1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "Compiler/CISACodeGen/SimplifyConstant.h"
#include "Compiler/IGCPassSupport.h"
#include "Compiler/CodeGenPublicEnums.h"
#include "common/igc_regkeys.hpp"
#include "common/LLVMWarningsPush.hpp"
#include <llvm/Analysis/LoopInfo.h>
#include "llvm/IR/Constants.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IRBuilder.h"
#include "llvmWrapper/IR/DerivedTypes.h"
#include "llvmWrapper/IR/Value.h"
#include "common/LLVMWarningsPop.hpp"
#include "common/Types.hpp"
#include "Probe/Assertion.h"
using namespace llvm;
using namespace IGC;
namespace {
/// \brief Perform by-value simplification of loading constant data.
///
/// Currently this only applies to certain constant data array initializers.
///
class SimplifyConstant : public ModulePass {
public:
static char ID; // Pass identification, replacement for typeid
SimplifyConstant() : ModulePass(ID) {
initializeSimplifyConstantPass(*PassRegistry::getPassRegistry());
}
bool runOnModule(Module& M);
private:
bool process(GlobalVariable* GV);
};
} // namespace
namespace IGC {
IGC_INITIALIZE_PASS_BEGIN(SimplifyConstant, "SimplifyConstant", "SimplifyConstant", false, false)
IGC_INITIALIZE_PASS_END(SimplifyConstant, "SimplifyConstant", "SimplifyConstant", false, false)
} // namespace IGC
char SimplifyConstant::ID = 0;
ModulePass* IGC::createSimplifyConstantPass() { return new SimplifyConstant(); }
bool SimplifyConstant::runOnModule(Module& M) {
bool Changed = false;
for (auto I = M.global_begin(); I != M.global_end(); /*empty*/) {
GlobalVariable* GV = &(*I++);
if (GV->user_empty() || !GV->isConstant() || !GV->hasInitializer() ||
GV->getType()->getAddressSpace() != ADDRESS_SPACE_CONSTANT)
continue;
Changed |= process(GV);
}
return Changed;
}
namespace {
class ConstantLoader {
public:
enum CInitKind {
CK_Unknown,
// All elements are equal.
CK_Splat,
// f(i) = (i % 2) == 0 ? A : B;
CK_OddEven,
// f(i) = (i < Pivot) ? A : B
CK_Ladder2
};
explicit ConstantLoader(GlobalVariable* GV)
: GV(GV), Kind(CK_Unknown), Pivot(0) {
analyze();
simplify();
}
bool simplified() const { return Kind != CK_Unknown; }
private:
void analyze();
void simplify();
bool matchSplat(ConstantDataArray* CDA) {
Constant* V0 = CDA->getElementAsConstant(0);
for (unsigned i = 1, n = CDA->getNumElements(); i < n; ++i)
if (CDA->getElementAsConstant(i) != V0)
return false;
Kind = CK_Splat;
return true;
}
bool matchOddEven(ConstantDataArray* CDA) {
Constant* V0 = CDA->getElementAsConstant(0);
Constant* V1 = CDA->getElementAsConstant(1);
for (unsigned i = 2, n = CDA->getNumElements(); i < n; ++i) {
Constant* Val = CDA->getElementAsConstant(i);
if ((i % 2 == 0 && Val != V0) || (i % 2 == 1 && Val != V1))
return false;
}
Kind = CK_OddEven;
return true;
}
bool matchLadder2(ConstantDataArray* CDA) {
Constant* V = CDA->getElementAsConstant(0);
unsigned k = 0;
for (unsigned i = 1, n = CDA->getNumElements(); i < n; ++i) {
Constant* Val = CDA->getElementAsConstant(i);
if (Val != V) {
if (k > 0)
return false;
V = Val;
k = i;
}
}
Kind = CK_Ladder2;
Pivot = k;
return true;
}
GlobalVariable* GV;
CInitKind Kind;
// Index of the second value if exists.
unsigned Pivot;
};
} // namespace
void ConstantLoader::analyze() {
auto Init = GV->getInitializer();
auto CDA = dyn_cast<ConstantDataArray>(Init);
if (!CDA || CDA->isString() || CDA->getNumElements() <= 1)
return;
matchSplat(CDA) || matchOddEven(CDA) || matchLadder2(CDA);
}
void ConstantLoader::simplify() {
if (Kind == CK_Unknown)
return;
Constant* Init = GV->getInitializer();
auto CDA = cast<ConstantDataArray>(Init);
Constant* V0 = CDA->getElementAsConstant(0);
Constant* V1 = nullptr;
if (Kind == CK_OddEven)
V1 = CDA->getElementAsConstant(1);
else if (Kind == CK_Ladder2)
V1 = CDA->getElementAsConstant(Pivot);
// Replace all GEP + load uses with V0 or a select of V0 and V1.
for (auto UI = GV->user_begin(); UI != GV->user_end(); /* empty */) {
auto GEP = dyn_cast<GetElementPtrInst>(*UI++);
if (!GEP || !GEP->isInBounds())
continue;
// Skip optimizations on function with optnone.
