File: LowerGEPForPrivMem.cpp

package info (click to toggle)
intel-graphics-compiler 1.0.12504.6-1%2Bdeb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 83,912 kB
  • sloc: cpp: 910,147; lisp: 202,655; ansic: 15,197; python: 4,025; yacc: 2,241; lex: 1,570; pascal: 244; sh: 104; makefile: 25
file content (788 lines) | stat: -rw-r--r-- 28,167 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
/*========================== begin_copyright_notice ============================

Copyright (C) 2017-2021 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

#include "Compiler/CodeGenContextWrapper.hpp"
#include "Compiler/MetaDataUtilsWrapper.h"
#include "Compiler/CISACodeGen/RegisterPressureEstimate.hpp"
#include "common/LLVMUtils.h"
#include "Compiler/CISACodeGen/LowerGEPForPrivMem.hpp"
#include "Compiler/CodeGenPublic.h"
#include "Compiler/IGCPassSupport.h"
#include "Compiler/CISACodeGen/ShaderCodeGen.hpp"
#include "common/LLVMWarningsPush.hpp"
#include "llvmWrapper/IR/DerivedTypes.h"
#include "llvmWrapper/IR/IRBuilder.h"
#include <llvm/IR/Function.h>
#include <llvm/IR/Instructions.h>
#include <llvm/ADT/SmallVector.h>
#include <llvm/Transforms/Utils/Local.h>
#include "common/LLVMWarningsPop.hpp"
#include "Probe/Assertion.h"

#define MAX_ALLOCA_PROMOTE_GRF_NUM      48
#define MAX_PRESSURE_GRF_NUM            90

using namespace llvm;
using namespace IGC;
using namespace IGC::IGCMD;

namespace IGC {
    /// @brief  LowerGEPForPrivMem pass is used for lowering the allocas identified while visiting the alloca instructions
    ///         and then inserting insert/extract elements instead of load stores. This allows us
    ///         to store the data in registers instead of propagating it to scratch space.
    class LowerGEPForPrivMem : public llvm::FunctionPass, public llvm::InstVisitor<LowerGEPForPrivMem>
    {
    public:
        LowerGEPForPrivMem();

        ~LowerGEPForPrivMem() {}

        virtual llvm::StringRef getPassName() const override
        {
            return "LowerGEPForPrivMem";
        }

        virtual void getAnalysisUsage(llvm::AnalysisUsage& AU) const override
        {
            AU.addRequired<RegisterPressureEstimate>();
            AU.addRequired<MetaDataUtilsWrapper>();
            AU.addRequired<CodeGenContextWrapper>();
            AU.addRequired<DominatorTreeWrapperPass>();
            AU.setPreservesCFG();
        }

        virtual bool runOnFunction(llvm::Function& F) override;

        void visitAllocaInst(llvm::AllocaInst& I);

        unsigned int extractConstAllocaSize(llvm::AllocaInst* pAlloca);

        static bool IsVariableSizeAlloca(llvm::AllocaInst& pAlloca);

    private:
        llvm::AllocaInst* createVectorForAlloca(
            llvm::AllocaInst* pAlloca,
            llvm::Type* pBaseType);
        void handleAllocaInst(llvm::AllocaInst* pAlloca);

        StatusPrivArr2Reg CheckIfAllocaPromotable(llvm::AllocaInst* pAlloca);
        bool IsNativeType(Type* type);

    public:
        static char ID;

        struct PromotedLiverange
        {
            unsigned int lowId;
            unsigned int highId;
            unsigned int varSize;
            RegisterPressureEstimate::LiveRange* LR;
        };

    private:
        const llvm::DataLayout* m_pDL = nullptr;
        CodeGenContext* m_ctx = nullptr;
        DominatorTree* m_DT = nullptr;
        std::vector<llvm::AllocaInst*> m_allocasToPrivMem;
        RegisterPressureEstimate* m_pRegisterPressureEstimate = nullptr;
        llvm::Function* m_pFunc = nullptr;
        MetaDataUtils* pMdUtils = nullptr;

        /// Keep track of each BB affected by promoting MemtoReg and the current pressure at that block
        llvm::DenseMap<llvm::BasicBlock*, unsigned> m_pBBPressure;

        std::vector<PromotedLiverange> m_promotedLiveranges;
    };

