1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#pragma once
#include "common/LLVMUtils.h"
#include "Compiler/CISACodeGen/DebugInfoData.hpp"
#include "Compiler/CISACodeGen/CVariable.hpp"
#include "Compiler/CISACodeGen/PushAnalysis.hpp"
#include "Compiler/CISACodeGen/helper.h"
#include "Compiler/CISACodeGen/CISACodeGen.h"
#include "Compiler/CISACodeGen/CISABuilder.hpp"
#include "Compiler/CISACodeGen/LiveVars.hpp"
#include "Compiler/CISACodeGen/WIAnalysis.hpp"
#include "Compiler/CISACodeGen/CoalescingEngine.hpp"
#include "Compiler/CodeGenPublic.h"
#include "Compiler/MetaDataApi/MetaDataApi.h"
// Needed for SConstantGatherEntry
#include "usc_gen7.h"
#include "common/Types.hpp"
#include "common/LLVMWarningsPush.hpp"
#include <llvm/ADT/DenseMap.h>
#include <llvm/ADT/MapVector.h>
#include "common/LLVMWarningsPop.hpp"
#include "common/debug/Dump.hpp"
#include <map>
#include <string>
#include <vector>
#include "Probe/Assertion.h"
namespace llvm
{
class Value;
class PHINode;
class Function;
class BasicBlock;
}
namespace IGC
{
class DeSSA;
class CoalescingEngine;
class GenXFunctionGroupAnalysis;
class VariableReuseAnalysis;
struct PushInfo;
// Helper Function
VISA_Type GetType(llvm::Type* pType, CodeGenContext* pDataLayout);
uint64_t GetImmediateVal(llvm::Value* Const);
e_alignment GetPreferredAlignment(llvm::Value* Val, WIAnalysis* WIA, CodeGenContext* pContext);
class CShaderProgram;
///--------------------------------------------------------------------------------------------------------
class CShader
{
public:
friend class CShaderProgram;
class ExtractMaskWrapper
{
// To enable ExtractMask of any vector size. Currently, only vector
// whose size is no larger than 32 has its extractMask calculated.
private:
uint32_t m_EM; // 32 bit extractMask;
bool m_hasEM; // If true, m_EM is valid; otherwise, not valid.
public:
ExtractMaskWrapper(CShader* pS, llvm::Value* VecVal);
ExtractMaskWrapper() = delete;
ExtractMaskWrapper(const ExtractMaskWrapper&) = delete;
ExtractMaskWrapper& operator=(const ExtractMaskWrapper&) = delete;
// b: bit position, from 0 to 31.
bool isSet(uint32_t b) const
{
if (m_hasEM) {
IGC_ASSERT(b < 32);
return (1 << (b)) & m_EM;
}
return true;
}
uint32_t getEM() const { return m_EM; }
uint16_t hasEM() const { return m_hasEM; }
};
CShader(llvm::Function*, CShaderProgram* pProgram);
virtual ~CShader();
void Destroy();
virtual void InitEncoder(SIMDMode simdMode, bool canAbortOnSpill, ShaderDispatchMode shaderMode = ShaderDispatchMode::NOT_APPLICABLE);
virtual void PreCompile() {}
virtual void PreCompileFunction(llvm::Function& F) { IGC_UNUSED(F); }
virtual void ParseShaderSpecificOpcode(llvm::Instruction* inst) { IGC_UNUSED(inst); }
virtual void AllocatePayload() {}
virtual void AddPrologue() {}
virtual void PreAnalysisPass();
virtual void ExtractGlobalVariables() {}
void EOTURBWrite();
void EOTRenderTarget(CVariable* r1, bool isPerCoarse);
CVariable* URBFence();
void EOTGateway(CVariable* payload = nullptr);
virtual void AddEpilogue(llvm::ReturnInst* ret);
virtual CVariable* GetURBOutputHandle()
{
IGC_ASSERT_MESSAGE(0, "Should be overridden in a derived class!");
return nullptr;
