1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "Compiler/CISACodeGen/EstimateFunctionSize.h"
#include "Compiler/CodeGenContextWrapper.hpp"
#include "Compiler/MetaDataUtilsWrapper.h"
#include "Compiler/CodeGenPublic.h"
#include "Compiler/IGCPassSupport.h"
#include "common/igc_regkeys.hpp"
#include "common/LLVMWarningsPush.hpp"
#include "llvm/IR/Module.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/Support/raw_ostream.h"
#include "common/LLVMWarningsPop.hpp"
#include "Probe/Assertion.h"
#include <deque>
#include <iostream>
using namespace llvm;
using namespace IGC;
char EstimateFunctionSize::ID = 0;
IGC_INITIALIZE_PASS_BEGIN(EstimateFunctionSize, "EstimateFunctionSize", "EstimateFunctionSize", false, true)
IGC_INITIALIZE_PASS_END(EstimateFunctionSize, "EstimateFunctionSize", "EstimateFunctionSize", false, true)
llvm::ModulePass* IGC::createEstimateFunctionSizePass() {
initializeEstimateFunctionSizePass(*PassRegistry::getPassRegistry());
return new EstimateFunctionSize;
}
llvm::ModulePass*
IGC::createEstimateFunctionSizePass(EstimateFunctionSize::AnalysisLevel AL) {
initializeEstimateFunctionSizePass(*PassRegistry::getPassRegistry());
return new EstimateFunctionSize(AL);
}
EstimateFunctionSize::EstimateFunctionSize(AnalysisLevel AL)
: ModulePass(ID), M(nullptr), AL(AL), tmpHasImplicitArg(false), HasRecursion(false), EnableSubroutine(false) {}
EstimateFunctionSize::~EstimateFunctionSize() { clear(); }
void EstimateFunctionSize::getAnalysisUsage(AnalysisUsage& AU) const {
AU.setPreservesAll();
}
bool EstimateFunctionSize::runOnModule(Module& Mod) {
clear();
M = &Mod;
analyze();
checkSubroutine();
return false;
}
// Given a module, estimate the maximal function size with complete inlining.
/*
A ----> B ----> C ---> D ---> F
\ \ \
\ \ \---> E
\ \
\ \---> C ---> D --> F
\ \
\----> F \---> E
*/
// ExpandedSize(A) = size(A) + size(B) + 2 * size(C) + 2 * size(D)
// + 2 * size(E) + 3 * size(F)
//
// We compute the size as follows:
//
// (1) Initialize the data structure
//
// A --> {size(A), [B, F], [] }
// B --> {size(B), [C, C], [A] }
// C --> {size(C), [D, E], [B] }
// D --> {size(D), [F], [C] }
// E --> {size(E), [], [C] }
// F --> {size(F), [], [A, D] }
//
// where the first list consists of functions to be expanded and the second list
// consists of its caller functions.
//
// (2) Traverse in a reverse topological order and expand each node
namespace {
// Function Attribute Flag type
typedef enum
{
FA_BEST_EFFORT_INLINE= 0, /// \brief A flag to indicate whether it is to be inlined but it can be trimmed or assigned stackcall
FA_FORCE_INLINE = (0x1 << 0x0), /// \brief A flag to indicate whether it is to be inlined and it cannot be reverted
FA_TRIMMED = (0x1 << 0x1), /// \brief A flag to indicate whetehr it will be trimmed
FA_STACKCALL = (0x1 << 0x2), /// \brief A flag to indicate whether this node should be a stack call header
FA_KERNEL_ENTRY = (0x1 << 0x3), /// \brief A flag to indicate whether this node is a kernel entry. It will be affected by any schemes.
FA_ADDR_TAKEN = (0x1 << 0x4), /// \brief A flag to indicate whether this node is an address taken function.
} FA_FLAG_t;
/// Associate each function with a partially expanded size and remaining
/// unexpanded function list, etc.
struct FunctionNode {
FunctionNode(Function* F, std::size_t Size)
: F(F), InitialSize(Size), UnitSize(Size), ExpandedSize(Size), tmpSize(Size), CallingSubroutine(false),
FunctionAttr(0), InMultipleUnit(false), HasImplicitArg(false) {}
Function* F;
/// leaf node.
/// \brief Initial size before partition
uint32_t InitialSize;
// \brief the size of a compilation unit
uint32_t UnitSize;
/// \brief Expanded size when all functions in a unit below the node are expanded
uint32_t ExpandedSize;
/// \brief used to update unit size or expanded unit size in topological sort
uint32_t tmpSize;
uint8_t FunctionAttr;
/// \brief A flag to indicate whether this node has a subroutine call before
/// expanding.
bool CallingSubroutine;
/// \brief A flag to indicate whether it is located in multiple kernels or units
bool InMultipleUnit;
bool HasImplicitArg;
/// \brief All functions directly called in this function.
std::unordered_map<FunctionNode*, uint16_t> CalleeList;
/// \brief All functions that call this function F.
std::unordered_map<FunctionNode*, uint16_t> CallerList;
/// \brief A node becomes a leaf when all called functions are expanded.
bool isLeaf() const { return CalleeList.empty(); }
/// \brief Add a caller or callee.