    FunctionPass* createPromotePrivateArrayToReg()
    {
        return new LowerGEPForPrivMem();
    }
}

// Register pass to igc-opt
#define PASS_FLAG "igc-priv-mem-to-reg"
#define PASS_DESCRIPTION "Lower GEP of Private Memory to Register Pass"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(LowerGEPForPrivMem, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(RegisterPressureEstimate)
IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_END(LowerGEPForPrivMem, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)

char LowerGEPForPrivMem::ID = 0;

LowerGEPForPrivMem::LowerGEPForPrivMem() : FunctionPass(ID), m_pFunc(nullptr)
{
    initializeLowerGEPForPrivMemPass(*PassRegistry::getPassRegistry());
}

llvm::AllocaInst* LowerGEPForPrivMem::createVectorForAlloca(
    llvm::AllocaInst* pAlloca,
    llvm::Type* pBaseType)
{
    IGC_ASSERT(pAlloca != nullptr);
    IGCLLVM::IRBuilder<> IRB(pAlloca);
    AllocaInst* pAllocaValue = nullptr;
    if (IsVariableSizeAlloca(*pAlloca)) {
        pAllocaValue = IRB.CreateAlloca(pBaseType, pAlloca->getArraySize());

    } else {
        IGC_ASSERT(nullptr != m_pDL);
        const unsigned int denominator = int_cast<unsigned int>(m_pDL->getTypeAllocSize(pBaseType));
        IGC_ASSERT(0 < denominator);
        const unsigned int totalSize = extractConstAllocaSize(pAlloca) / denominator;
        pAllocaValue = IRB.CreateAlloca(IGCLLVM::FixedVectorType::get(pBaseType, totalSize));
    }

    return pAllocaValue;
}

bool LowerGEPForPrivMem::runOnFunction(llvm::Function& F)
{
    m_pFunc = &F;
    CodeGenContextWrapper* pCtxWrapper = &getAnalysis<CodeGenContextWrapper>();
    IGC_ASSERT(nullptr != pCtxWrapper);
    m_ctx = pCtxWrapper->getCodeGenContext();
    m_DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();

    pMdUtils = getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils();
    IGC_ASSERT(nullptr != pMdUtils);
    if (pMdUtils->findFunctionsInfoItem(&F) == pMdUtils->end_FunctionsInfo())
    {
        return false;
    }
    IGC_ASSERT(nullptr != F.getParent());
    m_pDL = &F.getParent()->getDataLayout();
    m_pRegisterPressureEstimate = &getAnalysis<RegisterPressureEstimate>();
    IGC_ASSERT(nullptr != m_pRegisterPressureEstimate);
    // if no live range info
    if (!m_pRegisterPressureEstimate->isAvailable())
    {
        return false;
    }
    m_pRegisterPressureEstimate->buildRPMapPerInstruction();

    m_allocasToPrivMem.clear();
    visit(F);

    std::vector<llvm::AllocaInst*>& allocaToHande = m_allocasToPrivMem;
    for (auto pAlloca : allocaToHande)
    {
        handleAllocaInst(pAlloca);
    }

    // Last remove alloca instructions
    for (auto pInst : allocaToHande)
    {
        if (pInst->use_empty())
        {
            pInst->eraseFromParent();
        }
    }

    if (!allocaToHande.empty())
        DumpLLVMIR(m_ctx, "AfterLowerGEP");
    // IR changed only if we had alloca instruction to optimize
    return !allocaToHande.empty();
}

void TransposeHelper::EraseDeadCode()
{
    for (auto pInst = m_toBeRemovedGEP.rbegin(); pInst != m_toBeRemovedGEP.rend(); ++pInst)
    {
        IGC_ASSERT_MESSAGE((*pInst)->use_empty(), "Instruction still has usage");
        (*pInst)->eraseFromParent();
    }
}

bool LowerGEPForPrivMem::IsVariableSizeAlloca(llvm::AllocaInst& pAlloca)
{
    IGC_ASSERT(nullptr != pAlloca.getArraySize());
    if (isa<ConstantInt>(pAlloca.getArraySize()))
        return false;
    return true;
}

