1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "common/LLVMUtils.h"
#include "common/LLVMWarningsPush.hpp"
#include <llvm/Pass.h>
#include <llvm/ADT/PriorityQueue.h>
#include <llvm/Support/Allocator.h>
#include <llvm/Support/Debug.h>
#include <llvm/Support/raw_ostream.h>
#include "common/LLVMWarningsPop.hpp"
#include "Compiler/IGCPassSupport.h"
#include "Compiler/CISACodeGen/PreRAScheduler.hpp"
#include "Compiler/CISACodeGen/RegisterEstimator.hpp"
#include "Compiler/CISACodeGen/LivenessAnalysis.hpp"
#include "common/debug/Debug.hpp"
#include "Probe/Assertion.h"
using namespace llvm;
using namespace IGC;
using namespace IGC::Debug;
namespace IGC {
class PreRAScheduler : public FunctionPass {
public:
/* Assuming we are scheduling for SIMD16 PS, max GRF space available for transformation is 128 GRF's.
** Assuming non-uniform LLVM instructions and leaving some room for the payload and fragmentation,
** 75 GRF's are used for this transformation.
*/
unsigned maxPerBBRegisterPressureThreshold = IGC_GET_FLAG_VALUE(MaxPreRASchedulerRegPressureThreshold);
unsigned m_pSIMDSize = 16;
static char ID;
PreRAScheduler() : FunctionPass(ID), m_pLVA(nullptr), m_pDT(), m_pRPE(nullptr) {
initializePreRASchedulerPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function& F) override;
LivenessAnalysis* m_pLVA;
DominatorTree* m_pDT;
RegisterEstimator* m_pRPE;
virtual void releaseMemory() override {
Allocator.Reset();
clearDDG();
}
private:
struct Edge
{
Instruction* end;
unsigned delay;
};
struct Node
{
Instruction* instruction;
std::vector<Edge*> successors;
int numPredecessors;
unsigned nodeDelay;
unsigned nodeInstrNum;
unsigned earliestCycle;
bool scheduled;
};
DenseMap<unsigned, Node*> m_pInstToNodeMap;
struct OrderByLatency
{
public:
bool operator()(Node* A, Node* B) const
{
//if (a.latency > b.latency) a > b; else if (a is sampler and b is alu) a > b;
//else if (a.numSuccs > b.numSuccs) a > b; else if (a.origOrder > b.origOrder) a > b; else a <= b;
if (A->nodeDelay < B->nodeDelay)
{
return true;
}
else if (A->nodeDelay == B->nodeDelay)
{
if ((A->instruction->getNumUses() + A->successors.size()) < (B->instruction->getNumUses() + B->successors.size()))
{
return true;
}
else if ((A->instruction->getNumUses() + A->successors.size()) == (B->instruction->getNumUses() + B->successors.size()))
{
if (A->nodeInstrNum > B->nodeInstrNum)
{
return true;
}
}
return false;
}
return false;
}
};
llvm::PriorityQueue<Node*, std::vector<Node*>, OrderByLatency> longLatencyDelaySortedReadyQueue;
DenseMap<int, std::vector<Node*>> longLatencyTextureIdxSortedReadyMap;
llvm::PriorityQueue<Node*, std::vector<Node*>, OrderByLatency> shortLatencySortedReadyQueue;
struct OrderByEarliestCycle
{
public:
bool operator()(Node* A, Node* B) const
{
if (A->earliestCycle > B->earliestCycle)
{
return true;
}
else if (A->earliestCycle == B->earliestCycle)
{
if (A->nodeDelay < B->nodeDelay)
{
return true;
}
else if (A->nodeDelay == B->nodeDelay)
{
if (A->nodeInstrNum > B->nodeInstrNum)
{
return true;
}
}
}
return false;
}
};
llvm::PriorityQueue<Node*, std::vector<Node*>, OrderByEarliestCycle> readyNodeHoldQueue;
struct OrderByInstrNumInBB
{
public:
bool operator()(Node* A, Node* B) const
{
// no strict weak ordering issue here because no 2 nodes can have the same instruction number
return (A->nodeInstrNum > B->nodeInstrNum);
}
};
llvm::PriorityQueue<Node*, std::vector<Node*>, OrderByInstrNumInBB> instructionOrderSortedReadyQueue;
//DenseMap<Value*, unsigned> instructionToNumUses;
BumpPtrAllocator Allocator;
void getAnalysisUsage(AnalysisUsage& AU) const override {
AU.setPreservesCFG();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<CodeGenContextWrapper>();
