1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "Compiler/CodeGenContextWrapper.hpp"
#include "Compiler/MetaDataUtilsWrapper.h"
#include "Compiler/CISACodeGen/RegisterPressureEstimate.hpp"
#include "common/LLVMUtils.h"
#include "Compiler/CISACodeGen/LowerGEPForPrivMem.hpp"
#include "Compiler/CodeGenPublic.h"
#include "Compiler/IGCPassSupport.h"
#include "Compiler/CISACodeGen/ShaderCodeGen.hpp"
#include "common/LLVMWarningsPush.hpp"
#include "llvmWrapper/IR/DerivedTypes.h"
#include "llvmWrapper/IR/IRBuilder.h"
#include <llvm/IR/Function.h>
#include <llvm/IR/Instructions.h>
#include <llvm/ADT/SmallVector.h>
#include <llvm/Transforms/Utils/Local.h>
#include "common/LLVMWarningsPop.hpp"
#include "Probe/Assertion.h"
#define MAX_ALLOCA_PROMOTE_GRF_NUM 48
#define MAX_PRESSURE_GRF_NUM 90
using namespace llvm;
using namespace IGC;
using namespace IGC::IGCMD;
namespace IGC {
/// @brief LowerGEPForPrivMem pass is used for lowering the allocas identified while visiting the alloca instructions
/// and then inserting insert/extract elements instead of load stores. This allows us
/// to store the data in registers instead of propagating it to scratch space.
class LowerGEPForPrivMem : public llvm::FunctionPass, public llvm::InstVisitor<LowerGEPForPrivMem>
{
public:
LowerGEPForPrivMem();
~LowerGEPForPrivMem() {}
virtual llvm::StringRef getPassName() const override
{
return "LowerGEPForPrivMem";
}
virtual void getAnalysisUsage(llvm::AnalysisUsage& AU) const override
{
AU.addRequired<RegisterPressureEstimate>();
AU.addRequired<MetaDataUtilsWrapper>();
AU.addRequired<CodeGenContextWrapper>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.setPreservesCFG();
}
virtual bool runOnFunction(llvm::Function& F) override;
void visitAllocaInst(llvm::AllocaInst& I);
unsigned int extractConstAllocaSize(llvm::AllocaInst* pAlloca);
static bool IsVariableSizeAlloca(llvm::AllocaInst& pAlloca);
private:
llvm::AllocaInst* createVectorForAlloca(
llvm::AllocaInst* pAlloca,
llvm::Type* pBaseType);
void handleAllocaInst(llvm::AllocaInst* pAlloca);
StatusPrivArr2Reg CheckIfAllocaPromotable(llvm::AllocaInst* pAlloca);
bool IsNativeType(Type* type);
public:
static char ID;
struct PromotedLiverange
{
unsigned int lowId;
unsigned int highId;
unsigned int varSize;
RegisterPressureEstimate::LiveRange* LR;
};
private:
const llvm::DataLayout* m_pDL = nullptr;
CodeGenContext* m_ctx = nullptr;
DominatorTree* m_DT = nullptr;
std::vector<llvm::AllocaInst*> m_allocasToPrivMem;
RegisterPressureEstimate* m_pRegisterPressureEstimate = nullptr;
llvm::Function* m_pFunc = nullptr;
MetaDataUtils* pMdUtils = nullptr;
/// Keep track of each BB affected by promoting MemtoReg and the current pressure at that block