}
virtual CVariable* GetURBInputHandle(CVariable* pVertexIndex)
{
IGC_UNUSED(pVertexIndex);
IGC_ASSERT_MESSAGE(0, "Should be overridden in a derived class!");
return nullptr;
}
virtual CVariable* GetGlobalBufferPtr() { IGC_ASSERT(0); return nullptr; }
virtual CVariable* GetLocalBufferPtr() { IGC_ASSERT(0); return nullptr; }
virtual CVariable* GetStackID() { IGC_ASSERT(0); return nullptr; }
virtual CVariable* GetInlinedDataPtr() { IGC_ASSERT(0); return nullptr; }
// if true, HW will pass one GRF NOS of inlinedata to payload, (compute only right now)
virtual bool passNOSInlineData() { return false; }
virtual bool loadThreadPayload() { return false; }
virtual unsigned getAnnotatedNumThreads() { return 0; }
virtual bool IsRegularGRFRequested() { return false; }
virtual bool IsLargeGRFRequested() { return false; }
virtual bool hasReadWriteImage(llvm::Function& F)
{
IGC_UNUSED(F);
return false;
}
virtual bool CompileSIMDSize(SIMDMode simdMode, EmitPass& EP, llvm::Function& F)
{
IGC_UNUSED(F);
IGC_UNUSED(EP);
return CompileSIMDSizeInCommon(simdMode);
}
CVariable* LazyCreateCCTupleBackingVariable(
CoalescingEngine::CCTuple* ccTuple,
VISA_Type baseType = ISA_TYPE_UD);
CVariable* GetSymbol(llvm::Value* value, bool fromConstantPool = false);
void AddSetup(uint index, CVariable* var);
bool AppendPayloadSetup(CVariable* var);
void AddPatchTempSetup(CVariable* var);
void AddPatchConstantSetup(uint index, CVariable* var);
// TODO: simplify calls to GetNewVariable to these shorter and more
// expressive cases where possible.
//
// CVariable* GetNewVector(VISA_Type type, const CName &name) {
// return GetNewVariable(numLanes(m_SIMDSize), type, EALIGN_GRF, false, name);
// }
// CVariable* GetNewUniform(VISA_Type type, const CName &name) {
// grep a GetNewVariable(1, .. true) and see what B and W use
// return GetNewVariable(1, type, alignOf_TODO(type), true, name);
// }
CVariable* GetNewVariable(
uint16_t nbElement,
VISA_Type type,
e_alignment align,
const CName &name)
{
return GetNewVariable(nbElement, type, align, false, 1, name);
}
CVariable* GetNewVariable(
uint16_t nbElement,
VISA_Type type,
e_alignment align,
UniformArgWrap uniform,
const CName &name)
{
return GetNewVariable(nbElement, type, align, uniform, 1, name);
}
CVariable* GetNewVariable(
uint16_t nbElement,
VISA_Type type,
e_alignment align,
UniformArgWrap uniform,
uint16_t numberInstance,
const CName &name);
CVariable* GetNewVariable(const CVariable* from);
CVariable* GetNewAddressVariable(
uint16_t nbElement,
VISA_Type type,
UniformArgWrap uniform,
bool vectorUniform,
const CName &name);
CVariable* GetNewVector(llvm::Value* val, e_alignment preferredAlign = EALIGN_AUTO);
CVariable* GetNewAlias(CVariable* var, VISA_Type type, uint16_t offset, uint16_t numElements);
CVariable* GetNewAlias(CVariable* var, VISA_Type type, uint16_t offset, uint16_t numElements, bool uniform);
// If BaseVar's type matches V's, return BaseVar; otherwise, create an new
// alias CVariable to BaseVar. The newly-created alias CVariable's size
// should be the same as BaseVar's size (used for creating alias for values
// in the same DeSSA's congruent class).