// A caller may call the same callee multiple times, e.g. A->{B,B,B}: A->CalleeList(B,B,B), B->CallerList(A,A,A)
void addCallee(FunctionNode* G) {
IGC_ASSERT(G);
if (!CalleeList.count(G)) //First time added, Initialize it
CalleeList[G] = 0;
CalleeList[G] += 1;
CallingSubroutine = true;
}
void addCaller(FunctionNode* G) {
IGC_ASSERT(G);
if (!CallerList.count(G)) //First time added, Initialize it
CallerList[G] = 0;
CallerList[G] += 1;
}
void setKernelEntry()
{
FunctionAttr = FA_KERNEL_ENTRY;
return;
}
void setAddressTaken()
{
FunctionAttr = FA_ADDR_TAKEN;
}
void setForceInline()
{
IGC_ASSERT(FunctionAttr != FA_KERNEL_ENTRY
&& FunctionAttr != FA_ADDR_TAKEN); //Can't force inline a kernel entry or address taken function
FunctionAttr = FA_FORCE_INLINE;
return;
}
void setTrimmed()
{
IGC_ASSERT(FunctionAttr == FA_BEST_EFFORT_INLINE); //Only best effort inline function can be trimmed
FunctionAttr = FA_TRIMMED;
return;
}
void setStackCall()
{
//Can't assign stack call to force inlined function, kernel entry,
//address taken functions and functions that already assigned stack call
IGC_ASSERT(FunctionAttr == FA_BEST_EFFORT_INLINE || FunctionAttr == FA_TRIMMED);
FunctionAttr = FA_STACKCALL;
return;
}
bool isTrimmed() { return FunctionAttr == FA_TRIMMED; }
bool isEntryFunc() { return FunctionAttr == FA_KERNEL_ENTRY;}
bool isAddrTakenFunc() { return FunctionAttr == FA_ADDR_TAKEN; }
bool willBeInlined() { return FunctionAttr == FA_BEST_EFFORT_INLINE || FunctionAttr == FA_FORCE_INLINE; }
bool isStackCallAssigned() { return FA_STACKCALL == FunctionAttr; }
bool canAssignStackCall()
{
if (FA_BEST_EFFORT_INLINE == FunctionAttr ||
FA_TRIMMED == FunctionAttr) //The best effort inline or manually trimmed functions can be assigned stack call
return true;
return false;
}
bool isGoodtoTrim()
{
if (FunctionAttr != FA_BEST_EFFORT_INLINE) //Only best effort inline can be trimmed
return false;
if (InitialSize < IGC_GET_FLAG_VALUE(ControlInlineTinySize)) //Too small to trim
return false;
// to allow trimming functions called from other kernels, set the regkey to false
if (IGC_IS_FLAG_ENABLED(ForceInlineExternalFunctions) && InMultipleUnit)
return false;
return true;
}
void printFuncAttr()
{
std::cout << "Function attribute of " << F->getName().str() << ": ";
switch (FunctionAttr) {
case FA_BEST_EFFORT_INLINE:
std::cout << "Best effor innline" << std::endl;
break;
case FA_FORCE_INLINE:
std::cout << "Force innline" << std::endl;
break;
case FA_TRIMMED:
std::cout << "Trimmed" << std::endl;
break;
case FA_STACKCALL:
std::cout << "Stack call" << std::endl;
break;
case FA_KERNEL_ENTRY:
std::cout << "Kernel entry" << std::endl;
break;
case FA_ADDR_TAKEN:
std::cout << "Address taken" << std::endl;
break;
default:
std::cout << "Wrong value" << std::endl;
}
}
//Top down bfs to find the size of a compilation unit
uint32_t updateUnitSize() {
std::unordered_set<FunctionNode*> visit;
std::deque<FunctionNode*> TopDownQueue;
TopDownQueue.push_back(this);
visit.insert(this);
uint32_t total = 0;
if ((IGC_GET_FLAG_VALUE(PrintControlUnitSize) & 0x1) != 0) {
std::cout << "-------------------------------------------------------------------------------------------------------------------------" << std::endl;
std::cout << "Functions in the unit " << F->getName().str() << std::endl;
}
while (!TopDownQueue.empty())
{
FunctionNode* Node = TopDownQueue.front();
if ((IGC_GET_FLAG_VALUE(PrintControlUnitSize) & 0x1) != 0) {
std::cout << Node->F->getName().str() << ": " << Node->InitialSize << std::endl;
}
TopDownQueue.pop_front();
total += Node->InitialSize;
for (auto Callee : Node->CalleeList)
{
FunctionNode* calleeNode = Callee.first;
if (visit.count(calleeNode) || calleeNode->isStackCallAssigned()) //Already processed or head of stack call
continue;
visit.insert(calleeNode);
TopDownQueue.push_back(calleeNode);
}
}
return UnitSize = total;
}
/// \brief A single step to expand F
void expand(FunctionNode* callee)
{
//When the collaped callee has implicit arguments
//the node will have implicit arguments too
//In this scenario, when ControlInlineImplicitArgs is set
//the node should be inlined unconditioinally so exempt from a stackcall and trimming target
