File: LoopDCE.cpp

package info (click to toggle)
intel-graphics-compiler 1.0.12504.6-1%2Bdeb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 83,912 kB
  • sloc: cpp: 910,147; lisp: 202,655; ansic: 15,197; python: 4,025; yacc: 2,241; lex: 1,570; pascal: 244; sh: 104; makefile: 25
file content (566 lines) | stat: -rw-r--r-- 19,404 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
/*========================== begin_copyright_notice ============================

Copyright (C) 2017-2021 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

#define DEBUG_TYPE "slm-blocking"
#include "Compiler/CISACodeGen/LoopDCE.h"
#include "Compiler/CISACodeGen/ShaderCodeGen.hpp"
#include "Compiler/CodeGenContextWrapper.hpp"
#include "Compiler/MetaDataUtilsWrapper.h"
#include "Compiler/IGCPassSupport.h"
#include "common/LLVMWarningsPush.hpp"
#include <llvm/ADT/DepthFirstIterator.h>
#include <llvm/Analysis/InstructionSimplify.h>
#include <llvm/Analysis/LoopInfo.h>
#include <llvm/Analysis/PostDominators.h>
#include <llvm/Analysis/ValueTracking.h>
#include <llvm/IR/Dominators.h>
#include <llvm/IR/GetElementPtrTypeIterator.h>
#include <llvm/IR/IRBuilder.h>
#include <llvm/Pass.h>
#include <llvm/Support/raw_ostream.h>
#include "common/LLVMWarningsPop.hpp"
#include "GenISAIntrinsics/GenIntrinsics.h"
#include "Probe/Assertion.h"
#include <functional>   // for std::function

using namespace llvm;
using namespace IGC;
using namespace IGC::IGCMD;

namespace {

    class LoopDeadCodeElimination : public FunctionPass {
        CodeGenContext* CGC;
        const DataLayout* DL;
        LoopInfo* LI;
        PostDominatorTree* PDT;

    public:
        static char ID;

        LoopDeadCodeElimination() : FunctionPass(ID),
            CGC(nullptr), DL(nullptr), LI(nullptr), PDT(nullptr) {
            initializeLoopDeadCodeEliminationPass(*PassRegistry::getPassRegistry());
        }

        bool runOnFunction(Function&) override;

        void getAnalysisUsage(AnalysisUsage& AU) const override {
            AU.setPreservesCFG();
            AU.addRequired<CodeGenContextWrapper>();
            AU.addRequired<MetaDataUtilsWrapper>();
            AU.addRequired<PostDominatorTreeWrapperPass>();
            AU.addPreserved<PostDominatorTreeWrapperPass>();
            AU.addRequired<LoopInfoWrapperPass>();
            AU.addPreserved<LoopInfoWrapperPass>();
        }

    private:
        bool processLoop(Loop* L);
    };

    /// This is to remove any recursive PHINode. For example,
    ///   Bx:
    ///     x = phi [] ...[y, By]
    ///   By:
    ///     y = phi [] ... [x, Bx]
    /// Both x and y are only used by PHINode, thus they can be
    /// removed.  This recursive PHINodes happens only if there
    /// are loops, and could be introduced in SROA.
    ///
    /// This pass detects the cases above and remove those PHINodes
    class DeadPHINodeElimination : public FunctionPass {
    public:
        static char ID;

        DeadPHINodeElimination() : FunctionPass(ID)
        {
            initializeDeadPHINodeEliminationPass(*PassRegistry::getPassRegistry());
        }

        bool runOnFunction(Function&) override;

        void getAnalysisUsage(AnalysisUsage& AU) const override {
            AU.setPreservesCFG();
            AU.addRequired<CodeGenContextWrapper>();
            AU.addRequired<MetaDataUtilsWrapper>();
            AU.addRequired<LoopInfoWrapperPass>();
        }
    };

} // End anonymous namespace

char LoopDeadCodeElimination::ID = 0;