llvm::DenseMap<llvm::BasicBlock*, unsigned> m_pBBPressure;
std::vector<PromotedLiverange> m_promotedLiveranges;
};
FunctionPass* createPromotePrivateArrayToReg()
{
return new LowerGEPForPrivMem();
}
}
// Register pass to igc-opt
#define PASS_FLAG "igc-priv-mem-to-reg"
#define PASS_DESCRIPTION "Lower GEP of Private Memory to Register Pass"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(LowerGEPForPrivMem, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(RegisterPressureEstimate)
IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_END(LowerGEPForPrivMem, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
char LowerGEPForPrivMem::ID = 0;
LowerGEPForPrivMem::LowerGEPForPrivMem() : FunctionPass(ID), m_pFunc(nullptr)
{
initializeLowerGEPForPrivMemPass(*PassRegistry::getPassRegistry());
}
llvm::AllocaInst* LowerGEPForPrivMem::createVectorForAlloca(
llvm::AllocaInst* pAlloca,
llvm::Type* pBaseType)
{
IGC_ASSERT(pAlloca != nullptr);
IGCLLVM::IRBuilder<> IRB(pAlloca);
AllocaInst* pAllocaValue = nullptr;
if (IsVariableSizeAlloca(*pAlloca)) {
pAllocaValue = IRB.CreateAlloca(pBaseType, pAlloca->getArraySize());
} else {
IGC_ASSERT(nullptr != m_pDL);
const unsigned int denominator = int_cast<unsigned int>(m_pDL->getTypeAllocSize(pBaseType));
IGC_ASSERT(0 < denominator);
const unsigned int totalSize = extractConstAllocaSize(pAlloca) / denominator;
pAllocaValue = IRB.CreateAlloca(IGCLLVM::FixedVectorType::get(pBaseType, totalSize));
}
return pAllocaValue;
}
bool LowerGEPForPrivMem::runOnFunction(llvm::Function& F)
{
m_pFunc = &F;
CodeGenContextWrapper* pCtxWrapper = &getAnalysis<CodeGenContextWrapper>();
IGC_ASSERT(nullptr != pCtxWrapper);
m_ctx = pCtxWrapper->getCodeGenContext();
m_DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
pMdUtils = getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils();
IGC_ASSERT(nullptr != pMdUtils);
if (pMdUtils->findFunctionsInfoItem(&F) == pMdUtils->end_FunctionsInfo())
{
return false;
}
IGC_ASSERT(nullptr != F.getParent());
m_pDL = &F.getParent()->getDataLayout();
m_pRegisterPressureEstimate = &getAnalysis<RegisterPressureEstimate>();
IGC_ASSERT(nullptr != m_pRegisterPressureEstimate);
// if no live range info
if (!m_pRegisterPressureEstimate->isAvailable())
{
return false;
}
m_pRegisterPressureEstimate->buildRPMapPerInstruction();
m_allocasToPrivMem.clear();
visit(F);
std::vector<llvm::AllocaInst*>& allocaToHande = m_allocasToPrivMem;
for (auto pAlloca : allocaToHande)
{
handleAllocaInst(pAlloca);
}
// Last remove alloca instructions
for (auto pInst : allocaToHande)
{
if (pInst->use_empty())
{
pInst->eraseFromParent();
}
}
if (!allocaToHande.empty())
DumpLLVMIR(m_ctx, "AfterLowerGEP");
// IR changed only if we had alloca instruction to optimize