if (HasImplicitArg == false && callee->HasImplicitArg == true)
{
HasImplicitArg = true;
if ((IGC_GET_FLAG_VALUE(PrintControlKernelTotalSize) & 0x40) != 0)
{
std::cout << "Func " << this->F->getName().str() << " expands to has implicit arg due to " << callee->F->getName().str() << std::endl;
}
if (FunctionAttr != FA_KERNEL_ENTRY && FunctionAttr != FA_ADDR_TAKEN) //Can't inline kernel entry or address taken functions
{
if (isStackCallAssigned()) //When stackcall is assigned we need to determine based on the flag
{
if (IGC_IS_FLAG_ENABLED(ForceInlineStackCallWithImplArg))
setForceInline();
}
else if (IGC_IS_FLAG_ENABLED(ControlInlineImplicitArgs)) //Force inline ordinary functions with implicit arguments
setForceInline();
}
}
uint32_t sizeIncrease = callee->ExpandedSize * CalleeList[callee];
tmpSize += sizeIncrease;
}
#if defined(_DEBUG)
void print(raw_ostream& os);
void dump() { print(llvm::errs()); }
#endif
};
} // namespace
#if defined(_DEBUG)
void FunctionNode::print(raw_ostream& os) {
os << "Function: " << F->getName() << ", " << InitialSize << "\n";
for (auto G : CalleeList)
os << "--->>>" << G.first->F->getName() << "\n";
for (auto G : CallerList)
os << "<<<---" << G.first->F->getName() << "\n";
}
#endif
void EstimateFunctionSize::clear() {
M = nullptr;
for (auto I = ECG.begin(), E = ECG.end(); I != E; ++I) {
auto Node = (FunctionNode*)I->second;
delete Node;
}
ECG.clear();
kernelEntries.clear();
stackCallFuncs.clear();
addressTakenFuncs.clear();
}
bool EstimateFunctionSize::matchImplicitArg( CallInst& CI )
{
bool matched = false;
StringRef funcName = CI.getCalledFunction()->getName();
if( funcName.equals( GET_LOCAL_ID_X ) ||
funcName.equals( GET_LOCAL_ID_Y ) ||
funcName.equals( GET_LOCAL_ID_Z ) )
{
matched = true;
}
else if( funcName.equals( GET_GROUP_ID ) )
{
matched = true;
}
else if( funcName.equals( GET_LOCAL_THREAD_ID ) )
{
matched = true;
}
else if( funcName.equals( GET_GLOBAL_OFFSET ) )
{
matched = true;
}
else if( funcName.equals( GET_GLOBAL_SIZE ) )
{
matched = true;
}
else if( funcName.equals( GET_LOCAL_SIZE ) )
{
matched = true;
}
else if( funcName.equals( GET_WORK_DIM ) )
{
matched = true;
}
else if( funcName.equals( GET_NUM_GROUPS ) )
{
matched = true;
}
else if( funcName.equals( GET_ENQUEUED_LOCAL_SIZE ) )
{
matched = true;
}
else if( funcName.equals( GET_STAGE_IN_GRID_ORIGIN ) )
{
matched = true;
}
else if( funcName.equals( GET_STAGE_IN_GRID_SIZE ) )
{
matched = true;
}
else if( funcName.equals( GET_SYNC_BUFFER ) )
{
matched = true;
}
if( matched && ( IGC_GET_FLAG_VALUE( PrintControlKernelTotalSize ) & 0x40 ) != 0 )
{
std::cout << "Matched implicit arg " << funcName.str() << std::endl;
}
return matched;
}
// visit Call inst to determine if implicit args are used by the caller
void EstimateFunctionSize::visitCallInst( CallInst& CI )
{
if( !CI.getCalledFunction() )
{
return;
}
// Check for implicit arg function calls
bool matched = matchImplicitArg( CI );
tmpHasImplicitArg = matched;
}
void EstimateFunctionSize::analyze() {
auto getSize = [](llvm::Function& F) -> std::size_t {
std::size_t Size = 0;
for (auto& BB : F.getBasicBlockList())
Size += BB.size();
return Size;
};
auto MdWrapper = getAnalysisIfAvailable<MetaDataUtilsWrapper>();
auto pMdUtils = MdWrapper->getMetaDataUtils();
// Initialize the data structure. find all noinline and stackcall properties
for (auto& F : M->getFunctionList()) {
if (F.empty())
continue;
FunctionNode* node = new FunctionNode(&F, getSize(F));
ECG[&F] = node;
if (isEntryFunc(pMdUtils, node->F)) ///Entry function
{
node->setKernelEntry();
kernelEntries.push_back(node);
}
else if (F.hasFnAttribute("igc-force-stackcall"))
node->setStackCall();
else if (F.hasFnAttribute(llvm::Attribute::NoInline))
node->setTrimmed();
else if (F.hasFnAttribute(llvm::Attribute::AlwaysInline))
node->setForceInline();
//Otherwise, the function attribute to be assigned is best effort
}
// Visit all call instructions and populate CG.
for (auto& F : M->getFunctionList()) {
if (F.empty())
continue;
FunctionNode* Node = get<FunctionNode>(&F);
for (auto U : F.users()) {
// Other users (like bitcast/store) are ignored.