#define PASS_FLAG     "igc-loop-dce"
#define PASS_DESC     "Advanced DCE on loop"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
namespace IGC {
    IGC_INITIALIZE_PASS_BEGIN(LoopDeadCodeElimination, PASS_FLAG, PASS_DESC, PASS_CFG_ONLY, PASS_ANALYSIS)
        IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
        IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
        IGC_INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
        IGC_INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
        IGC_INITIALIZE_PASS_END(LoopDeadCodeElimination, PASS_FLAG, PASS_DESC, PASS_CFG_ONLY, PASS_ANALYSIS)
}

FunctionPass* IGC::createLoopDeadCodeEliminationPass() {
    return new LoopDeadCodeElimination();
}

bool LoopDeadCodeElimination::runOnFunction(Function& F) {
    // Skip non-kernel function.
    MetaDataUtils* MDU = nullptr;
    MDU = getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils();
    auto FII = MDU->findFunctionsInfoItem(&F);
    if (FII == MDU->end_FunctionsInfo())
        return false;

    CGC = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
    DL = &F.getParent()->getDataLayout();
    LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    PDT = &getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();

    bool Changed = false;
    // DFT all loops.
    for (auto I = LI->begin(), E = LI->end(); I != E; ++I)
        for (auto L = df_begin(*I), F = df_end(*I); L != F; ++L)
            Changed |= processLoop(*L);

    return Changed;
}

static Instruction* getSingleUserInLoop(Value* V, Loop* L) {
    Instruction* UserInLoop = nullptr;
    for (auto U : V->users()) {
        auto I = dyn_cast<Instruction>(U);
        if (!I)
            return nullptr;
        if (!L->contains(I->getParent()))
            continue;
        if (UserInLoop)
            return nullptr;
        UserInLoop = I;
    }
    return UserInLoop;
}

bool LoopDeadCodeElimination::processLoop(Loop* L) {
    SmallVector<BasicBlock*, 8> ExitingBlocks;
    L->getExitingBlocks(ExitingBlocks);
    if (ExitingBlocks.empty())
        return false;

    bool Changed = false;
    for (auto BB : ExitingBlocks) {
        auto BI = dyn_cast<BranchInst>(BB->getTerminator());
        // Skip exiting block with non-conditional branch.
        if (!BI || !BI->isConditional())
            continue;
        bool ExitingOnTrue = !L->contains(BI->getSuccessor(0));
        auto Cond = BI->getCondition();
        for (auto U : Cond->users()) {

            auto SI = dyn_cast<SelectInst>(U);

            //Check that 'select' instruction is within the loop and also that the
            //Branch condition is used as the select's condition and not as the select's
            //true or false value
            if (!SI || !L->contains(SI->getParent()) || SI->getCondition() != Cond)
                continue;
            // TODO: Handle the trivial case where 'select' is used as a loop-carried
            // value.
            auto I = getSingleUserInLoop(SI, L);
            if (!I)
                continue;
            auto PN = dyn_cast<PHINode>(I);
            if (!PN || L->getHeader() != PN->getParent())
                continue;
            // v2 := phi(v0/bb0, v1/bb1)
            // ...
            // bb1:
            // v1 := select(cond, va, vb);
            // br cond, out_of_loop
            //
            // replace all uses of v1 in loop with vb
            // replace all uses of v1 out of loop with va
            Value* NewValInLoop = SI->getFalseValue();
            Value* NewValOutLoop = SI->getTrueValue();
            if (!ExitingOnTrue)
                std::swap(NewValInLoop, NewValOutLoop);
            for (auto UI = SI->use_begin(), UE = SI->use_end(); UI != UE; /*EMPTY*/) {
                auto& Use = *UI++;
                auto I = cast<Instruction>(Use.getUser());
                auto NewVal =
                    L->contains(I->getParent()) ? NewValInLoop : NewValOutLoop;
                Use.set(NewVal);
            }
        }
    }
    return Changed;
}


/// DeadPHINodeElimination
char DeadPHINodeElimination::ID = 0;