CVariable* createAliasIfNeeded(llvm::Value* V, CVariable* BaseVar);
// Allow to create an alias of a variable handpicking a slice to be able to do cross lane in SIMD32
CVariable* GetVarHalf(CVariable* var, unsigned int half);
void CopyVariable(CVariable* dst, CVariable* src, uint dstSubVar = 0, uint srcSubVar = 0);
void PackAndCopyVariable(CVariable* dst, CVariable* src, uint subVar = 0);
void CopyVariableRaw(CVariable* dst, CVariable* src);
CVariable* CopyVariableRaw(CVariable* src, bool singleInstance = true);
bool IsValueUsed(llvm::Value* value);
CVariable* GetGlobalCVar(llvm::Value* value);
uint GetNbElementAndMask(llvm::Value* value, uint32_t& mask);
void CreatePayload(uint regCount, uint idxOffset, CVariable*& payload, llvm::Instruction* inst, uint paramOffset, uint8_t hfFactor);
uint GetNbVectorElementAndMask(llvm::Value* value, uint32_t& mask);
uint16_t AdjustExtractIndex(llvm::Value* value, uint16_t elemIndex);
WIBaseClass::WIDependancy GetDependency(llvm::Value* v) const;
void SetDependency(llvm::Value* v, WIBaseClass::WIDependancy dep);
bool GetIsUniform(llvm::Value* v) const;
bool InsideDivergentCF(const llvm::Instruction* inst) const;
bool InsideWorkgroupDivergentCF(const llvm::Instruction* inst) const;
CEncoder& GetEncoder();
CVariable* GetR0();
CVariable* GetNULL();
CVariable* GetTSC();
CVariable* GetSR0();
CVariable* GetCR0();
CVariable* GetCE0();
CVariable* GetDBG();
CVariable* GetMSG0();
CVariable* GetHWTID();
CVariable* GetSP();
CVariable* GetFP();
CVariable* GetPrevFP();
CVariable* GetARGV();
CVariable* GetRETV();
CVariable* GetPrivateBase();
CVariable* GetImplArgBufPtr();
CVariable* GetLocalIdBufPtr();
void SaveSRet(CVariable* sretPtr);
CVariable* GetAndResetSRet();
bool hasSP() const { return m_SP != nullptr; }
bool hasFP() const { return m_FP != nullptr; }
void InitializeStackVariables();
void SaveStackState();
void RestoreStackState();
void InitializeScratchSurfaceStateAddress();
void RemoveBitRange(CVariable*& src, unsigned removebit, unsigned range);
void AllocateInput(CVariable* var, uint offset, uint instance = 0, bool forceLiveOut = false);
void AllocateOutput(CVariable* var, uint offset, uint instance = 0);
CVariable* ImmToVariable(uint64_t immediate, VISA_Type type, bool isCodePatchCandidate = false);
CVariable* GetConstant(llvm::Constant* C, CVariable* dstVar = nullptr);
CVariable* GetScalarConstant(llvm::Value* c);
CVariable* GetUndef(VISA_Type type);
llvm::Constant* findCommonConstant(llvm::Constant* C, uint elts, uint currentEmitElts, bool& allSame);
virtual unsigned int GetGlobalMappingValue(llvm::Value* c);
virtual CVariable* GetGlobalMapping(llvm::Value* c);
CVariable* BitCast(CVariable* var, VISA_Type newType);
void CacheArgumentsList();
virtual void MapPushedInputs();
void CreateGatherMap();
void CreateConstantBufferOutput(SKernelProgram* pKernelProgram);
void CreateFunctionSymbol(llvm::Function* pFunc);
void CreateGlobalSymbol(llvm::GlobalVariable* pGlobal);
CVariable* GetStructVariable(llvm::Value* v, bool forceVectorInit = false);
void CreateImplicitArgs();
void CreateAliasVars();
uint GetNumSBlocks() { return m_numBlocks; }
void SetUniformHelper(WIAnalysis* WI) { m_WI = WI; }
void SetDeSSAHelper(DeSSA* deSSA) { m_deSSA = deSSA; }
void SetCoalescingEngineHelper(CoalescingEngine* ce) { m_coalescingEngine = ce; }
void SetCodeGenHelper(CodeGenPatternMatch* CG) { m_CG = CG; }
void SetPushInfoHelper(PushInfo* PI) { pushInfo = *PI; }
void SetDominatorTreeHelper(llvm::DominatorTree* DT) { m_DT = DT; }
void SetDataLayout(const llvm::DataLayout* DL) { m_DL = DL; }
void SetFunctionGroupAnalysis(GenXFunctionGroupAnalysis* FGA) { m_FGA = FGA; }
void SetVariableReuseAnalysis(VariableReuseAnalysis* VRA) { m_VRA = VRA; }
void SetMetaDataUtils(IGC::IGCMD::MetaDataUtils* pMdUtils) { m_pMdUtils = pMdUtils; }
void SetScratchSpaceSize(uint size) { m_ScratchSpaceSize = size; }
IGCMD::MetaDataUtils* GetMetaDataUtils() { return m_pMdUtils; }
virtual void SetShaderSpecificHelper(EmitPass* emitPass) { IGC_UNUSED(emitPass); }
void AllocateConstants(uint& offset);
void AllocateSimplePushConstants(uint& offset);
void AllocateNOSConstants(uint& offset);
void AllocateConstants3DShader(uint& offset);
ShaderType GetShaderType() const { return GetContext()->type; }
bool IsPatchablePS();
bool GetHasBarrier() const { return m_BarrierNumber > 0; }
void SetHasBarrier() { if (m_BarrierNumber == 0) m_BarrierNumber = 1; }
void SetBarrierNumber(int BarrierNumber) { m_BarrierNumber = BarrierNumber; }
int GetBarrierNumber() const { return m_BarrierNumber; }
void GetSimdOffsetBase(CVariable*& pVar, bool dup = false);
/// Returns a simd8 register filled with values [24, 20, 16, 12, 8, 4, 0]
/// that are used to index subregisters of a GRF when counting offsets in bytes.