unsigned int LowerGEPForPrivMem::extractConstAllocaSize(llvm::AllocaInst* pAlloca)
{
    IGC_ASSERT(nullptr != m_pDL);
    IGC_ASSERT(nullptr != pAlloca);
    IGC_ASSERT(nullptr != pAlloca->getArraySize());
    IGC_ASSERT(nullptr != pAlloca->getAllocatedType());
    unsigned int arraySize = int_cast<unsigned int>(cast<ConstantInt>(pAlloca->getArraySize())->getZExtValue());
    unsigned int totalArrayStructureSize = int_cast<unsigned int>(m_pDL->getTypeAllocSize(pAlloca->getAllocatedType()) * arraySize);

    return totalArrayStructureSize;
}

static void GetAllocaLiverange(Instruction* I, unsigned int& liverangeStart, unsigned int& liverangeEnd,
    RegisterPressureEstimate* rpe, SmallVector<LowerGEPForPrivMem::PromotedLiverange, 16>& GEPliveranges)
{
    IGC_ASSERT(nullptr != I);

    for (Value::user_iterator use_it = I->user_begin(), use_e = I->user_end(); use_it != use_e; ++use_it)
    {
        if (isa<GetElementPtrInst>(*use_it) || isa<BitCastInst>(*use_it))
        {
            // collect liveranges for GEP operations related to alloca
            Instruction* Inst = cast<Instruction>(*use_it);
            LowerGEPForPrivMem::PromotedLiverange GEPliverange;
            GEPliverange.LR = rpe->getLiveRangeOrNull(Inst);
            GEPliverange.lowId = GEPliverange.highId = rpe->getAssignedNumberForInst(Inst);
            GetAllocaLiverange(Inst, GEPliverange.lowId, GEPliverange.highId, rpe, GEPliveranges);
            GEPliverange.varSize = rpe->getRegisterWeightForInstruction(Inst);

            if (GEPliverange.LR)
                GEPliveranges.push_back(GEPliverange);

            liverangeStart = std::min(liverangeStart, GEPliverange.lowId);
            liverangeEnd = std::max(liverangeEnd, GEPliverange.highId);
        }
        else if (isa<LoadInst>(*use_it) || isa<StoreInst>(*use_it) || isa<llvm::IntrinsicInst>(*use_it))
        {
            unsigned int idx = rpe->getAssignedNumberForInst(cast<Instruction>(*use_it));
            liverangeStart = std::min(liverangeStart, idx);
            liverangeEnd = std::max(liverangeEnd, idx);
        }
    }
}

bool LowerGEPForPrivMem::IsNativeType(Type* type)
{
    if (type->isDoubleTy() && m_ctx->platform.hasNoFP64Inst())
    {
        return false;
    }

    if (type->isIntegerTy(8) &&
        (IGC_IS_FLAG_ENABLED(ForcePromoteI8) ||
         (IGC_IS_FLAG_ENABLED(EnablePromoteI8) && !m_ctx->platform.supportByteALUOperation())))
    {
        // Byte indirect: not supported for Vx1 and VxH on PVC.
        // As GRF from promoted privMem may use indirect accesses, disable it
        // to prevent Vx1 and VxH accesses.
        return false;
    }

    return true;
}

StatusPrivArr2Reg LowerGEPForPrivMem::CheckIfAllocaPromotable(llvm::AllocaInst* pAlloca)
{
    // vla is not promotable
    IGC_ASSERT(pAlloca != nullptr);
    if (IsVariableSizeAlloca(*pAlloca))
        return StatusPrivArr2Reg::IsDynamicAlloca;

    bool isUniformAlloca = pAlloca->getMetadata("uniform") != nullptr;
    bool useAssumeUniform = pAlloca->getMetadata("UseAssumeUniform") != nullptr;
    unsigned int allocaSize = extractConstAllocaSize(pAlloca);
    unsigned int allowedAllocaSizeInBytes = MAX_ALLOCA_PROMOTE_GRF_NUM * 4;