#undef PASS_FLAG
#undef PASS_DESC
#undef PASS_CFG_ONLY
#undef PASS_ANALYSIS

#define PASS_FLAG     "igc-phielimination"
#define PASS_DESC     "Remove Dead Recurisive PHINode"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
namespace IGC {
    IGC_INITIALIZE_PASS_BEGIN(DeadPHINodeElimination, PASS_FLAG, PASS_DESC, PASS_CFG_ONLY, PASS_ANALYSIS)
        IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
        IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
        IGC_INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
        IGC_INITIALIZE_PASS_END(DeadPHINodeElimination, PASS_FLAG, PASS_DESC, PASS_CFG_ONLY, PASS_ANALYSIS)
}

FunctionPass* IGC::createDeadPHINodeEliminationPass() {
    return new DeadPHINodeElimination();
}

static bool eliminateDeadPHINodes(Function& F)
{
    // This is to eliminate potential recursive phi like the following:
    //  Bx:   x = phi [y0, B0], ...[z, Bz]
    //  Bz:   z = phi [x, Bx], ...[]
    //  x and z are recursive phi's that are not used anywhere but in those phi's.
    //  Thus, they can be eliminated.
    auto phiUsedOnlyByPhi = [](PHINode* P) {
        bool ret = true;
        for (auto U : P->users())
        {
            Instruction* Inst = dyn_cast<Instruction>(U);
            if (!Inst || !isa<PHINode>(Inst)) {
                ret = false;
                break;
            }
        }
        return ret;
    };

    DenseMap<PHINode*, int> candidates;
    for (auto& BI : F)
    {
        BasicBlock* BB = &BI;
        for (auto& II : *BB)
        {
            PHINode* Phi = dyn_cast<PHINode>(&II);
            if (Phi && phiUsedOnlyByPhi(Phi)) {
                candidates[Phi] = 1;
            }
            else if (!Phi) {
                // No more phi, stop looping.
                break;
            }
        }
    }

    /// Iteratively removing non-candidate PHINode by
    /// setting its map value to zero.
    bool changed;
    do
    {
        changed = false;
        for (auto MI = candidates.begin(), ME = candidates.end(); MI != ME; ++MI)
        {
            PHINode* P = MI->first;
            if (MI->second == 0)
                continue;

            for (auto U : P->users()) {
                PHINode* phiUser = dyn_cast<PHINode>(U);
                IGC_ASSERT_MESSAGE(nullptr != phiUser, "ICE: all candidates should have phi as its users!");
                auto iter = candidates.find(phiUser);
                if (iter == candidates.end())
                {
                    // not candidate as its user is not in the map.
                    MI->second = 0;
                    changed = true;
                    break;
                }

                // If it is the user of itself, skip.
                if (iter->first == MI->first) {
                    continue;
                }

                if (iter->second == 0)
                {
                    // not candidate as being used by a non-candidate phi
                    MI->second = 0;
                    changed = true;
                    break;
                }
            }
        }
    } while (changed);

    // Prepare phi for deletion by setting its operands to null
    SmallVector<PHINode*, 8> toBeDeleted;
    for (auto& MI : candidates)
    {
        PHINode* P = MI.first;
        if (MI.second == 0)
            continue;
        // reset its operands to zero, which will eventually
        // make all dead Phi's uses to be empty!
        Value* nilVal = Constant::getNullValue(P->getType());
        for (int i = 0, e = (int)P->getNumIncomingValues(); i < e; ++i)
        {
            P->setIncomingValue(i, nilVal);
        }
        toBeDeleted.push_back(P);
    }

    // Actually delete them.
    for (int i = 0, e = (int)toBeDeleted.size(); i < e; ++i)
    {
        PHINode* P = toBeDeleted[i];
        P->eraseFromParent();
    }

    return (toBeDeleted.size() > 0);
}

using BlockValueMap = DenseMap<const BasicBlock*, PHINode*>;
using BlockValueMapVector = SmallVector<BlockValueMap, 16>;
using BlockValueMapDuplicateIDs = SmallVector<SmallVector<size_t, 2>, 16>;

static BlockValueMapVector getNodeLoops(const Loop* L) {
    // Traverse the loop L and collect all the phi nodes
    // and their phi node predecessors.