/// Used e.g. for indirect addressing via a0 register.
CVariable* GetPerLaneOffsetsReg(uint typeSizeInBytes);
void GetPayloadElementSymbols(llvm::Value* inst, CVariable* payload[], int vecWidth);
CodeGenContext* GetContext() const { return m_ctx; }
SProgramOutput* ProgramOutput();
bool CanTreatAsAlias(llvm::ExtractElementInst* inst);
bool CanTreatScalarSourceAsAlias(llvm::InsertElementInst*);
bool HasBecomeNoop(llvm::Instruction* inst);
// If V is not in any congruent class, not aliased to any other
// variables, not payload-coalesced, then this function returns
// true.
bool IsCoalesced(llvm::Value* V);
bool VMECoalescePattern(llvm::GenIntrinsicInst*);
bool isUnpacked(llvm::Value* value);
/// Return true if we are sure that all lanes are active at the begging of the thread
virtual bool HasFullDispatchMask() { return false; }
bool needsEntryFence() const;
std::pair<bool, unsigned> getExtractMask(Value *V) const {
auto It = extractMasks.find(V);
if (It == extractMasks.end())
return std::make_pair(false, 0);
return std::make_pair(true, It->second);
}
llvm::Function* entry = nullptr;
const CBTILayout* m_pBtiLayout = nullptr;
const CPlatform* m_Platform = nullptr;
const CDriverInfo* m_DriverInfo = nullptr;
ModuleMetaData* m_ModuleMetadata = nullptr;
/// Dispatch size is the number of logical threads running in one hardware thread
SIMDMode m_dispatchSize;
/// SIMD Size is the default size of instructions
ShaderDispatchMode m_ShaderDispatchMode;
/// the default emit size for this shader. This is the default size for variables as well
/// as the default execution size for each instruction. encoder may override it explicitly
/// via CEncoder::SetSIMDSize
SIMDMode m_SIMDSize;
uint8_t m_numberInstance = 0;
PushInfo pushInfo;
bool isInputsPulled; //true if any input is pulled, false otherwise
bool isMessageTargetDataCacheDataPort;
uint m_sendStallCycle = 0;
uint m_staticCycle = 0;
uint m_loopNestedStallCycle = 0;
uint m_loopNestedCycle= 0;
unsigned m_spillSize = 0;
float m_spillCost = 0; // num weighted spill inst / total inst
std::vector<llvm::Value*> m_argListCache;
/// The size in byte used by igc (non-spill space). And this
/// is the value passed to VISA so that VISA's spill, if any,
/// will go after this space.
uint m_ScratchSpaceSize = 0;
CVariable* m_ScratchSurfaceAddress = nullptr;
ShaderStats* m_shaderStats = nullptr;
// Number of binding table entries per cache line.
static constexpr DWORD cBTEntriesPerCacheLine = 32;
// Max BTI value that can increase binding table count.
// SampleEngine: Binding Table Index is set to 252 specifies the bindless surface offset.
// DataPort: The special entry 255 is used to reference Stateless A32 or A64 address model,
// and the special entry 254 is used to reference the SLM address model.