return !allocaToHande.empty();
}
void TransposeHelper::EraseDeadCode()
{
for (auto pInst = m_toBeRemovedGEP.rbegin(); pInst != m_toBeRemovedGEP.rend(); ++pInst)
{
IGC_ASSERT_MESSAGE((*pInst)->use_empty(), "Instruction still has usage");
(*pInst)->eraseFromParent();
}
}
bool LowerGEPForPrivMem::IsVariableSizeAlloca(llvm::AllocaInst& pAlloca)
{
IGC_ASSERT(nullptr != pAlloca.getArraySize());
if (isa<ConstantInt>(pAlloca.getArraySize()))
return false;
return true;
}
unsigned int LowerGEPForPrivMem::extractConstAllocaSize(llvm::AllocaInst* pAlloca)
{
IGC_ASSERT(nullptr != m_pDL);
IGC_ASSERT(nullptr != pAlloca);
IGC_ASSERT(nullptr != pAlloca->getArraySize());
IGC_ASSERT(nullptr != pAlloca->getAllocatedType());
unsigned int arraySize = int_cast<unsigned int>(cast<ConstantInt>(pAlloca->getArraySize())->getZExtValue());
unsigned int totalArrayStructureSize = int_cast<unsigned int>(m_pDL->getTypeAllocSize(pAlloca->getAllocatedType()) * arraySize);
return totalArrayStructureSize;
}
static void GetAllocaLiverange(Instruction* I, unsigned int& liverangeStart, unsigned int& liverangeEnd,
RegisterPressureEstimate* rpe, SmallVector<LowerGEPForPrivMem::PromotedLiverange, 16>& GEPliveranges)
{
IGC_ASSERT(nullptr != I);
for (Value::user_iterator use_it = I->user_begin(), use_e = I->user_end(); use_it != use_e; ++use_it)
{
if (isa<GetElementPtrInst>(*use_it) || isa<BitCastInst>(*use_it))
{
// collect liveranges for GEP operations related to alloca
Instruction* Inst = cast<Instruction>(*use_it);
LowerGEPForPrivMem::PromotedLiverange GEPliverange;
GEPliverange.LR = rpe->getLiveRangeOrNull(Inst);
GEPliverange.lowId = GEPliverange.highId = rpe->getAssignedNumberForInst(Inst);
GetAllocaLiverange(Inst, GEPliverange.lowId, GEPliverange.highId, rpe, GEPliveranges);
GEPliverange.varSize = rpe->getRegisterWeightForInstruction(Inst);
if (GEPliverange.LR)
GEPliveranges.push_back(GEPliverange);
liverangeStart = std::min(liverangeStart, GEPliverange.lowId);
liverangeEnd = std::max(liverangeEnd, GEPliverange.highId);
}
else if (isa<LoadInst>(*use_it) || isa<StoreInst>(*use_it) || isa<llvm::IntrinsicInst>(*use_it))
{
unsigned int idx = rpe->getAssignedNumberForInst(cast<Instruction>(*use_it));
liverangeStart = std::min(liverangeStart, idx);
liverangeEnd = std::max(liverangeEnd, idx);
}
}
}
bool LowerGEPForPrivMem::IsNativeType(Type* type)
{
if (type->isDoubleTy() && m_ctx->platform.hasNoFP64Inst())
{
return false;
}
if (type->isIntegerTy(8) &&
(IGC_IS_FLAG_ENABLED(ForcePromoteI8) ||
(IGC_IS_FLAG_ENABLED(EnablePromoteI8) && !m_ctx->platform.supportByteALUOperation())))
{
// Byte indirect: not supported for Vx1 and VxH on PVC.
// As GRF from promoted privMem may use indirect accesses, disable it
// to prevent Vx1 and VxH accesses.
