1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2022 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "Compiler/CISACodeGen/RuntimeValueLegalizationPass.h"
#include "Compiler/CodeGenPublic.h"
#include "Compiler/CodeGenContextWrapper.hpp"
#include "Compiler/IGCPassSupport.h"
#include "GenISAIntrinsics/GenIntrinsicInst.h"
#include "common/LLVMWarningsPush.hpp"
#include <llvmWrapper/IR/DerivedTypes.h>
#include "common/LLVMWarningsPop.hpp"
using namespace llvm;
using namespace IGC;
#define PASS_FLAG "igc-runtimevalue-legalization-pass"
#define PASS_DESCRIPTION "Shader runtime value legalization"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(RuntimeValueLegalizationPass, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_END(RuntimeValueLegalizationPass, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
namespace IGC
{
char RuntimeValueLegalizationPass::ID = 0;
////////////////////////////////////////////////////////////////////////////
RuntimeValueLegalizationPass::RuntimeValueLegalizationPass() : llvm::ModulePass(ID)
{
initializeRuntimeValueLegalizationPassPass(*llvm::PassRegistry::getPassRegistry());
}
////////////////////////////////////////////////////////////////////////////
void RuntimeValueLegalizationPass::getAnalysisUsage(llvm::AnalysisUsage& AU) const
{
AU.setPreservesCFG();
AU.addRequired<CodeGenContextWrapper>();
}
////////////////////////////////////////////////////////////////////////////
// @brief RuntimeValue comaprator function
static std::function<bool(const std::pair<uint32_t, uint32_t>&, const std::pair<uint32_t, uint32_t>&)>
RuntimeValueComparator = [](const std::pair<uint32_t, uint32_t>& lhs, const std::pair<uint32_t, uint32_t>& rhs) -> bool
{
return (lhs.first < rhs.first) || ((lhs.first == rhs.first) && (lhs.second > rhs.second));
};
////////////////////////////////////////////////////////////////////////////
// @brief Helper type representing collection of RuntimeValue calls. Every entry
// consists of pointer to RuntimeValue instruction together with offsets of first
// and last element of given RuntimeValue. First and last element offsets have
// different values only in case vector RuntimeValue calls.
// The collection is sorted according to offset and number of elements of RuntimeValue.
// { {0, 9}, RuntimeValue* }
// { {0, 0}, RuntimeValue* }
// { {6, 6}, RuntimeValue* }
// { {8, 19}, RuntimeValue* }
typedef std::multimap<
std::pair<uint32_t, uint32_t>, llvm::GenIntrinsicInst*, decltype(RuntimeValueComparator)> RuntimeValueCollection;
////////////////////////////////////////////////////////////////////////////
// @brief Get all RuntimeValue calls. The collection of RuntimeValue calls is sorted
// according to offset and number of elements of RuntimeValue. RuntimeValue calls
// representing single scalars have only one element unlike RuntimeValue calls
// representing vectors of scalars.
static bool GetAllRuntimeValueCalls(
llvm::Module& module,
RuntimeValueCollection& runtimeValueCalls)
{
bool legalizationCheckNeeded = false;
for (llvm::Function& F : module)
{
for (llvm::BasicBlock& B : F)
{
for (llvm::Instruction& I : B)
{
llvm::GenIntrinsicInst* intr = llvm::dyn_cast<llvm::GenIntrinsicInst>(&I);
if (intr &&
intr->getIntrinsicID() == llvm::GenISAIntrinsic::GenISA_RuntimeValue &&
llvm::isa<llvm::ConstantInt>(intr->getArgOperand(0)))
{
uint32_t offset = int_cast<uint32_t>(
cast<ConstantInt>(intr->getArgOperand(0))->getZExtValue());
if (intr->getType()->isVectorTy())
{
if (llvm::isa<IGCLLVM::FixedVectorType>(intr->getType()))
{
IGCLLVM::FixedVectorType* const fixedVectorTy =
cast<IGCLLVM::FixedVectorType>(intr->getType());
// Only vectors of 32-bit values are supported at the moment
if (fixedVectorTy->getElementType()->getPrimitiveSizeInBits() == 32)
{
uint32_t numElements = int_cast<uint32_t>(fixedVectorTy->getNumElements());
const uint32_t lastElementOffset = offset + numElements - 1;
runtimeValueCalls.insert(std::make_pair(std::make_pair(offset, lastElementOffset), intr));
// Having RuntimeValue vectors, further legalization checks are needed
legalizationCheckNeeded = true;
}
else
{
IGC_ASSERT_MESSAGE(0, "Only vectors of 32-bit values are supported at the moment");
}
}
}
else if (intr->getType()->getPrimitiveSizeInBits() == 64)
{
runtimeValueCalls.insert(std::make_pair(std::make_pair(offset, offset + 1), intr));
}
else
{
runtimeValueCalls.insert(std::make_pair(std::make_pair(offset, offset), intr));
}
}
}
}
}
return legalizationCheckNeeded;
}
////////////////////////////////////////////////////////////////////////////////
// @brief Creates a vector of accessed RuntimeValue offset ranges. Returned
// ranges cannot overlap and must either not cross GRF boundaries or start
// at GRF boundary.