if (auto* CI = dyn_cast<CallInst>(U)) {
// G calls F, or G --> F
Function* G = CI->getParent()->getParent();
FunctionNode* GN = get<FunctionNode>(G);
GN->addCallee(Node);
Node->addCaller(GN);
}
}
}
//Find all address taken functions
for (auto I = ECG.begin(), E = ECG.end(); I != E; ++I)
{
FunctionNode* Node = (FunctionNode*)I->second;
//Address taken functions neither have callers nor is an entry function
if (Node->CallerList.empty() && !Node->isEntryFunc())
Node->setAddressTaken();
}
bool needImplAnalysis = IGC_IS_FLAG_ENABLED(ControlInlineImplicitArgs) || IGC_IS_FLAG_ENABLED(ForceInlineStackCallWithImplArg);
// check functions and mark those that use implicit args.
if (needImplAnalysis)
{
for (auto I = ECG.begin(), E = ECG.end(); I != E; ++I)
{
FunctionNode* Node = (FunctionNode*)I->second;
IGC_ASSERT(Node);
tmpHasImplicitArg = false;
visit(Node->F);
if (!tmpHasImplicitArg) //The function doesn't have an implicit argument: skip
continue;
Node->HasImplicitArg = true;
if ((IGC_GET_FLAG_VALUE(PrintControlKernelTotalSize) & 0x40) != 0)
{
static int cnt = 0;
const char* Name;
if (Node->isLeaf())
Name = "Leaf";
else
Name = "nonLeaf";
std::cout << Name << " Func " << ++cnt << " " << Node->F->getName().str() << " calls implicit args so HasImplicitArg" << std::endl;
}
if (Node->isEntryFunc() || Node->isAddrTakenFunc()) //Can't inline kernel entry or address taken functions
continue;
if (Node->isStackCallAssigned()) //When stackcall is assigned we need to determine based on the flag
{
if(IGC_IS_FLAG_ENABLED(ForceInlineStackCallWithImplArg))
Node->setForceInline();
continue;
}
//For other cases
if(IGC_IS_FLAG_ENABLED(ControlInlineImplicitArgs)) //Force inline ordinary functions with implicit arguments
Node->setForceInline();
}
}
// Update expanded and static unit size and propagate implicit argument information which might cancel some stackcalls
for (void *entry : kernelEntries)
{
FunctionNode* kernelEntry = (FunctionNode*)entry;
updateExpandedUnitSize(kernelEntry->F, true);
kernelEntry->updateUnitSize();
if ((IGC_GET_FLAG_VALUE(PrintFunctionSizeAnalysis) & 0x1) != 0) {
std::cout << "The size of the unit head (kernel entry) " << kernelEntry->F->getName().str() << ": " << kernelEntry->UnitSize <<std::endl;
}
}
// Find all survived stackcalls and address taken functions and update unit sizes
for (auto I = ECG.begin(), E = ECG.end(); I != E; ++I)
{
FunctionNode* Node = (FunctionNode*)I->second;
if (Node->isStackCallAssigned())
{
stackCallFuncs.push_back(Node);
Node->updateUnitSize();
if ((IGC_GET_FLAG_VALUE(PrintFunctionSizeAnalysis) & 0x1) != 0) {
std::cout << "The size of the unit head (stack call)" << Node->F->getName().str() << ": " << Node->UnitSize << std::endl;
}
}
else if (Node->isAddrTakenFunc())
{
addressTakenFuncs.push_back(Node);
Node->updateUnitSize();
if ((IGC_GET_FLAG_VALUE(PrintFunctionSizeAnalysis) & 0x1) != 0) {
std::cout << "The size of the unit head (address taken) " << Node->F->getName().str() << ": " << Node->UnitSize << std::endl;
}
}
}
if ((IGC_GET_FLAG_VALUE(PrintFunctionSizeAnalysis) & 0x1) != 0) {
std::cout << "Function count= " << ECG.size() << std::endl;
std::cout << "Kernel count= " << kernelEntries.size() << std::endl;
std::cout << "Manual stack call count= " << stackCallFuncs.size() << std::endl;
std::cout << "Address taken function call count= " << addressTakenFuncs.size() << std::endl;
}
return;
}
/// \brief Return the estimated maximal function size after complete inlining.