return false;
}
return true;
}
StatusPrivArr2Reg LowerGEPForPrivMem::CheckIfAllocaPromotable(llvm::AllocaInst* pAlloca)
{
// vla is not promotable
IGC_ASSERT(pAlloca != nullptr);
if (IsVariableSizeAlloca(*pAlloca))
return StatusPrivArr2Reg::IsDynamicAlloca;
bool isUniformAlloca = pAlloca->getMetadata("uniform") != nullptr;
bool useAssumeUniform = pAlloca->getMetadata("UseAssumeUniform") != nullptr;
unsigned int allocaSize = extractConstAllocaSize(pAlloca);
unsigned int allowedAllocaSizeInBytes = MAX_ALLOCA_PROMOTE_GRF_NUM * 4;
// scale alloc size based on the number of GRFs we have
float grfRatio = m_ctx->getNumGRFPerThread() / 128.0f;
allowedAllocaSizeInBytes = (uint32_t)(allowedAllocaSizeInBytes * grfRatio);
if (m_ctx->type == ShaderType::COMPUTE_SHADER)
{
ComputeShaderContext* ctx = static_cast<ComputeShaderContext*>(m_ctx);
SIMDMode simdMode = ctx->GetLeastSIMDModeAllowed();
unsigned d = simdMode == SIMDMode::SIMD32 ? 4 : 1;
allowedAllocaSizeInBytes = allowedAllocaSizeInBytes / d;
}
else if (m_ctx->type == ShaderType::OPENCL_SHADER)
{
FunctionInfoMetaDataHandle funcInfoMD = pMdUtils->getFunctionsInfoItem(m_pFunc);
SubGroupSizeMetaDataHandle subGroupSize = funcInfoMD->getSubGroupSize();
if (subGroupSize->hasValue())
{
auto simdSize = (uint32_t)subGroupSize->getSIMD_size();
allowedAllocaSizeInBytes = (allowedAllocaSizeInBytes * 8) / simdSize;
}
}
Type* baseType = nullptr;
if (!CanUseSOALayout(pAlloca, baseType))
{
return StatusPrivArr2Reg::CannotUseSOALayout;
}
if (!IsNativeType(baseType))
{
return StatusPrivArr2Reg::IsNotNativeType;
}
if (isUniformAlloca)
{
// Heuristic: for uniform alloca we divide the size by 8 to adjust the pressure
// as they will be allocated as uniform array
allocaSize = iSTD::Round(allocaSize, SIMD_PRESSURE_MULTIPLIER) / SIMD_PRESSURE_MULTIPLIER;
}
if (useAssumeUniform || allocaSize <= IGC_GET_FLAG_VALUE(ByPassAllocaSizeHeuristic))
{
return StatusPrivArr2Reg::OK;
}
// if alloca size exceeds alloc size threshold, return false
if (allocaSize > allowedAllocaSizeInBytes)
{
return StatusPrivArr2Reg::OutOfAllocSizeLimit;
}
// get all the basic blocks that contain the uses of the alloca
// then estimate how much changing this alloca to register adds to the pressure at that block.
unsigned int lowestAssignedNumber = 0xFFFFFFFF;
unsigned int highestAssignedNumber = 0;
SmallVector<PromotedLiverange, 16> GEPliveranges;
GetAllocaLiverange(pAlloca, lowestAssignedNumber, highestAssignedNumber, m_pRegisterPressureEstimate, GEPliveranges);
uint32_t maxGRFPressure = (uint32_t)(grfRatio * MAX_PRESSURE_GRF_NUM * 4);
unsigned int pressure = 0;
for (unsigned int i = lowestAssignedNumber; i <= highestAssignedNumber; i++)
{
// subtract impact from GEP operations related to alloca from the register pressure
// since after promotion alloca to register these GEPs will be eliminated
unsigned int GEPImpact = 0;
for (auto GEPinst : GEPliveranges)
{
if (GEPinst.LR->contains(i))
GEPImpact += GEPinst.varSize;
}
unsigned RPinst = m_pRegisterPressureEstimate->getRegisterPressureForInstructionFromRPMap(i);
pressure = std::max(pressure, RPinst - GEPImpact);
}
for (auto it : m_promotedLiveranges)
{
// check interval intersection
if ((it.lowId < lowestAssignedNumber && it.highId > lowestAssignedNumber) ||
(it.lowId > lowestAssignedNumber && it.lowId < highestAssignedNumber))
{
pressure += it.varSize;