    // scale alloc size based on the number of GRFs we have
    float grfRatio = m_ctx->getNumGRFPerThread() / 128.0f;
    allowedAllocaSizeInBytes = (uint32_t)(allowedAllocaSizeInBytes * grfRatio);

    if (m_ctx->type == ShaderType::COMPUTE_SHADER)
    {
        ComputeShaderContext* ctx = static_cast<ComputeShaderContext*>(m_ctx);
        SIMDMode simdMode = ctx->GetLeastSIMDModeAllowed();
        unsigned d = simdMode == SIMDMode::SIMD32 ? 4 : 1;

        allowedAllocaSizeInBytes = allowedAllocaSizeInBytes / d;
    }
    else if (m_ctx->type == ShaderType::OPENCL_SHADER)
    {
        FunctionInfoMetaDataHandle funcInfoMD = pMdUtils->getFunctionsInfoItem(m_pFunc);
        SubGroupSizeMetaDataHandle subGroupSize = funcInfoMD->getSubGroupSize();
        if (subGroupSize->hasValue())
        {
            auto simdSize = (uint32_t)subGroupSize->getSIMD_size();
            allowedAllocaSizeInBytes = (allowedAllocaSizeInBytes * 8) / simdSize;
        }
    }
    Type* baseType = nullptr;
    if (!CanUseSOALayout(pAlloca, baseType))
    {
        return StatusPrivArr2Reg::CannotUseSOALayout;
    }
    if (!IsNativeType(baseType))
    {
        return StatusPrivArr2Reg::IsNotNativeType;
    }
    if (isUniformAlloca)
    {
        // Heuristic: for uniform alloca we divide the size by 8 to adjust the pressure
        // as they will be allocated as uniform array
        allocaSize = iSTD::Round(allocaSize, SIMD_PRESSURE_MULTIPLIER) / SIMD_PRESSURE_MULTIPLIER;
    }

    if (useAssumeUniform || allocaSize <= IGC_GET_FLAG_VALUE(ByPassAllocaSizeHeuristic))
    {
        return StatusPrivArr2Reg::OK;
    }

    // if alloca size exceeds alloc size threshold, return false
    if (allocaSize > allowedAllocaSizeInBytes)
    {
        return StatusPrivArr2Reg::OutOfAllocSizeLimit;
    }

    // get all the basic blocks that contain the uses of the alloca
    // then estimate how much changing this alloca to register adds to the pressure at that block.
    unsigned int lowestAssignedNumber = 0xFFFFFFFF;
    unsigned int highestAssignedNumber = 0;
    SmallVector<PromotedLiverange, 16> GEPliveranges;

    GetAllocaLiverange(pAlloca, lowestAssignedNumber, highestAssignedNumber, m_pRegisterPressureEstimate, GEPliveranges);

    uint32_t maxGRFPressure = (uint32_t)(grfRatio * MAX_PRESSURE_GRF_NUM * 4);

    unsigned int pressure = 0;
    for (unsigned int i = lowestAssignedNumber; i <= highestAssignedNumber; i++)
    {
        // subtract impact from GEP operations related to alloca from the register pressure
        // since after promotion alloca to register these GEPs will be eliminated
        unsigned int GEPImpact = 0;
        for (auto GEPinst : GEPliveranges)
        {
            if (GEPinst.LR->contains(i))
                GEPImpact += GEPinst.varSize;
        }

        unsigned RPinst = m_pRegisterPressureEstimate->getRegisterPressureForInstructionFromRPMap(i);
        pressure = std::max(pressure, RPinst - GEPImpact);
    }

    for (auto it : m_promotedLiveranges)
    {
        // check interval intersection
        if ((it.lowId < lowestAssignedNumber && it.highId > lowestAssignedNumber) ||
            (it.lowId > lowestAssignedNumber && it.lowId < highestAssignedNumber))
        {
            pressure += it.varSize;
        }
    }

    if (allocaSize + pressure > maxGRFPressure)
    {
        return StatusPrivArr2Reg::OutOfMaxGRFPressure;
    }
    PromotedLiverange liverange;
    liverange.lowId = lowestAssignedNumber;
    liverange.highId = highestAssignedNumber;
    liverange.varSize = allocaSize;
    m_promotedLiveranges.push_back(liverange);
    return StatusPrivArr2Reg::OK;
}