    std::function<bool(BlockValueMap&, PHINode*)> CollectConnected =
        [&CollectConnected](BlockValueMap& BlockMap, PHINode* P) {
        // Check if we have never met phi node parent (basic block) before
        auto Inserted = BlockMap.insert(make_pair(P->getParent(), P));

        if (Inserted.second) {
            // New pair of phi node and basic block inserted
            // Traverse node's incoming values
            for (auto& V : P->incoming_values()) {
                if (auto N = dyn_cast<PHINode>(V))
                    if (!CollectConnected(BlockMap, N))
                        return false;
            }

            // Return true if phi node P and all its incoming phi nodes N
            // have been successfully inserted into a block map
            return true;
        }

        // Return true if phi node P have already been inserted into a block map before
        return Inserted.first->second == P;
    };

    BlockValueMapVector BlockMaps;
    // Start with phi node in a header
    for (auto& I : *L->getHeader())
        if (auto P = dyn_cast<PHINode>(&I)) {
            BlockValueMap BlockMap;
            if (CollectConnected(BlockMap, P)) {
                BlockMaps.push_back(BlockMap);
            }
        }

    return BlockMaps;
}

static bool isSameTopology(const BlockValueMap& BlockMapX, const BlockValueMap& BlockMapY) {
    // Check if phi node recursive loops x and y
    // are of the same topology, e.g. each node in x
    // loop has unique node in y loop corresponding
    // to the same block.

    if (BlockMapX.size() != BlockMapY.size())
        return false;

    for (auto& PairX : BlockMapX) {
        auto BlockX = PairX.first;
        auto ValueX = PairX.second;
        auto PairY = BlockMapY.find(BlockX);

        // Return false if loop of y blocks are different
        if (PairY == BlockMapY.end())
            return false;

        auto ValueY = PairY->second;

        // Compare two phi nodes x and y
        // Check if every non-phi node incomming value of x
        // has matching incoming value of y

        // Loop over all incoming values of phi node x
        for (unsigned int i = 0; i < ValueX->getNumIncomingValues(); ++i) {
            auto IncomingValueX = ValueX->getIncomingValue(i);
            auto IncomingBlockX = ValueX->getIncomingBlock(i);

            // Nodes with undef incoming value considered being unique,
            // because we can't tell for sure if it is a duplitcate or not.
            if (isa<UndefValue>(IncomingValueX))
                return false;

            // For all phi node incoming values of x being part of a loop
            // check that there are no matching incoming value in y
            // having mismatching incoming block
            if (auto IncomingPHINodeX = dyn_cast<PHINode>(IncomingValueX)) {
                if (BlockMapX.find(IncomingPHINodeX->getParent()) != BlockMapX.end()) {
                    for (unsigned int j = 0; j < ValueY->getNumIncomingValues(); ++j) {
                        auto IncomingValueY = ValueY->getIncomingValue(j);

                        if (IncomingValueX == IncomingValueY)
                            return false;
                    }
                    continue;
                }
            }
            bool Found = false;

            // For all other incoming values of x check that there is
            // a matching incoming value in y having the same incoming block
            for (unsigned int j = 0; j < ValueY->getNumIncomingValues(); ++j) {
                auto IncomingValueY = ValueY->getIncomingValue(j);
                auto IncomingBlockY = ValueY->getIncomingBlock(j);

                if (IncomingValueX == IncomingValueY && IncomingBlockX == IncomingBlockY) {
                    // Found a match
                    Found = true;
                    break;
                }
            }

            // Return false if there is a non-phi node incoming value of phi node x
            // having no match among the incoming values of y
            if (!Found)
                return false;
        }
    }

    return true;
}

static BlockValueMapDuplicateIDs splitLoopsIntoDuplicateGroups(const BlockValueMapVector& BlockMaps) {
    // Split all found recursive phi node loops into
    // groups of duplicates by comparing each loop
    // to all others.