static void GetDisjointRegions(
std::vector<std::pair<uint32_t, uint32_t>>& disjointRegions,
const RuntimeValueCollection& runtimeValueCalls,
const uint32_t dataGRFAlignmentInDwords)
{
// Since input collection is already sorted according to offset
// and number of elements of RuntimeValue, it's enough to process
// only first elements for distinct offsets:
// ->{ {0, 7}, RuntimeValue* }
// { {0, 0}, RuntimeValue* }
// ->{ {6, 6}, RuntimeValue* }
// ->{ {8, 19}, RuntimeValue* }
// { {8, 8}, RuntimeValue* }
for (auto it : runtimeValueCalls)
{
std::pair<uint32_t, uint32_t> range = it.first;
if (disjointRegions.empty() ||
range.first > disjointRegions.back().second)
{
disjointRegions.push_back(range);
}
else if (range.first != disjointRegions.back().first &&
range.second > disjointRegions.back().second)
{
disjointRegions.back().second = range.second;
}
// Lambda checks if a range of offsets accessed as a vector is correctly
// aligned:
// - vector must be GRF aligned if it's size is larger than or equal to
// a single GRF.
// - vector must fit in one GRF if its size is less than a single GRF
// (it can not cross GRF boundary).
auto IsUnaligned = [dataGRFAlignmentInDwords](
const std::pair<uint32_t, uint32_t>& range)
{
const uint64_t alignedRegionOffset =
llvm::alignTo(range.first, dataGRFAlignmentInDwords);
if (range.first != alignedRegionOffset &&
range.second >= alignedRegionOffset)
{
return true;
}
return false;
};
while (IsUnaligned(disjointRegions.back()))
{
auto current = disjointRegions.back();
// Align to GRF boundary
current.first = int_cast<uint32_t>(llvm::alignDown(current.first, dataGRFAlignmentInDwords));
// Check for overlapping regions already in the vector
while (!disjointRegions.empty() &&
disjointRegions.back().second >= current.first)
{
IGC_ASSERT(disjointRegions.back().second <= current.second);
if (disjointRegions.back().first < current.first)
{
IGC_ASSERT(!IsUnaligned(disjointRegions.back()));
current.first = disjointRegions.back().first;
}
disjointRegions.pop_back();
}
disjointRegions.push_back(current);
}
}
}
////////////////////////////////////////////////////////////////////////////
// @brief Creates a map of accessed RuntimeValue regions. The map has the following
// format: {offset { enclosing_region_start_offset, enclosing_region_size }}
// for example: {0, {0, 2}}, {1, {0, 2}}, {4, {4, 1}}
// Resulting ranges are disjoint and each spans the biggest continuous range of offsets.