static bool CheckUsesForSOAAlyout(Instruction* I, bool& vectorSOA)
{
    for (Value::user_iterator use_it = I->user_begin(), use_e = I->user_end(); use_it != use_e; ++use_it)
    {
        if (GetElementPtrInst * gep = dyn_cast<GetElementPtrInst>(*use_it))
        {
            if (CheckUsesForSOAAlyout(gep, vectorSOA))
                continue;
        }
        if (llvm::LoadInst * pLoad = llvm::dyn_cast<llvm::LoadInst>(*use_it))
        {
            vectorSOA &= pLoad->getType()->isVectorTy();
            if (!pLoad->isSimple())
                return false;
        }
        else if (llvm::StoreInst * pStore = llvm::dyn_cast<llvm::StoreInst>(*use_it))
        {
            if (!pStore->isSimple())
                return false;
            llvm::Value* pValueOp = pStore->getValueOperand();
            vectorSOA &= pStore->getValueOperand()->getType()->isVectorTy();
            if (pValueOp == I)
            {
                // GEP instruction is the stored value of the StoreInst (not supported case)
                return false;
            }
        }
        else if (llvm::BitCastInst * pBitCast = llvm::dyn_cast<llvm::BitCastInst>(*use_it))
        {
            Type* baseT = GetBaseType(pBitCast->getType()->getPointerElementType());
            Type* sourceType = GetBaseType(pBitCast->getOperand(0)->getType()->getPointerElementType());
            if (pBitCast->use_empty())
            {
                continue;
            }
            else if (baseT != nullptr &&
                baseT->getScalarSizeInBits() != 0 &&
                baseT->getScalarSizeInBits() == sourceType->getScalarSizeInBits())
            {
                vectorSOA &= (unsigned int)baseT->getPrimitiveSizeInBits() == sourceType->getPrimitiveSizeInBits();
                if (CheckUsesForSOAAlyout(pBitCast, vectorSOA))
                    continue;
            }
            else if (IsBitCastForLifetimeMark(pBitCast))
            {
                continue;
            }
            // Not a candidate.
            return false;
        }
        else if (IntrinsicInst * intr = dyn_cast<IntrinsicInst>(*use_it))
        {
            llvm::Intrinsic::ID  IID = intr->getIntrinsicID();
            if (IID == llvm::Intrinsic::lifetime_start ||
                IID == llvm::Intrinsic::lifetime_end)
            {
                continue;
            }
            return false;
        }
        else
        {
            // This is some other instruction. Right now we don't want to handle these
            return false;
        }
    }
    return true;
}


bool IGC::CanUseSOALayout(AllocaInst* I, Type*& base)
{
    // Do not allow SOA layout for vla which will be stored on the stack.
    // We don't support SOA layout for privates on stack at all so this is just to make
    // the implementation simpler.
    if (LowerGEPForPrivMem::IsVariableSizeAlloca(*I))
        return false;

    // Don't even look at non-array allocas.
    // (extractAllocaDim can not handle them anyway, causing a crash)
    llvm::Type* pType = I->getType()->getPointerElementType();
    if (pType->isStructTy() && pType->getStructNumElements() == 1)
    {
        pType = pType->getStructElementType(0);
    }
    if ((!pType->isArrayTy() && !pType->isVectorTy()) || I->isArrayAllocation())
        return false;

    base = GetBaseType(pType);
    if (base == nullptr)
        return false;
    // only handle case with a simple base type
    if (!(base->getScalarType()->isFloatingPointTy() || base->getScalarType()->isIntegerTy()))
        return false;
    bool vectorSOA = true;
    bool useSOA = CheckUsesForSOAAlyout(I, vectorSOA);
    if (!vectorSOA)
    {
        base = base->getScalarType();
    }
    return useSOA;
}

void LowerGEPForPrivMem::visitAllocaInst(AllocaInst& I)
{
    // Alloca should always be private memory
    IGC_ASSERT(nullptr != I.getType());
    IGC_ASSERT(I.getType()->getAddressSpace() == ADDRESS_SPACE_PRIVATE);