}
}
if (allocaSize + pressure > maxGRFPressure)
{
return StatusPrivArr2Reg::OutOfMaxGRFPressure;
}
PromotedLiverange liverange;
liverange.lowId = lowestAssignedNumber;
liverange.highId = highestAssignedNumber;
liverange.varSize = allocaSize;
m_promotedLiveranges.push_back(liverange);
return StatusPrivArr2Reg::OK;
}
static bool CheckUsesForSOAAlyout(Instruction* I, bool& vectorSOA)
{
for (Value::user_iterator use_it = I->user_begin(), use_e = I->user_end(); use_it != use_e; ++use_it)
{
if (GetElementPtrInst * gep = dyn_cast<GetElementPtrInst>(*use_it))
{
if (CheckUsesForSOAAlyout(gep, vectorSOA))
continue;
}
if (llvm::LoadInst * pLoad = llvm::dyn_cast<llvm::LoadInst>(*use_it))
{
vectorSOA &= pLoad->getType()->isVectorTy();
if (!pLoad->isSimple())
return false;
}
else if (llvm::StoreInst * pStore = llvm::dyn_cast<llvm::StoreInst>(*use_it))
{
if (!pStore->isSimple())
return false;
llvm::Value* pValueOp = pStore->getValueOperand();
vectorSOA &= pStore->getValueOperand()->getType()->isVectorTy();
if (pValueOp == I)
{
// GEP instruction is the stored value of the StoreInst (not supported case)
return false;
}
}
else if (llvm::BitCastInst * pBitCast = llvm::dyn_cast<llvm::BitCastInst>(*use_it))
{
Type* baseT = GetBaseType(pBitCast->getType()->getPointerElementType());
Type* sourceType = GetBaseType(pBitCast->getOperand(0)->getType()->getPointerElementType());
if (pBitCast->use_empty())
{
continue;
}
else if (baseT != nullptr &&
baseT->getScalarSizeInBits() != 0 &&
baseT->getScalarSizeInBits() == sourceType->getScalarSizeInBits())
{
vectorSOA &= (unsigned int)baseT->getPrimitiveSizeInBits() == sourceType->getPrimitiveSizeInBits();
if (CheckUsesForSOAAlyout(pBitCast, vectorSOA))
continue;
}
else if (IsBitCastForLifetimeMark(pBitCast))
{
continue;
}
// Not a candidate.
return false;
}
else if (IntrinsicInst * intr = dyn_cast<IntrinsicInst>(*use_it))
{
llvm::Intrinsic::ID IID = intr->getIntrinsicID();
if (IID == llvm::Intrinsic::lifetime_start ||
IID == llvm::Intrinsic::lifetime_end)
{
continue;
}
return false;
}
else
{
// This is some other instruction. Right now we don't want to handle these
return false;
}
}
return true;
}
bool IGC::CanUseSOALayout(AllocaInst* I, Type*& base)
{
// Do not allow SOA layout for vla which will be stored on the stack.
// We don't support SOA layout for privates on stack at all so this is just to make
// the implementation simpler.
if (LowerGEPForPrivMem::IsVariableSizeAlloca(*I))
return false;
// Don't even look at non-array allocas.
// (extractAllocaDim can not handle them anyway, causing a crash)
llvm::Type* pType = I->getType()->getPointerElementType();
if (pType->isStructTy() && pType->getStructNumElements() == 1)
{
pType = pType->getStructElementType(0);
}
if ((!pType->isArrayTy() && !pType->isVectorTy()) || I->isArrayAllocation())
return false;
base = GetBaseType(pType);
if (base == nullptr)
return false;
// only handle case with a simple base type
if (!(base->getScalarType()->isFloatingPointTy() || base->getScalarType()->isIntegerTy()))
return false;
bool vectorSOA = true;
bool useSOA = CheckUsesForSOAAlyout(I, vectorSOA);
if (!vectorSOA)
{
base = base->getScalarType();
}
return useSOA;
}
void LowerGEPForPrivMem::visitAllocaInst(AllocaInst& I)
{
// Alloca should always be private memory
IGC_ASSERT(nullptr != I.getType());