AU.addRequired<LivenessAnalysis>();
AU.addRequired<RegisterEstimator>();
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void dumpDDGContents();
void dumpPriorityQueueContents();
#endif
void clearDDG();
void addNodesToSortedReadyList(Node* readyNode, uint32_t current_cycle = 0);
Node* FindReadyListWinnerCandidate(unsigned currentBBPressure, uint32_t& current_cycle, Node* prevScheduledNode);
unsigned instructionLatency(Instruction* inst) const;
void handleMemoryReadWriteInstructions(
Node* currInstNode,
std::list<Node*>& lastLoadNodes,
Node*& lastStoreNode);
void buildBasicBlockDDG(
BasicBlock* BB,
std::list<Node*>& lastLoadNodes,
Node*& lastStoreNode);
unsigned calculateBasicBlockLiveInPressure(BasicBlock* BB);
bool ScheduleReadyNodes(
BasicBlock* BB,
RegPressureTracker& RPTracker);
Node* FindFirstUnscheduledNodeInLatencyQueue(Node* prevScheduledNode);
Node* FindFirstUnscheduledNodeInLatencyQueueFromHoldQueue(Node* prevScheduledNode);
bool fixExtractValue(Function& F) const;
};
char PreRAScheduler::ID = 0;
} // End anonymous namespace;
FunctionPass* createPreRASchedulerPass() {
return new PreRAScheduler();
}
#define PASS_FLAG "igc-PreRAScheduler"
#define PASS_DESC "IGC PreRA Scheduler"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(PreRAScheduler, PASS_FLAG, PASS_DESC, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(LivenessAnalysis)
IGC_INITIALIZE_PASS_DEPENDENCY(RegisterEstimator)
IGC_INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
IGC_INITIALIZE_PASS_END(PreRAScheduler, PASS_FLAG, PASS_DESC, PASS_CFG_ONLY, PASS_ANALYSIS)
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void PreRAScheduler::dumpDDGContents()
{
IGC_SET_FLAG_VALUE(PrintToConsole, 1);
DenseMap<unsigned, Node*>::iterator instToNodeMapItBegin = m_pInstToNodeMap.begin(),
instToNodeMapItEnd = m_pInstToNodeMap.end();
for (; instToNodeMapItBegin != instToNodeMapItEnd; instToNodeMapItBegin++)
{
ods() << "Instruction: ";
ods() << "Number of Predecessors: " << instToNodeMapItBegin->second->numPredecessors << "\t";
ods() << "Node Delay: " << instToNodeMapItBegin->second->nodeDelay << "\t";
ods() << "Node Instruction Number: " << instToNodeMapItBegin->second->nodeInstrNum << "\t";
ods() << "Node Earliest Cycle: " << instToNodeMapItBegin->second->earliestCycle << "\t";
ods() << "Node Scheduled? : " << instToNodeMapItBegin->second->scheduled << "\t";
std::vector<Edge*>::iterator edgeItBegin = instToNodeMapItBegin->second->successors.begin(),
edgeItEnd = instToNodeMapItBegin->second->successors.end();
for (; edgeItBegin != edgeItEnd; edgeItBegin++)
{
ods() << " Successor: end ";
(*edgeItBegin)->end->dump();
ods() << "\t";
ods() << " Successor: delay " << (*edgeItBegin)->delay << "\n";
}
ods() << " ================ End of NODE data ======================== \n";
}
IGC_SET_FLAG_VALUE(PrintToConsole, 0);
}
#endif
void PreRAScheduler::clearDDG()
{
Allocator.Reset();
// clear all the queues
longLatencyDelaySortedReadyQueue.clear();
shortLatencySortedReadyQueue.clear();
longLatencyTextureIdxSortedReadyMap.clear();
readyNodeHoldQueue.clear();
instructionOrderSortedReadyQueue.clear();
for (auto nodeBegin = m_pInstToNodeMap.begin(), nodeEnd = m_pInstToNodeMap.end();
nodeBegin != nodeEnd;
nodeBegin++)
{
delete nodeBegin->second;
}
m_pInstToNodeMap.clear();
}
void PreRAScheduler::addNodesToSortedReadyList(Node* readyNode, uint32_t current_cycle)
{
// first add ready nodes to latencySortedReadyQueue or the readyNodeHoldQueue depending on the earliest_cycle count
if (readyNode->earliestCycle > current_cycle)
{
readyNodeHoldQueue.push(readyNode);
}
else
{
if (isSampleLoadGather4InfoInstruction(readyNode->instruction))
{
// push the node in 2 queues.