    StatusPrivArr2Reg status = CheckIfAllocaPromotable(&I);
    if (I.getType()->getAddressSpace() == ADDRESS_SPACE_PRIVATE)
    {
        m_ctx->metrics.CollectMem2Reg(&I, status);
    }
    if (status != StatusPrivArr2Reg::OK)
    {
        // alloca size extends remain per-lane-reg space
        return;
    }
    m_allocasToPrivMem.push_back(&I);
}

void TransposeHelper::HandleAllocaSources(Instruction* v, Value* idx)
{
    SmallVector<Value*, 10> instructions;
    for (Value::user_iterator it = v->user_begin(), e = v->user_end(); it != e; ++it)
    {
        Value* inst = cast<Value>(*it);
        instructions.push_back(inst);
    }

    for (auto instruction : instructions)
    {
        if (GetElementPtrInst * pGEP = dyn_cast<GetElementPtrInst>(instruction))
        {
            handleGEPInst(pGEP, idx);
        }
        else if (BitCastInst * bitcast = dyn_cast<BitCastInst>(instruction))
        {
            m_toBeRemovedGEP.push_back(bitcast);
            HandleAllocaSources(bitcast, idx);
        }
        else if (StoreInst * pStore = llvm::dyn_cast<StoreInst>(instruction))
        {
            handleStoreInst(pStore, idx);
        }
        else if (LoadInst * pLoad = llvm::dyn_cast<LoadInst>(instruction))
        {
            handleLoadInst(pLoad, idx);
        }
        else if (IntrinsicInst * inst = dyn_cast<IntrinsicInst>(instruction))
        {
            handleLifetimeMark(inst);
        }
    }
}

class TransposeHelperPromote : public TransposeHelper
{
public:
    void handleLoadInst(
        LoadInst* pLoad,
        Value* pScalarizedIdx);
    void handleStoreInst(
        StoreInst* pStore,
        Value* pScalarizedIdx);
    void handleLifetimeMark(IntrinsicInst* inst);
    AllocaInst* pVecAlloca;
    // location of lifetime starts
    llvm::SmallPtrSet<Instruction*, 4> pStartPoints;
    TransposeHelperPromote(AllocaInst* pAI) : TransposeHelper(false) { pVecAlloca = pAI; }
};

void LowerGEPForPrivMem::handleAllocaInst(llvm::AllocaInst* pAlloca)
{
    // Extract the Alloca size and the base Type
    Type* pType = pAlloca->getType()->getPointerElementType();
    Type* pBaseType = GetBaseType(pType)->getScalarType();
    IGC_ASSERT(pBaseType);
    llvm::AllocaInst* pVecAlloca = createVectorForAlloca(pAlloca, pBaseType);
    if (!pVecAlloca)
    {
        return;
    }

    IRBuilder<> IRB(pVecAlloca);
    Value* idx = IRB.getInt32(0);
    TransposeHelperPromote helper(pVecAlloca);
    helper.HandleAllocaSources(pAlloca, idx);
    IGC_ASSERT(nullptr != pAlloca);
    // for uniform alloca, we need to insert an initial definition
    // to keep the promoted vector as uniform in the next round of WIAnalysis
    bool isUniformAlloca = pAlloca->getMetadata("uniform") != nullptr;
    if (isUniformAlloca && pAlloca->getAllocatedType()->isArrayTy())
    {
        if (helper.pStartPoints.empty())
            helper.pStartPoints.insert(pAlloca);
        for (auto InsertionPoint : helper.pStartPoints)
        {
            IRBuilder<> IRB1(InsertionPoint);
            auto pVecF = GenISAIntrinsic::getDeclaration(m_pFunc->getParent(),
                GenISAIntrinsic::GenISA_vectorUniform, pVecAlloca->getAllocatedType());
            auto pVecInit = IRB1.CreateCall(pVecF);
            // create a store of pVecInit into pVecAlloca
            IRB1.CreateStore(pVecInit, pVecAlloca);
        }
    }
    helper.EraseDeadCode();
    if (pAlloca->use_empty())
    {
        IGC_ASSERT(m_DT);
        replaceAllDbgUsesWith(*pAlloca, *pVecAlloca, *pVecAlloca, *m_DT);
    }
}

void TransposeHelper::handleGEPInst(
    llvm::GetElementPtrInst* pGEP,
    llvm::Value* idx)
{
    IGC_ASSERT(nullptr != pGEP);
    IGC_ASSERT(static_cast<ADDRESS_SPACE>(pGEP->getPointerAddressSpace()) == ADDRESS_SPACE_PRIVATE);
    // Add GEP instruction to remove list
    m_toBeRemovedGEP.push_back(pGEP);
    if (pGEP->use_empty())
    {
        // GEP has no users, do nothing.
        return;
    }