// The special entry 252 is used to reference bindless resource operation.
static constexpr DWORD MAX_BINDING_TABLE_INDEX = 251;
static constexpr uint cMessageExtendedDescriptorEOTBit = BIT(5);
CVariable* GetCCTupleToVariableMapping(CoalescingEngine::CCTuple* ccTuple)
{
return ccTupleMapping[ccTuple];
}
void addConstantInPool(llvm::Constant* C, CVariable* Var) {
ConstantPool[C] = Var;
}
CVariable* lookupConstantInPool(llvm::Constant* C) {
return ConstantPool.lookup(C);
}
unsigned int EvaluateSIMDConstExpr(llvm::Value* C);
/// Initialize per function status.
void BeginFunction(llvm::Function* F);
// This method split payload interpolations from the shader into another compilation unit
void SplitPayloadFromShader(llvm::Function* F);
/// This method is used to create the vISA variable for function F's formal return value
CVariable* getOrCreateReturnSymbol(llvm::Function* F);
/// This method is used to create the vISA variable for function F's formal argument
CVariable* getOrCreateArgumentSymbol(
llvm::Argument* Arg,
bool ArgInCallee, // true if Arg isn't in current func
bool useStackCall = false);
void UpdateSymbolMap(llvm::Value* v, CVariable* CVar);
VISA_Type GetType(llvm::Type* type);
uint32_t GetNumElts(llvm::Type* type, bool isUniform = false);
/// Evaluate constant expression and return the result immediate value.
uint64_t GetConstantExpr(llvm::ConstantExpr* C);
uint32_t GetMaxUsedBindingTableEntryCount(void) const
{
if (m_BindingTableUsedEntriesBitmap != 0)
{
// m_BindingTableEntryCount is index; '+ 1' due to calculate total used count.
return (m_BindingTableEntryCount + 1);
}
return 0;
}
uint32_t GetBindingTableEntryBitmap(void) const
{
return m_BindingTableUsedEntriesBitmap;
}
void SetBindingTableEntryCountAndBitmap(bool directIdx, BufferType bufType, uint32_t typeBti, uint32_t bti)
{
if (bti <= MAX_BINDING_TABLE_INDEX)
{
if (directIdx)
{
m_BindingTableEntryCount = (bti <= m_pBtiLayout->GetBindingTableEntryCount()) ? (std::max(bti, m_BindingTableEntryCount)) : m_BindingTableEntryCount;
m_BindingTableUsedEntriesBitmap |= BIT(bti / cBTEntriesPerCacheLine);
if (bufType == RESOURCE)
{
m_shaderResourceLoaded[typeBti / 32] |= BIT(typeBti % 32);
}
else if (bufType == CONSTANT_BUFFER)
{
m_constantBufferLoaded |= BIT(typeBti);
}
else if (bufType == UAV)
{
m_uavLoaded |= QWBIT(typeBti);
}
else if (bufType == RENDER_TARGET)
{
m_renderTargetLoaded |= BIT(typeBti);
}
}
else
{
// Indirect addressing, set the maximum BTI.
m_BindingTableEntryCount = m_pBtiLayout->GetBindingTableEntryCount();
m_BindingTableUsedEntriesBitmap |= BITMASK_RANGE(0, (m_BindingTableEntryCount / cBTEntriesPerCacheLine));
if (bufType == RESOURCE || bufType == BINDLESS_TEXTURE)
{
unsigned int MaxArray = m_pBtiLayout->GetTextureIndexSize() / 32;
for (unsigned int i = 0; i < MaxArray; i++)
{
m_shaderResourceLoaded[i] = 0xffffffff;
}
for (unsigned int i = MaxArray * 32; i < m_pBtiLayout->GetTextureIndexSize(); i++)
{
m_shaderResourceLoaded[MaxArray] = BIT(i % 32);
}
}
else if (bufType == CONSTANT_BUFFER || bufType == BINDLESS_CONSTANT_BUFFER)
{
m_constantBufferLoaded |= BITMASK_RANGE(0, m_pBtiLayout->GetConstantBufferIndexSize());
}
else if (bufType == UAV || bufType == BINDLESS)
{
m_uavLoaded |= QWBITMASK_RANGE(0, m_pBtiLayout->GetUavIndexSize());
}
else if (bufType == RENDER_TARGET)
{
m_renderTargetLoaded |= BITMASK_RANGE(0, m_pBtiLayout->GetRenderTargetIndexSize());
}
}
}
}
/// Evaluate the Sampler Count field value.