longLatencyDelaySortedReadyQueue.push(readyNode);
if (IGC_IS_FLAG_ENABLED(EnablePreRASampleCluster))
{
longLatencyTextureIdxSortedReadyMap[
findSampleInstructionTextureIdx(readyNode->instruction)].push_back(readyNode);
}
}
else
{
shortLatencySortedReadyQueue.push(readyNode);
}
}
// next add readyNode to instructionOrderSortedReadyQueue
instructionOrderSortedReadyQueue.push(readyNode);
}
PreRAScheduler::Node* PreRAScheduler::FindFirstUnscheduledNodeInLatencyQueue(Node* prevScheduledNode)
{
Node* longLatencyTopNode = nullptr;
Node* shortLatencyTopNode = nullptr;
while (!longLatencyDelaySortedReadyQueue.empty() && ((longLatencyDelaySortedReadyQueue.top()->scheduled) == true))
{
longLatencyDelaySortedReadyQueue.pop();
}
while (!shortLatencySortedReadyQueue.empty() && ((shortLatencySortedReadyQueue.top()->scheduled) == true))
{
shortLatencySortedReadyQueue.pop();
}
// map contents
if (IGC_IS_FLAG_ENABLED(EnablePreRASampleCluster))
{
for (DenseMap<int, std::vector<Node*>>::iterator readyMapIt = longLatencyTextureIdxSortedReadyMap.begin();
readyMapIt != longLatencyTextureIdxSortedReadyMap.end();
++readyMapIt)
{
for (std::vector<Node*>::iterator readyMapNodeIt = readyMapIt->second.begin();
readyMapNodeIt != readyMapIt->second.end();)
{
if ((*readyMapNodeIt)->scheduled == true)
{
readyMapNodeIt = readyMapIt->second.erase(readyMapNodeIt);
}
else
{
++readyMapNodeIt;
}
}
}
/* if longLatencyTextureIdxSortedReadyMap is not empty and the prevScheduledNode is also a long latency node,
** then find the textureIdx of the prevScheduledNode and longLatencyTextureIdxSortedReadyMap top node.
** this will help achieve some clustering effect
*/
if (!longLatencyTextureIdxSortedReadyMap.empty() &&
prevScheduledNode &&
isSampleLoadGather4InfoInstruction(prevScheduledNode->instruction))
{
std::vector<Node*>& it = longLatencyTextureIdxSortedReadyMap[
findSampleInstructionTextureIdx(prevScheduledNode->instruction)];
if (!it.empty())
{
Node* readyNodeInMap = it.front();
//it.pop_front();
return readyNodeInMap;
}
}
}
// now find out which queue we want to schedule from,
// if top element in longLatencyDelaySortedReadyQueue has higher nodeDelay than top element in shortLatencySortedReadyQueue, schedule that node
if (!longLatencyDelaySortedReadyQueue.empty() && !shortLatencySortedReadyQueue.empty())
{
longLatencyTopNode = longLatencyDelaySortedReadyQueue.top();
shortLatencyTopNode = shortLatencySortedReadyQueue.top();
if (longLatencyTopNode->nodeDelay > shortLatencyTopNode->nodeDelay)
{
longLatencyDelaySortedReadyQueue.pop();
return longLatencyTopNode;
}
else
{
shortLatencySortedReadyQueue.pop();
return shortLatencyTopNode;
}
}
else if (!shortLatencySortedReadyQueue.empty())
{
shortLatencyTopNode = shortLatencySortedReadyQueue.top();
shortLatencySortedReadyQueue.pop();
return shortLatencyTopNode;
}
else if (!longLatencyDelaySortedReadyQueue.empty())
{
longLatencyTopNode = longLatencyDelaySortedReadyQueue.top();
longLatencyDelaySortedReadyQueue.pop();
return longLatencyTopNode;
}
return nullptr;
}
PreRAScheduler::Node* PreRAScheduler::FindFirstUnscheduledNodeInLatencyQueueFromHoldQueue(Node* prevScheduledNode)
{
Node* scheduled = nullptr;
// First find the topmost non scheduled node from the readyNodeHoldQueue
while (!readyNodeHoldQueue.empty() && ((readyNodeHoldQueue.top()->scheduled) == true))
{
readyNodeHoldQueue.pop();
}
if (!readyNodeHoldQueue.empty())
{
// next determine the cycle number of the top of the the readyNodeHoldQueue.