    // Given %p = getelementptr [4 x [3 x <2 x float>]]* %v, i64 0, i64 %1, i64 %2
    // compute the scalarized index with an auxiliary array [4, 3, 2]:
    //
    // Formula: index = (%1 x 3 + %2) x 2
    //
    IRBuilder<> IRB(pGEP);
    Value* pScalarizedIdx = IRB.getInt32(0);
    Type* T = pGEP->getPointerOperandType()->getPointerElementType();
    for (unsigned i = 0, e = pGEP->getNumIndices(); i < e; ++i)
    {
        auto GepOpnd = IRB.CreateZExtOrTrunc(pGEP->getOperand(i + 1), IRB.getInt32Ty());
        unsigned int arr_sz = 1;
        if (T->isStructTy())
        {
            arr_sz = 1;
            T = T->getStructElementType(0);
        }
        else if (T->isArrayTy())
        {
            arr_sz = int_cast<unsigned int>(T->getArrayNumElements());
            T = T->getArrayElementType();
        }
        else if (T->isVectorTy())
        {
            // based on whether we want the index in number of element or number of vector
            if (m_vectorIndex)
            {
                arr_sz = 1;
            }
            else
            {
                arr_sz = (unsigned)cast<IGCLLVM::FixedVectorType>(T)->getNumElements();
            }
            T = cast<VectorType>(T)->getElementType();
        }

        pScalarizedIdx = IRB.CreateNUWAdd(pScalarizedIdx, GepOpnd);
        pScalarizedIdx = IRB.CreateNUWMul(pScalarizedIdx, IRB.getInt32(arr_sz));
    }
    while (T->isStructTy() || T->isArrayTy() || T->isVectorTy()) {
        unsigned int arr_sz = 1;
        if (T->isStructTy())
        {
            IGC_ASSERT(T->getStructNumElements() == 1);
            T = T->getStructElementType(0);
        }
        else if (T->isArrayTy())
        {
            arr_sz = int_cast<unsigned int>(T->getArrayNumElements());;
            T = T->getArrayElementType();
        }
        else if (T->isVectorTy())
        {
            arr_sz = (unsigned)cast<IGCLLVM::FixedVectorType>(T)->getNumElements();
            T = cast<VectorType>(T)->getElementType();
        }
        else
        {
            IGC_ASSERT(0);
        }
        pScalarizedIdx = IRB.CreateNUWMul(pScalarizedIdx, IRB.getInt32(arr_sz));
    }
    pScalarizedIdx = IRB.CreateNUWAdd(pScalarizedIdx, idx);
    HandleAllocaSources(pGEP, pScalarizedIdx);
}

// Load N elements from a vector alloca, Idx, ... Idx + N - 1. Return a scalar
// or a vector value depending on N.
static Value* loadEltsFromVecAlloca(
    unsigned N, AllocaInst* pVecAlloca,
    Value* pScalarizedIdx,
    IGCLLVM::IRBuilder<>& IRB,
    Type* scalarType)
{
    Value* pLoadVecAlloca = IRB.CreateLoad(pVecAlloca);
    if (N == 1)
    {
        return IRB.CreateBitCast(
            IRB.CreateExtractElement(pLoadVecAlloca, pScalarizedIdx),
            scalarType);
    }