    BlockValueMapDuplicateIDs DuplicatesIDs;
    if (BlockMaps.size()) {
        SmallVector<bool, 16> Found(BlockMaps.size(), false);

        for (size_t i = 0; i < BlockMaps.size() - 1; ++i) {
            SmallVector<size_t, 2> Duplicates;

            for (size_t j = i + 1; j < BlockMaps.size(); ++j)
                if (!Found[j] && isSameTopology(BlockMaps[i], BlockMaps[j])) {
                    Duplicates.push_back(j);
                    Found[j] = true;
                }

            if (Duplicates.size()) {
                Duplicates.push_back(i);
                DuplicatesIDs.push_back(Duplicates);
                Found[i] = true;
            }
        }
    }

    return DuplicatesIDs;
}

static bool replaceNonPHINodeUses(const BlockValueMapVector& BlockMaps, const BlockValueMapDuplicateIDs& DuplicatesIDs) {
    // Replace all non-phi uses of nodes x with nodes y
    // within a group according to the correspondence maps.

    bool Changed = false;
    for (size_t i = 0; i < DuplicatesIDs.size(); ++i) {
        auto& Duplicates = DuplicatesIDs[i];
        IGC_ASSERT_MESSAGE(Duplicates.size() >= 2, "Number of duplicates is expected to be at least 2");

        // Let y be the first loop
        auto& BlockMapY = BlockMaps[Duplicates[0]];

        for (auto& PairY : BlockMapY) {
            auto BlockY = PairY.first;
            auto ValueY = PairY.second;

            // All other loops are considered x
            for (size_t j = 1; j < Duplicates.size(); ++j) {
                auto& BlockMapX = BlockMaps[Duplicates[j]];

                auto PairX = BlockMapX.find(BlockY);
                IGC_ASSERT_MESSAGE(PairX != BlockMapX.end(), "Inconsistent duplicate maps");
                auto ValueX = PairX->second;

                if (ValueX != ValueY)
                    ValueX->replaceAllUsesWith(ValueY);
            }
        }
    }

    return Changed;
}

static bool resolveDuplicateLoops(Function& F, const Loop* L) {
    // This is to eliminate duplicate recursive phis like the following:
    //  B0:   x0 = phi [v, ...], [xN, BN]
    //  B0:   y0 = phi [v, ...], [yN, BN]
    //  ...
    //  B1:   x1 = phi [x0, B0], ...
    //  B1:   y1 = phi [y0, B0], ...
    //  ...
    //  t = add %x1, 1.0
    //  ...
    //  B2:   x2 = phi [t, ...], [x1, B1]
    //  B2:   y2 = phi [t, ...], [y1, B1]
    //  ...
    //        store yN ...
    // xi are recursive duplicate of yi, and are not used anywhere but in those phis.
    // Thus, they can be eliminated.

    // Find all recursive phis within current loop L:
    // loops of xi, yi, etc.
    auto BlockMaps = getNodeLoops(L);

    // Group all recursive phis within current loop L
    // into duplicate groups:
    // xi duplicates yi, so put then into the same group
    auto DuplicatesIDs = splitLoopsIntoDuplicateGroups(BlockMaps);

    // Replace x1 with y1 in t = add %x1, 1.0,
    // so all xi become unused anywhere except in xi
    // Unused phi nodes will be eliminated by upcomming
    // call to eliminateDeadPHINodes(F)
    return replaceNonPHINodeUses(BlockMaps, DuplicatesIDs);
}

bool DeadPHINodeElimination::runOnFunction(Function& F) {
    bool Changed = false;

    if (eliminateDeadPHINodes(F))
        Changed = true;

    auto LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    for (auto& L : LI->getLoopsInPreorder()) {
        if (resolveDuplicateLoops(F, L))
            Changed = true;

        if (eliminateDeadPHINodes(F))
            Changed = true;
    }

    return Changed;
}