Node* earliestCycleNode = readyNodeHoldQueue.top();
// next move all the elements with the same cycle number from readyNodeHoldQueue to latencySortedReadyQueue
while (!readyNodeHoldQueue.empty() && (readyNodeHoldQueue.top()->earliestCycle == earliestCycleNode->earliestCycle))
{
Node* readyNode = readyNodeHoldQueue.top();
if (isSampleLoadGather4InfoInstruction(readyNode->instruction))
{
// push node in 2 queues
longLatencyDelaySortedReadyQueue.push(readyNode);
if (IGC_IS_FLAG_ENABLED(EnablePreRASampleCluster))
{
longLatencyTextureIdxSortedReadyMap[
findSampleInstructionTextureIdx(readyNode->instruction)].push_back(readyNode);
}
}
else
{
shortLatencySortedReadyQueue.push(readyNode);
}
readyNodeHoldQueue.pop();
}
// now that latencySortedReadyQueue is not empty, get the first element from the latencySortedReadyQueue
// which has not yet been scheduled
if ((scheduled = FindFirstUnscheduledNodeInLatencyQueue(prevScheduledNode)) != nullptr)
{
return scheduled;
}
}
IGC_ASSERT_MESSAGE(0, "We should never reach here");
return scheduled;
}
PreRAScheduler::Node* PreRAScheduler::FindReadyListWinnerCandidate(unsigned currentBBPressure, uint32_t& current_cycle, Node* prevScheduledNode)
{
// TODO:: improve the winner candidate choice for the readyList
// if the pressure is low, schedule for latency
Node* scheduled = nullptr;
if (currentBBPressure < maxPerBBRegisterPressureThreshold)
{
// if latencySortedReadyQueue is not empty, get the first element from the latency sorted ready queue which has not yet been scheduled
if ((scheduled = FindFirstUnscheduledNodeInLatencyQueue(prevScheduledNode)) != nullptr)
{
return scheduled;
}
else if ((scheduled = FindFirstUnscheduledNodeInLatencyQueueFromHoldQueue(prevScheduledNode)) != nullptr)
{
// Else, latencySortedReadyQueue is empty, we need to populate elements from readyNodeHoldQueue to latencySortedReadyQueue
return scheduled;
}
IGC_ASSERT_MESSAGE(0, "We should never reach here");
return scheduled;
}
else
{
// register pressure is too high, schedule with instruction order
// TODO:: This is not currently optimal use a better heuristics
// we removed scheduled nodes from top of instructionOrderSortedReadyQueue after every schedule of a node.
// so no need to check for top node of instructionOrderSortedReadyQueue being scheduled
if (!instructionOrderSortedReadyQueue.empty())
{
scheduled = instructionOrderSortedReadyQueue.top();
instructionOrderSortedReadyQueue.pop();
return scheduled;
}
IGC_ASSERT_MESSAGE(0, "We should never reach here");
return scheduled;
}
}
void PreRAScheduler::handleMemoryReadWriteInstructions(
Node* currInstNode,
std::list<Node*>& lastLoadNodes,
Node*& lastStoreNode)
{
// Edge information only added for instructions associated with each other due to alias-ing.