unsigned int GetSamplerCount(unsigned int samplerCount);
static unsigned GetIMEReturnPayloadSize(llvm::GenIntrinsicInst* I);
void addCVarsForVectorBC(llvm::BitCastInst* BCI, llvm::SmallVector<CVariable*, 8> CVars)
{
IGC_ASSERT_MESSAGE(m_VectorBCItoCVars.find(BCI) == std::end(m_VectorBCItoCVars), "a variable already exists for this vector bitcast");
m_VectorBCItoCVars.try_emplace(BCI, CVars);
}
CVariable* getCVarForVectorBCI(llvm::BitCastInst* BCI, int index)
{
auto iter = m_VectorBCItoCVars.find(BCI);
if (iter == m_VectorBCItoCVars.end())
{
return nullptr;
}
return (*iter).second[index];
}
void SetHasGlobalStatelessAccess() { m_HasGlobalStatelessMemoryAccess = true; }
bool GetHasGlobalStatelessAccess() const { return m_HasGlobalStatelessMemoryAccess; }
void SetHasConstantStatelessAccess() { m_HasConstantStatelessMemoryAccess = true; }
bool GetHasConstantStatelessAccess() const { return m_HasConstantStatelessMemoryAccess; }
void SetHasGlobalAtomics() { m_HasGlobalAtomics = true; }
bool GetHasGlobalAtomics() const { return m_HasGlobalAtomics; }
bool GetHasDPAS() const { return m_HasDPAS; }
void SetHasDPAS() { m_HasDPAS = true; }
bool GetHasEval() const { return m_HasEval; }
void SetHasEval() { m_HasEval = true; }
void IncStatelessWritesCount() { ++m_StatelessWritesCount; }
void IncIndirectStatelessCount() { ++m_IndirectStatelessCount; }
uint32_t GetStatelessWritesCount() const { return m_StatelessWritesCount; }
uint32_t GetIndirectStatelessCount() const { return m_IndirectStatelessCount; }
// In bytes
uint32_t getGRFSize() const { return m_Platform->getGRFSize(); }
// in DWORDs
uint32_t getMinPushConstantBufferAlignmentInBytes() const { return m_Platform->getMinPushConstantBufferAlignment() * sizeof(DWORD); }
// Note that for PVC A0 simd16, PVCLSCEnabled() returns true
// but no LSC is generated!
bool PVCLSCEnabled() const {
return m_Platform->isCoreChildOf(IGFX_XE_HPC_CORE) && m_Platform->hasLSC();
}
e_alignment getGRFAlignment() const { return CVariable::getAlignment(getGRFSize()); }
llvm::DenseMap<llvm::Value*, CVariable*>& GetSymbolMapping()
{
return symbolMapping;
}
llvm::DenseMap<llvm::Value*, CVariable*>& GetGlobalMapping()
{
return globalSymbolMapping;
}
llvm::DenseMap<llvm::Constant*, CVariable*>& GetConstantMapping()
{
return ConstantPool;
}
int64_t GetKernelArgOffset(CVariable* argV)
{
auto it = kernelArgToPayloadOffsetMap.find(argV);
return it != kernelArgToPayloadOffsetMap.end() ? (int64_t) it->second : -1;
}
DebugInfoData& GetDebugInfoData();
unsigned int GetPrimitiveTypeSizeInRegisterInBits(const llvm::Type* Ty) const;
unsigned int GetPrimitiveTypeSizeInRegister(const llvm::Type* Ty) const;
unsigned int GetScalarTypeSizeInRegisterInBits(const llvm::Type* Ty) const;
unsigned int GetScalarTypeSizeInRegister(const llvm::Type* Ty) const;
bool HasStackCalls() const { return m_HasStackCalls; }
void SetHasStackCalls() { m_HasStackCalls = true; }
bool IsIntelSymbolTableVoidProgram() const { return m_isIntelSymbolTableVoidProgram; }
void SetIsIntelSymbolTableVoidProgram() { m_isIntelSymbolTableVoidProgram = true; }
////////////////////////////////////////////////////////////////////
// NOTE: for vector load/stores instructions pass the
// optional instruction argument checks additional constraints
static Tristate shouldGenerateLSCQuery(
const CodeGenContext& Ctx,
llvm::Instruction* vectorLdStInst = nullptr,
SIMDMode Mode = SIMDMode::UNKNOWN);
bool shouldGenerateLSC(llvm::Instruction* vectorLdStInst = nullptr);
bool forceCacheCtrl(llvm::Instruction* vectorLdStInst = nullptr);
uint32_t totalBytesToStoreOrLoad(llvm::Instruction* vectorLdStInst);
void setShaderProgramID(int aID) { m_shaderProgramID = aID; }
int getShaderProgramID() const { return m_shaderProgramID; }
void getShaderFileName(std::string& ShaderName) const;
protected:
bool CompileSIMDSizeInCommon(SIMDMode simdMode);
uint32_t GetShaderThreadUsageRate();
private:
int m_shaderProgramID = 0; // unique for each shaderProgram
// Return DefInst's CVariable if it could be reused for UseInst, and return
// nullptr otherwise.
