1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "Compiler/IGCPassSupport.h"
#include "Compiler/InitializePasses.h"
#include "common/Types.hpp"
#include "ScalarizerCodeGen.hpp"
#include "llvmWrapper/IR/DerivedTypes.h"
using namespace llvm;
using namespace IGC;
#define PASS_FLAG "igc-scalarizer-in-codegen"
#define PASS_DESCRIPTION "Scalarizer in codegen"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(ScalarizerCodeGen, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_END(ScalarizerCodeGen, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
char ScalarizerCodeGen::ID = 0;
#define DEBUG_TYPE "ScalarizerCodeGen"
ScalarizerCodeGen::ScalarizerCodeGen() : FunctionPass(ID)
{
initializeScalarizerCodeGenPass(*PassRegistry::getPassRegistry());
}
bool ScalarizerCodeGen::runOnFunction(Function& F)
{
llvm::IRBuilder<> builder(F.getContext());
m_builder = &builder;
visit(F);
return false;
}
void ScalarizerCodeGen::visitBinaryOperator(llvm::BinaryOperator& I)
{
// Scalarizing vector type And/Or instructions
if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or || I.getOpcode() == Instruction::Xor)
{
if (I.getType()->isVectorTy())
{
bool isNewTypeVector = false;
IGCLLVM::FixedVectorType* instType = cast<IGCLLVM::FixedVectorType>(I.getType());
unsigned numElements = int_cast<unsigned>(instType->getNumElements());
unsigned scalarSize = instType->getScalarSizeInBits();
unsigned newScalarBits = numElements * scalarSize;
Type* newType = nullptr;
// Check if the operands can be bitcasted to types int8/16/32
if (newScalarBits == 8)
newType = m_builder->getInt8Ty();
else if (newScalarBits == 16)
newType = m_builder->getInt16Ty();
else if (newScalarBits == 32)
newType = m_builder->getInt32Ty();
else
{
// Check the suitable vector type to cast to, inorder to minimize the number of instructions
isNewTypeVector = true;
if (newScalarBits % 32 == 0)
newType = IGCLLVM::FixedVectorType::get(m_builder->getInt32Ty(), newScalarBits / 32);
else if (newScalarBits % 16 == 0)
newType = IGCLLVM::FixedVectorType::get(m_builder->getInt16Ty(), newScalarBits / 16);
else if (newScalarBits % 8 == 0)
newType = IGCLLVM::FixedVectorType::get(m_builder->getInt8Ty(), newScalarBits / 8);
else
isNewTypeVector = false;
}
if (newType)
{
Value* src0 = I.getOperand(0);
Value* src1 = I.getOperand(1);
auto logicOp = I.getOpcode();
m_builder->SetInsertPoint(&I);
// bitcast the operands to new type
Value* castedSrc0 = m_builder->CreateBitCast(src0, newType);
Value* castedSrc1 = m_builder->CreateBitCast(src1, newType);
Value* newBitCastInst;
// Generate scalar logic operations, and then bitcast the result to a vector type
if (!isNewTypeVector)
{
Value* newLogicInst = m_builder->CreateBinOp(logicOp, castedSrc0, castedSrc1);
newBitCastInst = m_builder->CreateBitCast(newLogicInst, instType);
}
else
{
IGCLLVM::FixedVectorType* newVecType = cast<IGCLLVM::FixedVectorType>(newType);
unsigned newVecTypeNumEle = int_cast<unsigned>(newVecType->getNumElements());
Value* ieLogicOp = UndefValue::get(newType);
for (unsigned i = 0; i < newVecTypeNumEle; i++)
{
Value* constIndex = ConstantInt::get(m_builder->getInt32Ty(), i);
Value* eeSrc0 = m_builder->CreateExtractElement(castedSrc0, constIndex);
Value* eeSrc1 = m_builder->CreateExtractElement(castedSrc1, constIndex);
Value* newLogicInst = m_builder->CreateBinOp(logicOp, eeSrc0, eeSrc1);
ieLogicOp = m_builder->CreateInsertElement(ieLogicOp, newLogicInst, constIndex);
}
newBitCastInst = m_builder->CreateBitCast(ieLogicOp, instType);
}
// Now replace all the instruction users with the newly bitcasted Logic Instruction
I.replaceAllUsesWith(newBitCastInst);
I.eraseFromParent();
}
}
}
}
void ScalarizerCodeGen::visitCastInst(llvm::CastInst& I)
{
// Scalarizing vector type Trunc/Ext instructions
if (I.getOpcode() == Instruction::Trunc || I.getOpcode() == Instruction::ZExt || I.getOpcode() == Instruction::SExt)
{
if (I.getType()->isVectorTy())
{
IGCLLVM::FixedVectorType* instType = cast<IGCLLVM::FixedVectorType>(I.getType());
unsigned numElements = int_cast<unsigned>(instType->getNumElements());
Type* dstType = instType->getScalarType();
Value* src0 = I.getOperand(0);
auto castOp = I.getOpcode();
m_builder->SetInsertPoint(&I);
Value* lastOp = UndefValue::get(instType);
for (unsigned i = 0; i < numElements; i++)
{
Value* constIndex = ConstantInt::get(m_builder->getInt32Ty(), i);
Value* eeSrc0 = m_builder->CreateExtractElement(src0, constIndex);
Value* newCastInst = nullptr;
switch (castOp)
{
case Instruction::Trunc: newCastInst = m_builder->CreateTrunc(eeSrc0, dstType); break;
case Instruction::ZExt: newCastInst = m_builder->CreateZExt(eeSrc0, dstType); break;
case Instruction::SExt: newCastInst = m_builder->CreateSExt(eeSrc0, dstType); break;
default: IGC_ASSERT(0);
}
lastOp = m_builder->CreateInsertElement(lastOp, newCastInst, constIndex);
}
// Now replace all the instruction users with the newly created instruction
I.replaceAllUsesWith(lastOp);
I.eraseFromParent();
}
}
}
|