std::size_t EstimateFunctionSize::getMaxExpandedSize() const {
uint32_t MaxSize = 0;
for (auto I : kernelEntries) {
FunctionNode* Node = (FunctionNode*)I;
MaxSize = std::max(MaxSize, Node->ExpandedSize);
}
return MaxSize;
}
void EstimateFunctionSize::checkSubroutine() {
auto CGW = getAnalysisIfAvailable<CodeGenContextWrapper>();
if (!CGW) return;
EnableSubroutine = true;
CodeGenContext* pContext = CGW->getCodeGenContext();
if (pContext->type != ShaderType::OPENCL_SHADER &&
pContext->type != ShaderType::COMPUTE_SHADER)
EnableSubroutine = false;
if (EnableSubroutine)
{
uint32_t subroutineThreshold = IGC_GET_FLAG_VALUE(SubroutineThreshold);
uint32_t expandedMaxSize = getMaxExpandedSize();
if (expandedMaxSize <= subroutineThreshold && !HasRecursion)
{
EnableSubroutine = false;
}
else if (AL == AL_Module &&
expandedMaxSize > subroutineThreshold &&
IGC_IS_FLAG_DISABLED(DisableAddingAlwaysAttribute))
{
uint32_t unitThreshold = IGC_GET_FLAG_VALUE(UnitSizeThreshold);
uint32_t maxUnitSize = getMaxUnitSize();
if ((IGC_GET_FLAG_VALUE(PrintFunctionSizeAnalysis) & 0x1) != 0) {
std::cout << "AL: " << AL << std::endl;
std::cout << "AL_Module: " << AL_Module << std::endl;
std::cout << "PartitionUnit: " << IGC_GET_FLAG_VALUE(PartitionUnit) << std::endl;
std::cout << "Max unit size: " << maxUnitSize << std::endl;
std::cout << "Threshold: " << unitThreshold << std::endl;
}
// If the max unit size exceeds threshold, do partitioning
if ((IGC_GET_FLAG_VALUE(PartitionUnit) & 0x3) != 0 &&
maxUnitSize > unitThreshold)
{
if ((IGC_GET_FLAG_VALUE(PrintPartitionUnit) & 0x1) != 0)
{
std::cout << "Max unit size " << maxUnitSize << " is larger than the threshold (to partition) " << unitThreshold << std::endl;
}
partitionKernel();
}
// If max threshold is exceeded, do analysis on kernel or unit trimming
if (IGC_IS_FLAG_ENABLED(ControlKernelTotalSize))
{
if ((IGC_GET_FLAG_VALUE(PrintControlKernelTotalSize) & 0x1) != 0)
{
std::cout << "Max expanded unit size " << expandedMaxSize << " is larger than the threshold (to trim) " << subroutineThreshold << std::endl;
}
reduceKernelSize();
}
else if (IGC_IS_FLAG_ENABLED(ControlUnitSize))
{
reduceCompilationUnitSize();
}
}
}
IGC_ASSERT(!HasRecursion || EnableSubroutine);
return;
}
std::size_t EstimateFunctionSize::getExpandedSize(const Function* F) const {
//IGC_ASSERT(IGC_IS_FLAG_DISABLED(ControlKernelTotalSize));
auto I = ECG.find((Function*)F);
if (I != ECG.end()) {
FunctionNode* Node = (FunctionNode*)I->second;
IGC_ASSERT(F == Node->F);
return Node->ExpandedSize;
}
return std::numeric_limits<std::size_t>::max();
}
bool EstimateFunctionSize::onlyCalledOnce(const Function* F) {
//IGC_ASSERT(IGC_IS_FLAG_DISABLED(ControlKernelTotalSize));
auto I = ECG.find((Function*)F);
if (I != ECG.end()) {
FunctionNode* Node = (FunctionNode*)I->second;
IGC_ASSERT(F == Node->F);
// one call-site and not a recursion
if (Node->CallerList.size() == 1 &&
Node->CallerList.begin()->second == 1 &&
Node->CallerList.begin()->first != Node) {
return true;
}
// OpenCL specific, called once by each kernel
auto MdWrapper = getAnalysisIfAvailable<MetaDataUtilsWrapper>();
if (MdWrapper) {
auto pMdUtils = MdWrapper->getMetaDataUtils();
for (auto node : Node->CallerList) {
FunctionNode* Caller = node.first;
uint32_t cnt = node.second;
if (cnt > 1) {
return false;
}
if (!isEntryFunc(pMdUtils, Caller->F)) {
return false;
}
}
return true;
}
}
return false;
}
void EstimateFunctionSize::reduceKernelSize() {
uint32_t threshold = IGC_GET_FLAG_VALUE(KernelTotalSizeThreshold);
llvm::SmallVector<void*, 64> unitHeads;
for (auto node : kernelEntries)
unitHeads.push_back((FunctionNode*)node);
for (auto node : addressTakenFuncs)
unitHeads.push_back((FunctionNode*)node);
trimCompilationUnit(unitHeads, threshold, true);
return;
}
bool EstimateFunctionSize::isTrimmedFunction( llvm::Function* F) {
return get<FunctionNode>(F)->isTrimmed();
}
//Initialize data structures for topological traversal: FunctionsInKernel and BottomUpQueue.
//FunctionsInKernel is a map data structure where the key is FunctionNode and value is the number of edges to callee nodes.
//FunctionsInKernel is primarily used for topological traversal and also used to check whether a function is in the currently processed kernel/unit.
//BottomUpQueue will contain the leaf nodes of a kernel/unit and they are starting points of topological traversal.