IGC_ASSERT(I.getType()->getAddressSpace() == ADDRESS_SPACE_PRIVATE);
StatusPrivArr2Reg status = CheckIfAllocaPromotable(&I);
if (I.getType()->getAddressSpace() == ADDRESS_SPACE_PRIVATE)
{
m_ctx->metrics.CollectMem2Reg(&I, status);
}
if (status != StatusPrivArr2Reg::OK)
{
// alloca size extends remain per-lane-reg space
return;
}
m_allocasToPrivMem.push_back(&I);
}
void TransposeHelper::HandleAllocaSources(Instruction* v, Value* idx)
{
SmallVector<Value*, 10> instructions;
for (Value::user_iterator it = v->user_begin(), e = v->user_end(); it != e; ++it)
{
Value* inst = cast<Value>(*it);
instructions.push_back(inst);
}
for (auto instruction : instructions)
{
if (GetElementPtrInst * pGEP = dyn_cast<GetElementPtrInst>(instruction))
{
handleGEPInst(pGEP, idx);
}
else if (BitCastInst * bitcast = dyn_cast<BitCastInst>(instruction))
{
m_toBeRemovedGEP.push_back(bitcast);
HandleAllocaSources(bitcast, idx);
}
else if (StoreInst * pStore = llvm::dyn_cast<StoreInst>(instruction))
{
handleStoreInst(pStore, idx);
}
else if (LoadInst * pLoad = llvm::dyn_cast<LoadInst>(instruction))
{
handleLoadInst(pLoad, idx);
}
else if (IntrinsicInst * inst = dyn_cast<IntrinsicInst>(instruction))
{
handleLifetimeMark(inst);
}
}
}
class TransposeHelperPromote : public TransposeHelper
{
public:
void handleLoadInst(
LoadInst* pLoad,
Value* pScalarizedIdx);
void handleStoreInst(
StoreInst* pStore,
Value* pScalarizedIdx);
void handleLifetimeMark(IntrinsicInst* inst);
AllocaInst* pVecAlloca;
// location of lifetime starts
llvm::SmallPtrSet<Instruction*, 4> pStartPoints;
TransposeHelperPromote(AllocaInst* pAI) : TransposeHelper(false) { pVecAlloca = pAI; }
};
void LowerGEPForPrivMem::handleAllocaInst(llvm::AllocaInst* pAlloca)
{
// Extract the Alloca size and the base Type
Type* pType = pAlloca->getType()->getPointerElementType();
Type* pBaseType = GetBaseType(pType)->getScalarType();
IGC_ASSERT(pBaseType);
llvm::AllocaInst* pVecAlloca = createVectorForAlloca(pAlloca, pBaseType);
if (!pVecAlloca)
{
return;
}
IRBuilder<> IRB(pVecAlloca);
Value* idx = IRB.getInt32(0);
TransposeHelperPromote helper(pVecAlloca);
helper.HandleAllocaSources(pAlloca, idx);
IGC_ASSERT(nullptr != pAlloca);
// for uniform alloca, we need to insert an initial definition
// to keep the promoted vector as uniform in the next round of WIAnalysis
bool isUniformAlloca = pAlloca->getMetadata("uniform") != nullptr;
if (isUniformAlloca && pAlloca->getAllocatedType()->isArrayTy())
{
if (helper.pStartPoints.empty())
helper.pStartPoints.insert(pAlloca);
for (auto InsertionPoint : helper.pStartPoints)
{
IRBuilder<> IRB1(InsertionPoint);
auto pVecF = GenISAIntrinsic::getDeclaration(m_pFunc->getParent(),
GenISAIntrinsic::GenISA_vectorUniform, pVecAlloca->getAllocatedType());
auto pVecInit = IRB1.CreateCall(pVecF);
// create a store of pVecInit into pVecAlloca
IRB1.CreateStore(pVecInit, pVecAlloca);
}
}
helper.EraseDeadCode();
if (pAlloca->use_empty())
{
IGC_ASSERT(m_DT);
replaceAllDbgUsesWith(*pAlloca, *pVecAlloca, *pVecAlloca, *m_DT);
}
}
void TransposeHelper::handleGEPInst(
llvm::GetElementPtrInst* pGEP,
llvm::Value* idx)
{
IGC_ASSERT(nullptr != pGEP);
IGC_ASSERT(static_cast<ADDRESS_SPACE>(pGEP->getPointerAddressSpace()) == ADDRESS_SPACE_PRIVATE);
// Add GEP instruction to remove list
m_toBeRemovedGEP.push_back(pGEP);
if (pGEP->use_empty())
{
// GEP has no users, do nothing.