// No edge information added for other instructions connected by use-def chain
if (currInstNode->instruction->mayReadOrWriteMemory())
{
if (currInstNode->instruction->mayWriteToMemory())
{
if (lastStoreNode)
{
// add an edge from the currentInstruction to the last lastStoreNode
struct Edge* instEdge = new (Allocator)Edge();
instEdge->end = lastStoreNode->instruction;
// latency in number of instructions. We are creating an artificial dependence between the memory read/write instructions
instEdge->delay = 0;
lastStoreNode->numPredecessors++;
// now add the edge information between the lastStoreNode and currInstNode
currInstNode->successors.push_back(instEdge);
}
lastStoreNode = currInstNode;
for (auto lastLoadNodeIt : lastLoadNodes)
{
// add an edge from the currInstNode to the last lastLoadNodeIt
struct Edge* instEdge = new (Allocator)Edge();
instEdge->end = lastLoadNodeIt->instruction;
// latency in number of instructions. We are creating an artificial dependence between the memory read/write instructions
instEdge->delay = 0;
lastLoadNodeIt->numPredecessors++;
// now add the edge information between the lastStoreNode and currInstNode
currInstNode->successors.push_back(instEdge);
}
lastLoadNodes.clear();
}
if (currInstNode->instruction->mayReadFromMemory() && !currInstNode->instruction->mayWriteToMemory())
{
lastLoadNodes.push_back(currInstNode);
if (lastStoreNode)
{
// add an edge from the currentInstruction to the last lastStoreNode
struct Edge* instEdge = new (Allocator)Edge();
instEdge->end = lastStoreNode->instruction;
// latency in number of instructions. We are creating an artificial dependence between the memory read/write instructions
instEdge->delay = 0;
lastStoreNode->numPredecessors++;
// now add the edge information between the lastStoreNode and currInstNode
currInstNode->successors.push_back(instEdge);
}
}
}
}
/*
** Returns the latency associated with this instruction in number of instructions, assuming 7 threads per EU
** Sample instruction has a latency of 200 cycles and minimum number of instructions need to hide this latency is about
** 21 instructions. Currently the instructionLatency method only returns latency for Sample/Gather4/Lod instructions
*/
unsigned PreRAScheduler::instructionLatency(Instruction* inst) const
{
// TODO:: add latency information for other instructions
unsigned latencyInInstructions = 0;
if (isSampleLoadGather4InfoInstruction(inst))
{
latencyInInstructions = 21;
}
else
{
latencyInInstructions = 1;
}
return latencyInInstructions;
}
void PreRAScheduler::buildBasicBlockDDG(
BasicBlock* BB,
std::list<Node*>& lastLoadNodes,
Node*& lastStoreNode)
{
BasicBlock::iterator I = BB->end();
--I;
bool processedBegin = false;
do
{
Instruction* BI = &(*I);
struct Node* currInstNode = nullptr;
processedBegin = (I == BB->begin());
if (!processedBegin)
--I;
// skip terminator instructions
if (BI->isTerminator())
{
continue;
}
// Skip debugging intrinsic calls.
if (isa<DbgInfoIntrinsic>(BI))
{
continue;
}
if (isa<PHINode>(BI))
{
continue;
}
// first create a node for the current instruction if it does not already exist
auto currInstFound = m_pInstToNodeMap.find(m_pLVA->ValueIds[BI]);
if (currInstFound == m_pInstToNodeMap.end())
{
currInstNode = new Node();
currInstNode->instruction = BI;
currInstNode->numPredecessors = 0;
currInstNode->nodeDelay = 0; // do not associate latency with the instruction yet. Wait to see the instruction's users
currInstNode->nodeInstrNum = m_pLVA->ValueIds[BI]; // this is to schedule nodes with instruction order
currInstNode->earliestCycle = 0;
currInstNode->scheduled = false;
m_pInstToNodeMap.insert(std::make_pair(m_pLVA->ValueIds[BI], currInstNode));
}
else
{
currInstNode = currInstFound->second;
}
if (!BI->use_empty())
{
//Add an edge from dest to all its users
for (auto UI = BI->user_begin(), UE = BI->user_end(); UI != UE; ++UI)
{
Instruction* useInst = dyn_cast<Instruction>(*UI);
if (isa<PHINode>(useInst) || useInst->isTerminator())
{
continue; //ignore PHI and terminator instruction uses
}
// ignore users from other BB's as we are doing local list scheduling
if (useInst->getParent() == BB)
{
// Edge information only added for instructions associated with each other due to alias-ing.
// No edge information added for other instructions connected by use-def chain
// first create a node for the user instruction if it does not already exist
struct Node* useInstNode = nullptr;
auto useInstFound = m_pInstToNodeMap.find(m_pLVA->ValueIds[useInst]);
if (useInstFound == m_pInstToNodeMap.end())
{
// successors or uses are processed before the def. Hence assertion fails if a node is not found
IGC_ASSERT_MESSAGE(0, "user node not found");
}
else
{
useInstNode = useInstFound->second;
}
// increment the number of predecessor instructions for the user instruction
useInstNode->numPredecessors++;
// update the latency associated with the currentInstruction
// go through all the successor nodes and update the final latency associated with currInstruction
currInstNode->nodeDelay = std::max(currInstNode->nodeDelay, instructionLatency(BI) + useInstNode->nodeDelay);
}
}
}
handleMemoryReadWriteInstructions(currInstNode, lastLoadNodes, lastStoreNode);
} while (!processedBegin);
//dumpDDGContents();
}
bool PreRAScheduler::ScheduleReadyNodes(
BasicBlock* BB,
RegPressureTracker& RPTracker)
{
bool Changed = false;
/* Location where the instruction scheduling will begin.