void EstimateFunctionSize::initializeTopologicalVisit(Function* root, std::unordered_map<void*, uint32_t>& FunctionsInKernel, std::deque<void*>& BottomUpQueue, bool ignoreStackCallBoundary)
{
std::deque<FunctionNode*> Queue;
FunctionNode* unitHead = get<FunctionNode>(root);
Queue.push_back(unitHead);
FunctionsInKernel[unitHead] = unitHead->CalleeList.size();
// top down traversal to visit functions which will be processed reversely
while (!Queue.empty()) {
FunctionNode* Node = Queue.front();Queue.pop_front();
Node->tmpSize = Node->InitialSize;
for (auto Callee : Node->CalleeList) {
FunctionNode* CalleeNode = Callee.first;
if (FunctionsInKernel.count(CalleeNode))
continue;
if (!ignoreStackCallBoundary && CalleeNode->isStackCallAssigned()) //This callee is a compilation unit head, so not in the current compilation unit
{
FunctionsInKernel[Node] -= 1; //Ignore different compilation unit
continue;
}
FunctionsInKernel[CalleeNode] = CalleeNode->CalleeList.size(); //Update the number of edges to callees
Queue.push_back(CalleeNode);
}
if (FunctionsInKernel[Node] == 0) // This means no children or all children are compilation unit heads: leaf node
BottomUpQueue.push_back(Node);
}
return;
}
//Find the total size of a unit when to-be-inlined functions are expanded
//Topologically traverse from leaf nodes and expand nodes to callers except noinline and stackcall functions
uint32_t EstimateFunctionSize::updateExpandedUnitSize(Function* F, bool ignoreStackCallBoundary)
{
FunctionNode* root = get<FunctionNode>(F);
std::deque<void*> BottomUpQueue;
std::unordered_map<void*, uint32_t> FunctionsInUnit;
initializeTopologicalVisit(root->F, FunctionsInUnit, BottomUpQueue, ignoreStackCallBoundary);
uint32_t unitTotalSize = 0;
while (!BottomUpQueue.empty()) //Topologically visit nodes and collape for each compilation unit
{
FunctionNode* node = (FunctionNode*)BottomUpQueue.front();BottomUpQueue.pop_front();
IGC_ASSERT(FunctionsInUnit[node] == 0);
FunctionsInUnit.erase(node);
node->ExpandedSize = node->tmpSize; //Update the size of an expanded chunk
if (!node->willBeInlined())
{
//std::cout << "Not be inlined Attr: " << (int)node->FunctionAttr << std::endl;
unitTotalSize += node->ExpandedSize;
}
for (auto c : node->CallerList)
{
FunctionNode* caller = c.first;
if (!FunctionsInUnit.count(caller)) //Caller is in another compilation unit
{
node->InMultipleUnit = true;
continue;
}
FunctionsInUnit[caller] -= 1;
if (FunctionsInUnit[caller] == 0)
BottomUpQueue.push_back(caller);
if (node->willBeInlined())
caller->expand(node); //collapse and update tmpSize of the caller
}
}
//Has recursion
if (!FunctionsInUnit.empty())
HasRecursion = true;
return root->ExpandedSize = unitTotalSize;
}
//Partition kernels using bottom-up heristic.
uint32_t EstimateFunctionSize::bottomUpHeuristic(Function* F, uint32_t& stackCall_cnt) {
uint32_t threshold = IGC_GET_FLAG_VALUE(UnitSizeThreshold);
std::deque<void*> BottomUpQueue;
std::unordered_map<void*, uint32_t> FunctionsInUnit; //Set of functions in the boundary of a kernel. Record unprocessed callee counter for topological sort.
initializeTopologicalVisit(F, FunctionsInUnit, BottomUpQueue, false);
FunctionNode* unitHeader = get<FunctionNode>(F);
uint32_t max_unit_size = 0;
while (!BottomUpQueue.empty()) {
FunctionNode* Node = (FunctionNode*)BottomUpQueue.front();
BottomUpQueue.pop_front();
IGC_ASSERT(FunctionsInUnit[Node] == 0);
FunctionsInUnit.erase(Node);
Node->UnitSize = Node->tmpSize; //Update the size
if (Node == unitHeader) //The last node to process is the unit header
{
max_unit_size = std::max(max_unit_size, Node->updateUnitSize());
continue;
}
bool beStackCall = Node->canAssignStackCall() &&
Node->UnitSize > threshold && Node->updateUnitSize() > threshold;
if (beStackCall)
{
if ((IGC_GET_FLAG_VALUE(PrintPartitionUnit) & 0x2) != 0) {
std::cout << "Stack call marked " << Node->F->getName().str() << " Unit size: " << Node->UnitSize << " > Threshold " << threshold << std::endl;
}
stackCallFuncs.push_back(Node); //We have a new unit head
Node->setStackCall();
max_unit_size = std::max(max_unit_size, Node->UnitSize);
stackCall_cnt += 1;
}
for (auto c : Node->CallerList)
{
FunctionNode* caller = c.first;
if (!FunctionsInUnit.count(caller)) //The caller is in another kernel, skip
continue;
FunctionsInUnit[caller] -= 1;
if (FunctionsInUnit[caller] == 0) //All callees of the caller are processed: become leaf.
