure. For each entry, the first item is the scalar type size in
    // bytes, the second item is the corresponding symbol.
    llvm::SmallVector<std::pair<unsigned, CVariable*>, 4> PerLaneOffsetVars;

    // Helper function to reduce common code for emitting indirect address
    // computation.
    CVariable* getOrCreatePerLaneOffsetVariable(unsigned TypeSizeInBytes)
    {
        for (auto Item : PerLaneOffsetVars)
        {
            if (Item.first == TypeSizeInBytes)
            {
                IGC_ASSERT_MESSAGE(Item.second, "null variable");
                return Item.second;
            }
        }
        CVariable* Var = m_currShader->GetPerLaneOffsetsReg(TypeSizeInBytes);
        PerLaneOffsetVars.push_back(std::make_pair(TypeSizeInBytes, Var));
        return Var;
    }

    // Emit code in slice starting from (reverse) iterator I. Return the
    // iterator to the next pattern to emit.
    SBasicBlock::reverse_iterator emitInSlice(SBasicBlock& block,
        SBasicBlock::reverse_iterator I);

    /**
        * Reuse SampleDescriptor for sampleID, so that we can pass it to
        * ResourceLoop to generate loop for non-uniform values.
        */
    inline SamplerDescriptor getSampleIDVariable(llvm::Value* sampleIdVar)
    {
        SamplerDescriptor sampler;
        sampler.m_sampler = GetSymbol(sampleIdVar);
        return sampler;
    }

    CVariable* UnpackOrBroadcastIfUniform(CVariable* pVar);

    int getGRFSize() const { return m_currShader->getGRFSize(); }

    void initDefaultRoundingMode();
    ERoundingMode GetRoundingMode_FPCvtInt(llvm::Instruction* pInst);
    ERoundingMode GetRoundingMode_FP(llvm::Instruction* inst);
    void SetRoundingMode_FP(ERoundingMode RM_FP);
    void SetRoundingMode_FPCvtInt(ERoundingMode RM_FPCvtInt);
    bool setRMExplicitly(llvm::Instruction* inst);
    void ResetRoundingMode(llvm::Instruction* inst);

    // returns true if the instruction does not care about the rounding mode settings
    bool ignoreRoundingMode(llvm::Instruction* inst) const;

    // A64 load/store with HWA that make sure the offset hi part is the same per LS call
    // addrUnifrom: if the load/store address is uniform, we can skip A64 WA
    void emitGatherA64(llvm::Value* loadInst, CVariable* dst, CVariable* offset, unsigned elemSize, unsigned numElems, bool addrUniform);
    void emitGather4A64(llvm::Value* loadInst, CVariable* dst, CVariable* offset, bool addrUniform);
    void emitScatterA64(CVariable* val, CVariable* offset, unsigned elementSize, unsigned numElems, bool addrUniform);
    void emitScatter4A64(CVariable* src, CVariable* offset, bool addrUniform);

    // Helper functions that create loop for above WA
    void A64LSLoopHead(CVariable* addr, CVariable*& curMask, CVariable*& lsPred, uint& label);
    void A64LSLoopTail(CVariable* curMask, CVariable* lsPred, uint label);

    // Helper function to check if A64 WA is required
    bool hasA64WAEnable() const;

    bool isHalfGRFReturn(CVariable* dst, SIMDMode simdMode);

    void emitFeedbackEnable();

    void emitAddrSpaceToGenericCast(llvm::AddrSpaceCastInst* addrSpaceCast, CVariable* srcV, unsigned tag);

    // used for loading/storing uniform value using scatter/gather messages.
    CVariable* prepareAddressForUniform(
        CVariable* AddrVar, uint32_t EltBytes, uint32_t NElts, uint32_t ExecSz, e_alignment Align);
    CVariable* prepareDataForUniform(CVariable* DataVar, uint32_t ExecSz, e_alignment Align);
    // sub-function of vector load/store
    void emitLSCVectorLoad_subDW(
        LSC_CACHE_OPTS cacheOpts, bool UseA32,
        ResourceDescriptor& Resource, CVariable* Dest, CVariable* Offset, int ImmOffset,
        uint32_t NumElts, uint32_t EltBytes);
    void emitLSCVectorLoad_uniform(
        LSC_CACHE_OPTS cacheOpts, bool UseA32,
        ResourceDescriptor& Resource, CVariable* Dest, CVariable* Offset, int ImmOffset,
        uint32_t NumElts, uint32_t EltBytes, uint64_t Align, uint32_t Addrspace);
    void emitLSCVectorStore_subDW(
        LSC_CACHE_OPTS cacheOpts, bool UseA32,
        ResourceDescriptor& Resource, CVariable* StoreVar, CVariable* Offset, int ImmOffset,
        uint32_t NumElts, uint32_t EltBytes, int Align);
    void emitLSCVectorStore_uniform(
        LSC_CACHE_OPTS cacheOpts, bool UseA32,
        ResourceDescriptor& Resource, CVariable* StoreVar, CVariable* Offset, int ImmOffset,
        uint32_t NumElts, uint32_t EltBytes, int Align);
    LSC_FENCE_OP getLSCMemoryFenceOp(bool IsGlobalMemFence, bool InvalidateL1) const;
    bool m_isDuplicate;
    CVariable* m_tmpDest = nullptr;
    std::set<CoalescingEngine::CCTuple*> lifetimeStartAdded;
};

} // namespace IGC