** This is either after the last PHI instruction in the block or before the first
** instruction of the BB.
*/
// Special case: if no PHINode it will insert after the first instruction. Note
// that the first instruction will also be scheduled later.
Instruction* positionToInsert = &(*BB->begin());
// First, skip phi nodes if any; but need to update register pressure.
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI)
{
Instruction* I = &(*BI);
if (!isa<PHINode>(I))
{
break;
}
// keep track of the last PHINode
positionToInsert = I;
// Keep track register pressure.
RPTracker.advance(I);
}
uint32_t current_cycle = 0;
Node* prevScheduledNode = nullptr;
while (!instructionOrderSortedReadyQueue.empty())
{
Node* scheduleNode = nullptr;
// set Changed to true since we change instruction order
Changed = true;
/* Use critical path heuristic to schedule a node until pressure for the BB is low
** If pressure is low, schedule the sample instructions first since we want to hoist them to the beginning of the block
** Else pick instruction with highest latency. If we have contention pick instruction with maximum number of successors
** If we are high on pressure schedule in instruction order
*/
if ((scheduleNode = FindReadyListWinnerCandidate(
RPTracker.getCurrNumGRF((uint16_t)m_pSIMDSize), current_cycle, prevScheduledNode)) == nullptr)
{
// we have scheduled all the nodes or its an error
IGC_ASSERT_MESSAGE(0, "should not reach here");
break;
}
// set the node to be scheduled so we can
// find it when latencySortedReadyQueue, readyNodeHoldQueue and instructionOrderReadyList are being processed
scheduleNode->scheduled = true;
// Update register pressure
RPTracker.advance(scheduleNode->instruction);
// now, go through the list of the scheduled node's successors
std::vector<Edge*>::iterator edgeItBegin = scheduleNode->successors.begin(),
edgeItEnd = scheduleNode->successors.end();
for (; edgeItBegin != edgeItEnd; edgeItBegin++)
{
// Decrease the number of predecessors not scheduled for the successor nodes.
auto succNodeIt = m_pInstToNodeMap.find(m_pLVA->ValueIds[(*edgeItBegin)->end]);
if (succNodeIt != m_pInstToNodeMap.end())
{
Node* SuccNode = succNodeIt->second;
SuccNode->numPredecessors--;
SuccNode->earliestCycle = std::max(SuccNode->earliestCycle, (*edgeItBegin)->delay + current_cycle);
if (SuccNode->numPredecessors == 0)
{
// add ready instructions to 2 lists one sorted on latency and the other on instruction order
addNodesToSortedReadyList(SuccNode, current_cycle);
}
}
}
// Edge information only added for instructions associated with each other due to alias-ing.
// No edge information added for other instructions connected by use-def chain
for (auto schNodeUserBegin = scheduleNode->instruction->user_begin(), schNodeUserEnd = scheduleNode->instruction->user_end();
schNodeUserBegin != schNodeUserEnd;
++schNodeUserBegin)
{
Instruction* useInst = dyn_cast<Instruction>(*schNodeUserBegin);
if (isa<PHINode>(useInst) || useInst->isTerminator())
{
continue; //ignore PHI and terminator instruction uses
}
// ignore users from other BB's as we are doing local list scheduling
if (useInst->getParent() == BB)
{
// Decrease the number of predecessors not scheduled for the successor nodes.
auto succNodeIt = m_pInstToNodeMap.find(m_pLVA->ValueIds[useInst]);
if (succNodeIt != m_pInstToNodeMap.end())
{
Node* SuccNode = succNodeIt->second;
SuccNode->numPredecessors--;
SuccNode->earliestCycle = std::max(SuccNode->earliestCycle, instructionLatency(scheduleNode->instruction) + current_cycle);
if (SuccNode->numPredecessors == 0)
{
// add ready instructions to 2 lists one sorted on latency and the other on instruction order
addNodesToSortedReadyList(SuccNode, current_cycle);
}
}
}
}
// Special case in which there is no PHINode and the first
// instruction is selected first, this check makes sure that
// this case is handled correctly.