BottomUpQueue.push_back(caller);
if (!beStackCall)
caller->tmpSize += Node->UnitSize;
}
}
return max_unit_size;
}
//For all function F : F->Us = size(F), F->U# = 0 // unit size and unit number
//For each kernel K
// kernelSize = K->UnitSize // O(C)
// IF(kernelSize > T)
// workList = ReverseTopoOrderList(K) // Bottom up traverse
// WHILE(worklist not empty) // O(N)
// remove F from worklist
// //F->Us might be overestimated due to overcounting issue -> recompute F->Us to find the actual size
// IF(F->Us > T || recompute(F->Us) > T) { // recompute(F->Us): O(N) only when F->Us is larger than T
// mark F as stackcall;
// Add F to end of headList;
// continue;
// }
// Foreach F->callers P{ P->Us += F->Us; }
// ENDWHILE
// ENDIF
//ENDFOR
void EstimateFunctionSize::partitionKernel() {
uint32_t threshold = IGC_GET_FLAG_VALUE(UnitSizeThreshold);
uint32_t max_unit_size = 0;
uint32_t stackCall_cnt = 0;
// Iterate over kernel
llvm::SmallVector<void*, 64> unitHeads;
for (auto node : kernelEntries)
unitHeads.push_back((FunctionNode*)node);
for (auto node : stackCallFuncs)
unitHeads.push_back((FunctionNode*)node);
for (auto node : addressTakenFuncs)
unitHeads.push_back((FunctionNode*)node);
for (auto node : unitHeads) {
FunctionNode* UnitHead = (FunctionNode*)node;
if (UnitHead->UnitSize <= threshold) //Unit size is within threshold, skip
{
max_unit_size = std::max(max_unit_size, UnitHead->UnitSize);
continue;
}
if ((IGC_GET_FLAG_VALUE(PrintPartitionUnit) & 0x1) != 0) {
std::cout << "------------------------------------------------------------------------------------------" << std::endl;
std::cout << "Partition Kernel " << UnitHead->F->getName().str() << " Original Unit Size: " << UnitHead->UnitSize << std::endl;
}
max_unit_size = std::max(max_unit_size, bottomUpHeuristic(UnitHead->F, stackCall_cnt));
}
if ((IGC_GET_FLAG_VALUE(PrintPartitionUnit) & 0x1) != 0) {
std::cout << "------------------------------------------------------------------------------------------" << std::endl;
float threshold_err = (float)(max_unit_size - threshold) / threshold * 100;
std::cout << "Max unit size: " << max_unit_size << " Threshold Error Rate: " << threshold_err << "%" << std::endl;
std::cout << "Stack call cnt: " << stackCall_cnt << std::endl;
}
return;
}
//Work same as reduceKernel except for stackcall functions
void EstimateFunctionSize::reduceCompilationUnitSize() {
uint32_t threshold = IGC_GET_FLAG_VALUE(ExpandedUnitSizeThreshold);
llvm::SmallVector<void*, 64> unitHeads;
for (auto node : kernelEntries)
unitHeads.push_back((FunctionNode*)node);
for (auto node : stackCallFuncs)
unitHeads.push_back((FunctionNode*)node);
for (auto node : addressTakenFuncs)
unitHeads.push_back((FunctionNode*)node);
trimCompilationUnit(unitHeads, threshold,false);
return;
}
//Top down traverse to find and retrieve functions that meet trimming criteria
void EstimateFunctionSize::getFunctionsToTrim(llvm::Function* root, llvm::SmallVector<void*, 64>& functions_to_trim, bool ignoreStackCallBoundary, uint32_t &func_cnt)
{
uint32_t PrintTrimUnit = IGC_GET_FLAG_VALUE(PrintControlKernelTotalSize) | IGC_GET_FLAG_VALUE(PrintControlUnitSize);
FunctionNode* unitHead = get<FunctionNode>(root);
std::unordered_set<FunctionNode*> visit;
std::deque<FunctionNode*> TopDownQueue;
TopDownQueue.push_back(unitHead);
visit.insert(unitHead);
//Find all functions that meet trimming criteria
while (!TopDownQueue.empty())
{
FunctionNode* Node = TopDownQueue.front();TopDownQueue.pop_front();
func_cnt += 1;
if ((PrintTrimUnit & 0x4) != 0)
Node->printFuncAttr();
if (Node->isGoodtoTrim())
{
functions_to_trim.push_back(Node);
}
for (auto Callee : Node->CalleeList)
{
FunctionNode* calleeNode = Callee.first;
if (visit.count(calleeNode) || (!ignoreStackCallBoundary && calleeNode->isStackCallAssigned()))
continue;
visit.insert(calleeNode);
TopDownQueue.push_back(calleeNode);
}
}
return;
}
//Trim kernel/unit by canceling out inline candidate functions one by one until the total size is within threshold
/*
For all F: F->ToBeInlined = True
For each kernel K
kernelTotalSize = updateExpandedUnitSize(K) // O(C) >= O(N*logN)
IF (FullInlinedKernelSize > T)
workList= non-tiny-functions sorted by size from large to small // O(N*logN)
WHILE (worklist not empty) // O(N)
remove F from worklist
F->ToBeInlined = False
kernelTotalSize = updateExpandedUnitSize(K)
IF (kernelTotalSize <= T) break
ENDWHILE
Inline functions with ToBeInlined = True
Inline functions with single caller // done
*/
void EstimateFunctionSize::trimCompilationUnit(llvm::SmallVector<void*, 64> &unitHeads, uint32_t threshold, bool ignoreStackCallBoundary)
{
uint32_t PrintTrimUnit = IGC_GET_FLAG_VALUE(PrintControlKernelTotalSize) | IGC_GET_FLAG_VALUE(PrintControlUnitSize);
llvm::SmallVector<FunctionNode*, 64> unitsToTrim;
//Extract kernels / units that are larger than threshold
for (auto node : unitHeads)
{
FunctionNode* unitEntry = (FunctionNode*)node;
//Partitioning can add more stackcalls. So need to recompute the expanded unit size.