return;
}
// Given %p = getelementptr [4 x [3 x <2 x float>]]* %v, i64 0, i64 %1, i64 %2
// compute the scalarized index with an auxiliary array [4, 3, 2]:
//
// Formula: index = (%1 x 3 + %2) x 2
//
IRBuilder<> IRB(pGEP);
Value* pScalarizedIdx = IRB.getInt32(0);
Type* T = pGEP->getPointerOperandType()->getPointerElementType();
for (unsigned i = 0, e = pGEP->getNumIndices(); i < e; ++i)
{
auto GepOpnd = IRB.CreateZExtOrTrunc(pGEP->getOperand(i + 1), IRB.getInt32Ty());
unsigned int arr_sz = 1;
if (T->isStructTy())
{
arr_sz = 1;
T = T->getStructElementType(0);
}
else if (T->isArrayTy())
{
arr_sz = int_cast<unsigned int>(T->getArrayNumElements());
T = T->getArrayElementType();
}
else if (T->isVectorTy())
{
// based on whether we want the index in number of element or number of vector
if (m_vectorIndex)
{
arr_sz = 1;
}
else
{
arr_sz = (unsigned)cast<IGCLLVM::FixedVectorType>(T)->getNumElements();
}
T = cast<VectorType>(T)->getElementType();
}
pScalarizedIdx = IRB.CreateNUWAdd(pScalarizedIdx, GepOpnd);
pScalarizedIdx = IRB.CreateNUWMul(pScalarizedIdx, IRB.getInt32(arr_sz));
}
while (T->isStructTy() || T->isArrayTy() || T->isVectorTy()) {
unsigned int arr_sz = 1;
if (T->isStructTy())
{
IGC_ASSERT(T->getStructNumElements() == 1);
T = T->getStructElementType(0);
}
else if (T->isArrayTy())
{
arr_sz = int_cast<unsigned int>(T->getArrayNumElements());;
T = T->getArrayElementType();
}
else if (T->isVectorTy())
{
arr_sz = (unsigned)cast<IGCLLVM::FixedVectorType>(T)->getNumElements();
T = cast<VectorType>(T)->getElementType();
}
else
{
IGC_ASSERT(0);
}
pScalarizedIdx = IRB.CreateNUWMul(pScalarizedIdx, IRB.getInt32(arr_sz));
}
pScalarizedIdx = IRB.CreateNUWAdd(pScalarizedIdx, idx);
HandleAllocaSources(pGEP, pScalarizedIdx);
}
// Load N elements from a vector alloca, Idx, ... Idx + N - 1. Return a scalar
// or a vector value depending on N.