if (scheduleNode->instruction != positionToInsert)
{
scheduleNode->instruction->removeFromParent();
scheduleNode->instruction->insertAfter(positionToInsert);
}
// update insert position
positionToInsert = scheduleNode->instruction;
// bump up the current_cycle count
current_cycle++;
// we may have scheduled current instruction by moving it from hold_queue to ready_queue,
// in that case set current_cycle to the scheduleNode->earliestCycle
if (current_cycle < scheduleNode->earliestCycle)
{
current_cycle = scheduleNode->earliestCycle;
}
// move instructions from hold_queue to latency_queue which have earliest_cycle <= current_cycle
while (!readyNodeHoldQueue.empty() && (readyNodeHoldQueue.top()->earliestCycle <= current_cycle))
{
Node* readyNode = readyNodeHoldQueue.top();
if (isSampleLoadGather4InfoInstruction(readyNode->instruction))
{
// push node in 2 queues
longLatencyDelaySortedReadyQueue.push(readyNode);
if (IGC_IS_FLAG_ENABLED(EnablePreRASampleCluster))
{
longLatencyTextureIdxSortedReadyMap[
findSampleInstructionTextureIdx(readyNode->instruction)].push_back(readyNode);
}
}
else
{
shortLatencySortedReadyQueue.push(readyNode);
}
readyNodeHoldQueue.pop();
}
// get rid of scheduled instructions from top of instructionOrderSortedReadyQueue (helps us know if the queue is empty)
while (!instructionOrderSortedReadyQueue.empty() && ((instructionOrderSortedReadyQueue.top()->scheduled) == true))
{
instructionOrderSortedReadyQueue.pop();
}
//dumpPriorityQueueContents();
// keep track of the previously scheduled node
prevScheduledNode = scheduleNode;
}
return Changed;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void PreRAScheduler::dumpPriorityQueueContents()
{
llvm::PriorityQueue<Node*, std::vector<Node*>, PreRAScheduler::OrderByLatency> longLatencyQueueCopy = longLatencyDelaySortedReadyQueue;
llvm::PriorityQueue<Node*, std::vector<Node*>, PreRAScheduler::OrderByEarliestCycle> holdQueueCopy = readyNodeHoldQueue;
llvm::PriorityQueue<Node*, std::vector<Node*>, PreRAScheduler::OrderByLatency> shortLatencyQueueCopy = shortLatencySortedReadyQueue;
IGC_SET_FLAG_VALUE(PrintToConsole, 1);
ods() << "Begin of longLatencyDelaySortedReadyQueue contents" << "\n";
while (!longLatencyQueueCopy.empty())
{
longLatencyQueueCopy.top()->instruction->dump();
ods() << longLatencyQueueCopy.top()->nodeDelay << "\n";
ods() << longLatencyQueueCopy.top()->earliestCycle << "\n";
ods() << longLatencyQueueCopy.top()->successors.size() << "\n";
ods() << longLatencyQueueCopy.top()->nodeInstrNum << "\n";
longLatencyQueueCopy.pop();
}
longLatencyQueueCopy.clear();
ods() << "End of longLatencyDelaySortedReadyQueue contents" << "\n";
ods() << "Begin of map contents" << "\n";
// map contents
for (DenseMap<int, std::vector<Node*>>::iterator readyMapIt = longLatencyTextureIdxSortedReadyMap.begin();
readyMapIt != longLatencyTextureIdxSortedReadyMap.end();
readyMapIt++)
{
for (std::vector<Node*>::iterator readyMapNodeIt = readyMapIt->second.begin();
readyMapNodeIt != readyMapIt->second.end();
readyMapNodeIt++)
{
(*readyMapNodeIt)->instruction->dump();
ods() << (*readyMapNodeIt)->nodeDelay << "\n";
ods() << (*readyMapNodeIt)->earliestCycle << "\n";
ods() << (*readyMapNodeIt)->successors.size() << "\n";
ods() << (*readyMapNodeIt)->nodeInstrNum << "\n";
}
}
ods() << "End of map contents" << "\n";
ods() << "Begin of shortLatencySortedReadyQueue contents" << "\n";
while (!shortLatencyQueueCopy.empty())
{
shortLatencyQueueCopy.top()->instruction->dump();
ods() << shortLatencyQueueCopy.top()->nodeDelay << "\n";