updateExpandedUnitSize(unitEntry->F, ignoreStackCallBoundary);
if (unitEntry->ExpandedSize > threshold)
{
if ((PrintTrimUnit & 0x1) != 0)
{
std::cout << "Kernel / Unit " << unitEntry->F->getName().str() << " expSize= " << unitEntry->ExpandedSize << " > " << threshold << std::endl;
}
unitsToTrim.push_back(unitEntry);
}
else
{
if ((PrintTrimUnit & 0x1) != 0)
{
std::cout << "Kernel / Unit" << unitEntry->F->getName().str() << " expSize= " << unitEntry->ExpandedSize << " <= " << threshold << std::endl;
}
}
}
if (unitsToTrim.empty())
{
if ((PrintTrimUnit & 0x1) != 0)
{
std::cout << "Kernels / Units become no longer big enough to be trimmed (affected by partitioning)" << std::endl;
}
return;
}
std::sort(unitsToTrim.begin(), unitsToTrim.end(),
[&](const FunctionNode* LHS, const FunctionNode* RHS) { return LHS->ExpandedSize > RHS->ExpandedSize;}); //Sort by expanded size
// Iterate over units
for (auto unit : unitsToTrim) {
size_t expandedUnitSize = updateExpandedUnitSize(unit->F, ignoreStackCallBoundary); //A kernel size can be reduced by a function that is trimmed at previous kernels, so recompute it.
if ((PrintTrimUnit & 0x1) != 0) {
std::cout << "Trimming kernel / unit " << unit->F->getName().str() << " expanded size= " << expandedUnitSize << std::endl;
}
if (expandedUnitSize <= threshold) {
if ((PrintTrimUnit & 0x2) != 0)
{
std::cout << "Kernel / unit " << unit->F->getName().str() << ": The expanded unit size(" << expandedUnitSize << ") is smaller than threshold("<< threshold <<")" << std::endl;
}
continue;
}
if ((PrintTrimUnit & 0x2) != 0) {
std::cout << "Kernel size is bigger than threshold " << std::endl;
if ((IGC_GET_FLAG_VALUE(PrintControlKernelTotalSize) & 0x10) != 0)
{
continue; // dump collected kernels only
}
}
SmallVector<void*, 64> functions_to_trim;
uint32_t func_cnt = 0;
getFunctionsToTrim(unit->F,functions_to_trim, ignoreStackCallBoundary, func_cnt);
if (functions_to_trim.empty())
{
if ((PrintTrimUnit & 0x4) != 0)
{
std::cout << "Kernel / Unit " << unit->F->getName().str() << " size " << unit->ExpandedSize << " has no sorted list " << std::endl;
}
continue; // all functions are tiny.
}
//Sort all to-be trimmed function according to the its actual size
std::sort(functions_to_trim.begin(), functions_to_trim.end(),
[&](const void* LHS, const void* RHS) { return ((FunctionNode*)LHS)->InitialSize < ((FunctionNode*)RHS)->InitialSize;}); //Sort by the original function size in an ascending order;
if ((PrintTrimUnit & 0x1) != 0)
{
std::cout << "Kernel / Unit " << unit->F->getName().str() << " has " << functions_to_trim.size() << " functions for trimming out of " << func_cnt <<std::endl;
}
//Repeat trimming functions until the unit size is smaller than threshold
while (!functions_to_trim.empty() && unit->ExpandedSize > threshold)
{
FunctionNode* functionToTrim = (FunctionNode*)functions_to_trim.back();
functions_to_trim.pop_back();
if ((PrintTrimUnit & 0x2) != 0) {
std::cout << functionToTrim->F->getName().str() << ": Now trimmed Total Kernel / Unit Size: " << unit->ExpandedSize << std::endl;
}
//Trim the function
functionToTrim->setTrimmed();
if ((PrintTrimUnit & 0x4) != 0) {
std::cout << "FunctionToRemove " << functionToTrim->F->getName().str() << " initSize " << functionToTrim->InitialSize << " #callers " << functionToTrim->CallerList.size() << std::endl;
}
//Update the unit size
updateExpandedUnitSize(unit->F,ignoreStackCallBoundary);
if ((PrintTrimUnit & 0x4) != 0) {
std::cout << "Kernel / Unit size is " << unit->ExpandedSize << " after trimming " << functionToTrim->F->getName().str() << std::endl;
}
}
if ((PrintTrimUnit & 0x1) != 0)
{
std::cout << "Kernel / Unit " << unit->F->getName().str() << " final size " << unit->ExpandedSize << std::endl;
}
}
}
bool EstimateFunctionSize::isStackCallAssigned(llvm::Function* F) {
FunctionNode* Node = get<FunctionNode>(F);
return Node->isStackCallAssigned();
}
uint32_t EstimateFunctionSize::getMaxUnitSize() {
uint32_t max_val = 0;
for (auto kernelEntry : kernelEntries) //For all kernel, update unitsize
{
FunctionNode* head = (FunctionNode*)kernelEntry;
max_val = std::max(max_val, head->UnitSize);
}
for (auto stackCallFunc : stackCallFuncs) //For all address taken functions, update unitsize
{
FunctionNode* head = (FunctionNode*)stackCallFunc;
max_val = std::max(max_val, head->UnitSize);
}
for (auto addrTakenFunc : addressTakenFuncs) //For all address taken functions, update unitsize
{
FunctionNode* head = (FunctionNode*)addrTakenFunc;
max_val = std::max(max_val, head->UnitSize);
}
return max_val;
}
|