    // A vector load
    // %v = load <2 x float>* %ptr
    // becomes
    // %w = load <32 x float>* %ptr1
    // %v0 = extractelement <32 x float> %w, i32 %idx
    // %v1 = extractelement <32 x float> %w, i32 %idx+1
    // replace all uses of %v with <%v0, %v1>
    IGC_ASSERT_MESSAGE((N > 1), "out of sync");
    Type* Ty = IGCLLVM::FixedVectorType::get(scalarType, N);
    Value* Result = UndefValue::get(Ty);

    for (unsigned i = 0; i < N; ++i)
    {
        Value* VectorIdx = ConstantInt::get(pScalarizedIdx->getType(), i);
        auto Idx = IRB.CreateAdd(pScalarizedIdx, VectorIdx);
        auto Val = IRB.CreateExtractElement(pLoadVecAlloca, Idx);
        Val = IRB.CreateBitCast(Val, scalarType);
        Result = IRB.CreateInsertElement(Result, Val, VectorIdx);
    }
    return Result;
}

void TransposeHelperPromote::handleLoadInst(
    LoadInst* pLoad,
    Value* pScalarizedIdx)
{
    IGC_ASSERT(nullptr != pLoad);
    IGC_ASSERT(pLoad->isSimple());
    IGCLLVM::IRBuilder<> IRB(pLoad);
    IGC_ASSERT(nullptr != pLoad->getType());
    unsigned N = pLoad->getType()->isVectorTy()
        ? (unsigned)cast<IGCLLVM::FixedVectorType>(pLoad->getType())->getNumElements()
        : 1;
    Value* Val = loadEltsFromVecAlloca(N, pVecAlloca, pScalarizedIdx, IRB, pLoad->getType()->getScalarType());
    pLoad->replaceAllUsesWith(Val);
    pLoad->eraseFromParent();
}

void TransposeHelperPromote::handleStoreInst(
    llvm::StoreInst* pStore,
    llvm::Value* pScalarizedIdx)
{
    // Add Store instruction to remove list
    IGC_ASSERT(nullptr != pStore);
    IGC_ASSERT(pStore->isSimple());

    IGCLLVM::IRBuilder<> IRB(pStore);
    llvm::Value* pStoreVal = pStore->getValueOperand();
    llvm::Value* pLoadVecAlloca = IRB.CreateLoad(pVecAlloca);
    llvm::Value* pIns = pLoadVecAlloca;
    IGC_ASSERT(nullptr != pStoreVal);
    IGC_ASSERT(nullptr != pStoreVal->getType());
    if (pStoreVal->getType()->isVectorTy())
    {
        // A vector store
        // store <2 x float> %v, <2 x float>* %ptr
        // becomes
        // %w = load <32 x float> *%ptr1
        // %v0 = extractelement <2 x float> %v, i32 0
        // %w0 = insertelement <32 x float> %w, float %v0, i32 %idx
        // %v1 = extractelement <2 x float> %v, i32 1
        // %w1 = insertelement <32 x float> %w0, float %v1, i32 %idx+1
        // store <32 x float> %w1, <32 x float>* %ptr1
        for (unsigned i = 0, e = (unsigned)cast<IGCLLVM::FixedVectorType>(pStoreVal->getType())->getNumElements(); i < e; ++i)
        {
            Value* VectorIdx = ConstantInt::get(pScalarizedIdx->getType(), i);
            auto Val = IRB.CreateExtractElement(pStoreVal, VectorIdx);
            Val = IRB.CreateBitCast(Val, pLoadVecAlloca->getType()->getScalarType());
            auto Idx = IRB.CreateAdd(pScalarizedIdx, VectorIdx);
            pIns = IRB.CreateInsertElement(pIns, Val, Idx);
        }
    }
    else
    {
        pStoreVal = IRB.CreateBitCast(pStoreVal, pLoadVecAlloca->getType()->getScalarType());
        pIns = IRB.CreateInsertElement(pLoadVecAlloca, pStoreVal, pScalarizedIdx);
    }
    IRB.CreateStore(pIns, pVecAlloca);
    pStore->eraseFromParent();
}

void TransposeHelperPromote::handleLifetimeMark(IntrinsicInst* inst)
{
    IGC_ASSERT(nullptr != inst);
    IGC_ASSERT((inst->getIntrinsicID() == llvm::Intrinsic::lifetime_start) ||
        (inst->getIntrinsicID() == llvm::Intrinsic::lifetime_end));
    if (inst->getIntrinsicID() == llvm::Intrinsic::lifetime_start)
    {
        pStartPoints.insert(inst);
    }
    m_toBeRemovedGEP.push_back(inst);
}