CVariable* reuseSourceVar(llvm::Instruction* UseInst,
llvm::Instruction* DefInst,
e_alignment preferredAlign);
// Return nullptr if no source variable is reused. Otherwise return a
// CVariable from its source operand.
CVariable* GetSymbolFromSource(llvm::Instruction* UseInst,
e_alignment preferredAlign);
protected:
CShaderProgram* m_parent;
CodeGenContext* m_ctx;
WIAnalysis* m_WI;
DeSSA* m_deSSA;
CoalescingEngine* m_coalescingEngine;
CodeGenPatternMatch* m_CG;
llvm::DominatorTree* m_DT;
const llvm::DataLayout* m_DL;
GenXFunctionGroupAnalysis* m_FGA;
VariableReuseAnalysis* m_VRA;
uint m_numBlocks;
IGC::IGCMD::MetaDataUtils* m_pMdUtils;
#if defined(_DEBUG) || defined(_INTERNAL)
llvm::SpecificBumpPtrAllocator<CVariable> Allocator;
#else
llvm::BumpPtrAllocator Allocator;
#endif
// Mapping from formal argument to its variable or from function to its
// return variable. Per kernel mapping. Used when llvm functions are
// compiled into vISA subroutine
llvm::DenseMap<llvm::Value*, CVariable*> globalSymbolMapping;
llvm::DenseMap<llvm::Value*, CVariable*> symbolMapping;
// Yet another map: a mapping from ccTuple to its corresponding root variable.
// Variables that participate in congruence class tuples will be defined as
// aliases (with respective offset) to the root variable.
llvm::DenseMap<CoalescingEngine::CCTuple*, CVariable*> ccTupleMapping;
// Constant pool.
llvm::DenseMap<llvm::Constant*, CVariable*> ConstantPool;
// keep a map when we generate accurate mask for vector value
// in order to reduce register usage
llvm::DenseMap<llvm::Value*, uint32_t> extractMasks;
// keep a map for each kernel argument to its allocated payload offset
llvm::DenseMap<CVariable*, uint32_t> kernelArgToPayloadOffsetMap;
CEncoder encoder;
std::vector<CVariable*> setup;
std::vector<CVariable*> payloadLiveOutSetup;
std::vector<CVariable*> payloadTempSetup;
std::vector<CVariable*> patchConstantSetup;
std::vector<CVariable*> perPrimitiveSetup;
uint m_maxBlockId;
CVariable* m_R0;
CVariable* m_NULL;
CVariable* m_TSC;
CVariable* m_SR0;
CVariable* m_CR0;
CVariable* m_CE0;
CVariable* m_MSG0;
CVariable* m_DBG;
CVariable* m_HW_TID;
CVariable* m_SP;
CVariable* m_FP;
CVariable* m_SavedFP;
CVariable* m_ARGV;
CVariable* m_RETV;
CVariable* m_SavedSRetPtr;
CVariable* m_ImplArgBufPtr;
CVariable* m_LocalIdBufPtr;
std::vector<USC::SConstantGatherEntry> gatherMap;
uint m_ConstantBufferLength;
uint m_constantBufferMask;
uint m_constantBufferLoaded;
uint64_t m_uavLoaded;
uint m_shaderResourceLoaded[4];
uint m_renderTargetLoaded;
int m_cbSlot;
uint m_statelessCBPushedSize;
uint m_NOSBufferSize = 0;
/// holds max number of inputs that can be pushed for this shader unit
static const uint32_t m_pMaxNumOfPushedInputs;
int m_BarrierNumber;
SProgramOutput m_simdProgram;
// Holds max used binding table entry index.