static void GetAccessedRegions(
std::map<uint32_t, std::pair<uint32_t, uint32_t>>& accessedRegions,
const RuntimeValueCollection& runtimeValueCalls,
const uint32_t dataGRFAlignmentInDwords)
{
// Get disjoint offsets regions
std::vector<std::pair<uint32_t, uint32_t>> disjointRegions;
GetDisjointRegions(disjointRegions, runtimeValueCalls, dataGRFAlignmentInDwords);
// Create final map of disjoint RuntimeValue regions
std::size_t disjointRegionsNum = disjointRegions.size();
for (std::size_t i = 0; i < disjointRegionsNum; i++)
{
uint32_t beginIdx = disjointRegions[i].first;
uint32_t endIdx = disjointRegions[i].second;
uint32_t numOfElements = endIdx - beginIdx + 1;
for (uint32_t idx = beginIdx; idx <= endIdx; idx++)
{
accessedRegions.insert(std::make_pair(idx, std::make_pair(beginIdx, numOfElements)));
}
}
}
////////////////////////////////////////////////////////////////////////////
// @brief Legalizes RuntimeValue calls for push analysis.
//
// 1) RuntimeValue vector must be GRF aligned if it's size is larger than or equal to one GRF.
// RuntimeValue vector must fit in one GRF if its size is less than one GRF.
// Replace:
// %15 = call <6 x i32> @llvm.genx.GenISA.RuntimeValue.v6i32(i32 4)
// %17 = extractelement <6 x i32> %15, i32 %0
// with:
// %15 = call <10 x i32> @llvm.genx.GenISA.RuntimeValue.v10i32(i32 0)
// %16 = add i32 %0, 4
// %17 = extractelement <10 x i32> %15, i32 %16
//
// 2) RuntimeValue vectors can not overlap:
// Replace:
// %15 = call <10 x i32> @llvm.genx.GenISA.RuntimeValue.v10i32(i32 0)
// %17 = extractelement <10 x i32> %15, i32 %0
// %25 = call <12 x i32> @llvm.genx.GenISA.RuntimeValue.v12i32(i32 8)
// %27 = extractelement <12 x i32> % 25, i32 %0
// with:
// %15 = call <20 x i32> @llvm.genx.GenISA.RuntimeValue.v20i32(i32 0)
// %17 = extractelement <20 x i32> %15, i32 %0
// %25 = call <20 x i32> @llvm.genx.GenISA.RuntimeValue.v20i32(i32 0)
// %26 = add i32 %0, 8
// %27 = extractelement <20 x i32> %25, i32 %26
//
// 3) RuntimeValue calls returning single scalars are converted to extracts of elements
// from corresponding RuntimeValue vector.
// Replace:
// %1 = call <3 x i32> @llvm.genx.GenISA.RuntimeValue.v3i32(i32 4)
// %3 = call i32 @llvm.genx.GenISA.RuntimeValue.i32(i32 4)
// %14 = call i32 @llvm.genx.GenISA.RuntimeValue.i32(i32 5)
// with:
// %4 = call <3 x i32> @llvm.genx.GenISA.RuntimeValue.v3i32(i32 4)
// %1 = call <3 x i32> @llvm.genx.GenISA.RuntimeValue.v3i32(i32 4)
// %2 = extractelement <3 x i32> %1, i32 0
// %15 = call <3 x i32> @llvm.genx.GenISA.RuntimeValue.v3i32(i32 4)
// %16 = extractelement <3 x i32> %15, i32 1
//
// Only RuntimeValue vectors of 32-bit elements are supported at the moment.