ods() << shortLatencyQueueCopy.top()->earliestCycle << "\n";
ods() << shortLatencyQueueCopy.top()->successors.size() << "\n";
ods() << shortLatencyQueueCopy.top()->nodeInstrNum << "\n";
shortLatencyQueueCopy.pop();
}
shortLatencyQueueCopy.clear();
ods() << "End of shortLatencySortedReadyQueue contents" << "\n";
ods() << "Begin of readyNodeHoldQueue contents" << "\n";
while (!holdQueueCopy.empty())
{
holdQueueCopy.top()->instruction->dump();
ods() << holdQueueCopy.top()->nodeDelay << "\n";
ods() << holdQueueCopy.top()->earliestCycle << "\n";
ods() << holdQueueCopy.top()->successors.size() << "\n";
ods() << holdQueueCopy.top()->nodeInstrNum << "\n";
holdQueueCopy.pop();
}
holdQueueCopy.clear();
ods() << "End of readyNodeHoldQueue contents" << "\n";
IGC_SET_FLAG_VALUE(PrintToConsole, 0);
}
#endif
bool PreRAScheduler::runOnFunction(Function& F) {
CodeGenContext* ctx = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
m_pLVA = &getAnalysis<LivenessAnalysis>();
m_pDT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
m_pRPE = &getAnalysis<RegisterEstimator>();
// Register pressure tracker for tracking the number of GRFs needed.
RegPressureTracker RPTracker(m_pRPE);
bool Changed = false;
if (!IGC_IS_FLAG_ENABLED(SetMaxPreRASchedulerRegPressureThreshold))
{
if (ctx->m_instrTypes.hasDiscard ||
(ctx->m_instrTypes.numBB == 1 && ctx->m_instrTypes.numSample && ctx->m_instrTypes.numInsts / ctx->m_instrTypes.numSample < 30) ||
(ctx->m_instrTypes.numBB != 1 && ctx->m_instrTypes.numBB && ctx->m_instrTypes.numInsts / ctx->m_instrTypes.numBB > 100))
{
maxPerBBRegisterPressureThreshold = 110;
}
}
// Run one pass through all the instructions in the BB
for (df_iterator<DomTreeNode*> DI = df_begin(m_pDT->getRootNode()),
DE = df_end(m_pDT->getRootNode()); DI != DE; ++DI)
{
struct Node* lastStoreNode = nullptr; // used to track the last store node to add dependency between the loads and stores
std::list<Node*> lastLoadNodes; // used to track the list of load nodes before a store node is encountered so they can be aliased
lastLoadNodes.clear();
clearDDG();
BasicBlock* BB = DI->getBlock();
// Start tracking register pressure for this BB
RPTracker.init(BB, true);
buildBasicBlockDDG(BB, lastLoadNodes, lastStoreNode);
//dumpDDGContents();
// identify nodes with no predecessors and add them to readyList sorted in ascending order of latency and instruction order
for (auto instToNodeIt : m_pInstToNodeMap)
{
if (instToNodeIt.second->numPredecessors == 0)
{
// add ready instructions to 2 lists one sorted on latency and the other on instruction order
//instToNodeIt.second->instruction->dump();
addNodesToSortedReadyList(instToNodeIt.second);
}
}
//dumpPriorityQueueContents();
// Schedule until we process the entire DDG
Changed |= ScheduleReadyNodes(BB, RPTracker);
}
if (Changed)
Changed |= fixExtractValue(F);
DumpLLVMIR(ctx, "AfterPreRAScheduler");
return Changed;
}
bool PreRAScheduler::fixExtractValue(Function& F) const {
bool Changed = false;
// Find 'extractvalue' and pull them just after the definition of their
// aggregation source.
for (auto& BB : F) {
for (auto BI = BB.begin(), BE = BB.end(); BI != BE; /*EMPTY*/) {
auto EVI = dyn_cast<ExtractValueInst>(&*BI++);
if (!EVI)
continue;
Instruction* I = dyn_cast<Instruction>(EVI->getAggregateOperand());
if (!I || I->getParent() != EVI->getParent())
continue;
// Move this 'extractvalue' just after the aggregate value.
EVI->moveBefore(&*std::next(I->getIterator()));
Changed = true;
}
}
return Changed;
}
|