uint32_t m_BindingTableEntryCount;
// Holds binding table entries bitmap.
uint32_t m_BindingTableUsedEntriesBitmap;
// for each vector BCI whose uses are all extractElt with imm offset,
// we store the CVariables for each index
llvm::DenseMap<llvm::Instruction*, llvm::SmallVector<CVariable*, 8>> m_VectorBCItoCVars;
// Those two are for stateful token setup. It is a quick
// special case checking. Once a generic approach is added,
// this two fields shall be retired.
bool m_HasGlobalStatelessMemoryAccess;
bool m_HasConstantStatelessMemoryAccess;
bool m_HasGlobalAtomics = false;
bool m_HasDPAS = false;
bool m_HasEval = false;
bool m_passNOSInlinedata = false;
uint32_t m_StatelessWritesCount = 0;
uint32_t m_IndirectStatelessCount = 0;
DebugInfoData diData;
bool m_HasStackCalls = false;
bool m_isIntelSymbolTableVoidProgram = false;
};
/// This class contains the information for the different SIMD version
/// of a kernel. Each kernel in the module is associated to one CShaderProgram
class CShaderProgram
{
public:
typedef llvm::MapVector<llvm::Function*, CShaderProgram*> KernelShaderMap;
CShaderProgram(CodeGenContext* ctx, llvm::Function* kernel);
~CShaderProgram();
CShader* GetOrCreateShader(SIMDMode simd, ShaderDispatchMode mode = ShaderDispatchMode::NOT_APPLICABLE);
CShader* GetShader(SIMDMode simd, ShaderDispatchMode mode = ShaderDispatchMode::NOT_APPLICABLE);
void DeleteShader(SIMDMode simd, ShaderDispatchMode mode = ShaderDispatchMode::NOT_APPLICABLE);
CodeGenContext* GetContext() { return m_context; }
llvm::Function* getLLVMFunction() const { return m_kernel; }
ShaderStats* m_shaderStats;
// invoked to clear Func ptr when the current module is deleted (so is func within it).
void clearBeforeRetry() {
m_kernel = nullptr;
for (auto S : m_SIMDshaders) {
if (S != nullptr) {
S->entry = nullptr;
}
}
}
protected:
CShader*& GetShaderPtr(SIMDMode simd, ShaderDispatchMode mode);
CShader* CreateNewShader(SIMDMode simd);
void ClearShaderPtr(SIMDMode simd);
inline bool hasShaderOutput(CShader* shader)
{
return (shader && shader->ProgramOutput()->m_programSize > 0);
}
inline void freeShaderOutput(CShader* shader)
{
if (hasShaderOutput(shader))
{
IGC::aligned_free(shader->ProgramOutput()->m_programBin);
shader->ProgramOutput()->m_programSize = 0;
}
}
CodeGenContext* m_context;
llvm::Function* m_kernel;
std::array<CShader*, 8> m_SIMDshaders;
};
struct SInstContext
{
CVariable* flag;
e_modifier dst_mod;
bool invertFlag;
void init()
{
flag = NULL;
dst_mod = EMOD_NONE;
invertFlag = false;
}
};
static const SInstContext g_InitContext =
{
NULL,
EMOD_NONE,
false,
};
struct PSSignature;
void AddCodeGenPasses(
CodeGenContext& ctx,
CShaderProgram::KernelShaderMap& shaders,
IGCPassManager& Passes,
SIMDMode simdMode,
bool canAbortOnSpill,
ShaderDispatchMode shaderMode = ShaderDispatchMode::NOT_APPLICABLE,
PSSignature* pSignature = nullptr);
bool SimdEarlyCheck(CodeGenContext* ctx);
bool ForceSimdWA(ComputeShaderContext& ctx, SIMDMode& forceSimd, SIMDMode minSimdMode, SIMDMode maxSimdMode);
void AddLegalizationPasses(CodeGenContext& ctx, IGCPassManager& mpm, PSSignature* pSignature = nullptr);
void AddAnalysisPasses(CodeGenContext& ctx, IGCPassManager& mpm);
void destroyShaderMap(CShaderProgram::KernelShaderMap& shaders);
void unify_opt_PreProcess(CodeGenContext* pContext);
}
|