bool RuntimeValueLegalizationPass::runOnModule(llvm::Module& module)
{
bool shaderModified = false;
uint32_t dataGRFAlignmentInDwords =
getAnalysis<CodeGenContextWrapper>().getCodeGenContext()->platform.getGRFSize() / 4;
RuntimeValueCollection runtimeValueCalls(RuntimeValueComparator);
bool legalizationCheckNeeded =
GetAllRuntimeValueCalls(module, runtimeValueCalls);
if (legalizationCheckNeeded)
{
// Get a map of accessed regions of form:
// {offset { enclosing_region_start_offset, enclosing_region_size }}
// for example: {0, {0, 2}}, {1, {0, 2}}, {4, {4, 1}}
std::map<uint32_t, std::pair<uint32_t, uint32_t>> accessedRegions;
GetAccessedRegions(accessedRegions, runtimeValueCalls, dataGRFAlignmentInDwords);
// Loop through all RuntimeValue calls
for (auto it : runtimeValueCalls)
{
llvm::CallInst* callToResolve = llvm::cast<llvm::CallInst>(it.second);
IGCLLVM::FixedVectorType* const fixedVectorTy =
llvm::dyn_cast<IGCLLVM::FixedVectorType>(callToResolve->getType());
uint32_t resolvedOffset = int_cast<uint32_t>(
cast<ConstantInt>(callToResolve->getArgOperand(0))->getZExtValue());
uint32_t resolvedSize = int_cast<uint32_t>(fixedVectorTy
? fixedVectorTy->getNumElements()
: callToResolve->getType()->getPrimitiveSizeInBits() / 32);
// Find corresponding region
auto regionIter = accessedRegions.find(resolvedOffset);
IGC_ASSERT(regionIter != accessedRegions.end());
uint32_t regionOffset = regionIter->second.first;
uint32_t regionSize = regionIter->second.second;
// Check if RuntimeValue needs adjustment
if ((resolvedOffset != regionOffset) || (resolvedSize != regionSize))
{
llvm::IRBuilder<> builder(callToResolve);
llvm::Type* resolvedBaseType = fixedVectorTy ? fixedVectorTy->getElementType() : callToResolve->getType();
IGC_ASSERT(regionSize > 1);
bool is64bit = resolvedBaseType->getPrimitiveSizeInBits() == 64;
if (is64bit)
{
IGC_ASSERT(fixedVectorTy == nullptr);
resolvedBaseType = builder.getInt32Ty();
}
llvm::Type* vectorType = IGCLLVM::FixedVectorType::get(resolvedBaseType, regionSize);
Function* runtimeValueFunc = GenISAIntrinsic::getDeclaration(&module,
GenISAIntrinsic::GenISA_RuntimeValue,
vectorType);
// Create new RuntimeValue call
Value* newValue = builder.CreateCall(runtimeValueFunc, builder.getInt32(regionOffset));
IGC_ASSERT(resolvedOffset >= regionOffset);
uint32_t eeOffset = resolvedOffset - regionOffset;
if (fixedVectorTy || is64bit)
{
// RuntimeValue calls representing vectors of scalars are rewritten due to offset/size change.
// Thus related instructions should be adjusted too.
std::vector<llvm::User*> users(callToResolve->user_begin(), callToResolve->user_end());
bool EEOnly = true;
for (llvm::User* const user : users)
{
if (!llvm::isa<llvm::ExtractElementInst>(user))
{
EEOnly = false;
break;
}
}
if (EEOnly)
{
// Adjust all extract element instructions
for (llvm::User* const user : users)
{
llvm::ExtractElementInst* EEI = llvm::cast<llvm::ExtractElementInst>(user);
builder.SetInsertPoint(EEI);
EEI->setOperand(0, newValue);
if (eeOffset > 0)
{
EEI->setOperand(1, builder.CreateAdd(EEI->getIndexOperand(), builder.getInt32(eeOffset)));
}
}
}
else
{
// Repack the vector and replace all uses with new one
llvm::Value* repackedVectorVal = llvm::UndefValue::get(
(is64bit ? IGCLLVM::FixedVectorType::get(resolvedBaseType, 2) : fixedVectorTy));
for (unsigned i = 0; i < resolvedSize; i++)
{
repackedVectorVal = builder.CreateInsertElement(
repackedVectorVal,
builder.CreateExtractElement(newValue, builder.getInt32(eeOffset + i)),
builder.getInt32(i));
}
callToResolve->replaceAllUsesWith(
builder.CreateBitCast(repackedVectorVal, callToResolve->getType()));
}
}
else
{
// RuntimeValue calls returning single scalars are converted to extracts of elements
// from corresponding RuntimeValue vector
newValue = builder.CreateExtractElement(newValue, builder.getInt32(eeOffset));
callToResolve->replaceAllUsesWith(newValue);
}
callToResolve->eraseFromParent();
shaderModified = true;
}
}
}
return shaderModified;
}
}
|