static Value* loadEltsFromVecAlloca(
unsigned N, AllocaInst* pVecAlloca,
Value* pScalarizedIdx,
IGCLLVM::IRBuilder<>& IRB,
Type* scalarType)
{
Value* pLoadVecAlloca = IRB.CreateLoad(pVecAlloca);
if (N == 1)
{
return IRB.CreateBitCast(
IRB.CreateExtractElement(pLoadVecAlloca, pScalarizedIdx),
scalarType);
}
// A vector load
// %v = load <2 x float>* %ptr
// becomes
// %w = load <32 x float>* %ptr1
// %v0 = extractelement <32 x float> %w, i32 %idx
// %v1 = extractelement <32 x float> %w, i32 %idx+1
// replace all uses of %v with <%v0, %v1>
IGC_ASSERT_MESSAGE((N > 1), "out of sync");
Type* Ty = IGCLLVM::FixedVectorType::get(scalarType, N);
Value* Result = UndefValue::get(Ty);
for (unsigned i = 0; i < N; ++i)
{
Value* VectorIdx = ConstantInt::get(pScalarizedIdx->getType(), i);
auto Idx = IRB.CreateAdd(pScalarizedIdx, VectorIdx);
auto Val = IRB.CreateExtractElement(pLoadVecAlloca, Idx);
Val = IRB.CreateBitCast(Val, scalarType);
Result = IRB.CreateInsertElement(Result, Val, VectorIdx);
}
return Result;
}
void TransposeHelperPromote::handleLoadInst(
LoadInst* pLoad,
Value* pScalarizedIdx)
{
IGC_ASSERT(nullptr != pLoad);
IGC_ASSERT(pLoad->isSimple());
IGCLLVM::IRBuilder<> IRB(pLoad);
IGC_ASSERT(nullptr != pLoad->getType());
unsigned N = pLoad->getType()->isVectorTy()
? (unsigned)cast<IGCLLVM::FixedVectorType>(pLoad->getType())->getNumElements()
: 1;
Value* Val = loadEltsFromVecAlloca(N, pVecAlloca, pScalarizedIdx, IRB, pLoad->getType()->getScalarType());
pLoad->replaceAllUsesWith(Val);
pLoad->eraseFromParent();
}
void TransposeHelperPromote::handleStoreInst(
llvm::StoreInst* pStore,
llvm::Value* pScalarizedIdx)
{
// Add Store instruction to remove list
IGC_ASSERT(nullptr != pStore);
IGC_ASSERT(pStore->isSimple());
IGCLLVM::IRBuilder<> IRB(pStore);
llvm::Value* pStoreVal = pStore->getValueOperand();
llvm::Value* pLoadVecAlloca = IRB.CreateLoad(pVecAlloca);
llvm::Value* pIns = pLoadVecAlloca;
IGC_ASSERT(nullptr != pStoreVal);
IGC_ASSERT(nullptr != pStoreVal->getType());
if (pStoreVal->getType()->isVectorTy())
{
// A vector store
// store <2 x float> %v, <2 x float>* %ptr
// becomes
// %w = load <32 x float> *%ptr1
// %v0 = extractelement <2 x float> %v, i32 0
// %w0 = insertelement <32 x float> %w, float %v0, i32 %idx
// %v1 = extractelement <2 x float> %v, i32 1
// %w1 = insertelement <32 x float> %w0, float %v1, i32 %idx+1
// store <32 x float> %w1, <32 x float>* %ptr1
for (unsigned i = 0, e = (unsigned)cast<IGCLLVM::FixedVectorType>(pStoreVal->getType())->getNumElements(); i < e; ++i)
{
Value* VectorIdx = ConstantInt::get(pScalarizedIdx->getType(), i);
auto Val = IRB.CreateExtractElement(pStoreVal, VectorIdx);
Val = IRB.CreateBitCast(Val, pLoadVecAlloca->getType()->getScalarType());
auto Idx = IRB.CreateAdd(pScalarizedIdx, VectorIdx);
pIns = IRB.CreateInsertElement(pIns, Val, Idx);
}
}
else
{
pStoreVal = IRB.CreateBitCast(pStoreVal, pLoadVecAlloca->getType()->getScalarType());
pIns = IRB.CreateInsertElement(pLoadVecAlloca, pStoreVal, pScalarizedIdx);
}
IRB.CreateStore(pIns, pVecAlloca);
pStore->eraseFromParent();
}
void TransposeHelperPromote::handleLifetimeMark(IntrinsicInst* inst)
{
IGC_ASSERT(nullptr != inst);
IGC_ASSERT((inst->getIntrinsicID() == llvm::Intrinsic::lifetime_start) ||
(inst->getIntrinsicID() == llvm::Intrinsic::lifetime_end));
if (inst->getIntrinsicID() == llvm::Intrinsic::lifetime_start)
{
pStartPoints.insert(inst);
}
m_toBeRemovedGEP.push_back(inst);
}
|