Function* F = GEP->getParent()->getParent();
if (F->hasFnAttribute(Attribute::OptimizeNone))
continue;
for (auto I = GEP->user_begin(); I != GEP->user_end(); /* empty */) {
LoadInst* LI = dyn_cast<LoadInst>(*I++);
if (!LI)
continue;
IGC_ASSERT(GEP->getNumIndices() == 2);
Value* Index = GEP->getOperand(2);
Value* Val = V0;
IRBuilder<> Builder(LI);
if (Kind == CK_Ladder2) {
Value* Cmp = Builder.CreateICmpULT(
Index, ConstantInt::get(Index->getType(), Pivot));
Val = Builder.CreateSelect(Cmp, V0, V1);
}
else if (Kind == CK_OddEven) {
Value* Cmp = Builder.CreateTrunc(Index, Builder.getInt1Ty());
Val = Builder.CreateSelect(Cmp, V1, V0);
}
LI->replaceAllUsesWith(Val);
LI->eraseFromParent();
}
if (GEP->use_empty())
GEP->eraseFromParent();
}
}
bool SimplifyConstant::process(GlobalVariable* GV) {
ConstantLoader Loader(GV);
if (Loader.simplified())
return true;
return false;
}
namespace {
/// \brief Promote small constant data from global to register.
///
class PromoteConstant : public FunctionPass {
public:
static char ID; // Pass identification, replacement for typeid
PromoteConstant() : FunctionPass(ID) {
initializePromoteConstantPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage& AU) const override {
AU.setPreservesCFG();
AU.addRequired<LoopInfoWrapperPass>();
AU.addPreserved<LoopInfoWrapperPass>();
}
bool runOnFunction(Function& F) override;
};
} // namespace
namespace IGC {
IGC_INITIALIZE_PASS_BEGIN(PromoteConstant, "PromoteConstant", "PromoteConstant", false, false)
IGC_INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
IGC_INITIALIZE_PASS_END(PromoteConstant, "PromoteConstant", "PromoteConstant", false, false)
} // namespace IGC
char PromoteConstant::ID = 0;
FunctionPass* IGC::createPromoteConstantPass() { return new PromoteConstant(); }
// Check uses. Within this function, this GV must be used and only used by
// in-bound GEPs each of which is also only used by loads.
//
// We only promote when there is load of GV inside loops.
//
static bool checkUses(GlobalVariable* GV, const Function* F, LoopInfo& LI, const ConstantArray* llvm_used) {
bool LoadInLoop = false;
for (auto U : GV->users()) {
// Because of ProgramScopeConstantAnalysis there might be user in llvm.used
// let's ignore this one, as it doesn't prevent opt.
// TODO: is there any other case of Constant to worry about. (?)
if (auto Const = dyn_cast<Constant>(U))
{
bool foundInLLVMUsed = false;
unsigned numOperands = llvm_used ? llvm_used->getNumOperands() : 0;
for (unsigned i = 0; i != numOperands; ++i)
{
Value* gvi = llvm_used->getOperand(i)->stripPointerCastsNoFollowAliases();
if (gvi == Const->stripPointerCastsNoFollowAliases())
{
foundInLLVMUsed = true;
break;
}
}
if (foundInLLVMUsed)
continue;
}
auto Inst = dyn_cast<Instruction>(U);
if (!Inst)
// TODO: this may be a const expr.
return false;
if (F != Inst->getParent()->getParent())
continue;
auto GEP = dyn_cast<GetElementPtrInst>(Inst);
if (!GEP || !GEP->isInBounds())
return false;
for (auto V : GEP->users()) {
auto Inst = dyn_cast<LoadInst>(V);
if (!Inst)
return false;
if (LI.getLoopFor(Inst->getParent()) != nullptr)
LoadInLoop = true;
}
}
if (IGC_IS_FLAG_ENABLED(AllowNonLoopConstantPromotion))
return true;
return LoadInLoop;
}
// IGC only allows the following vector sizes:
//
//------------------------------------
// name size
// in elements
//------------------------------------
// IGC_IR_VECTOR_TYPE(x1, 1)
// IGC_IR_VECTOR_TYPE(x2, 2)
// IGC_IR_VECTOR_TYPE(x3, 3)
// IGC_IR_VECTOR_TYPE(x4, 4)
// IGC_IR_VECTOR_TYPE(x5, 5)
// IGC_IR_VECTOR_TYPE(x8, 8)
// IGC_IR_VECTOR_TYPE(x10, 10)
// IGC_IR_VECTOR_TYPE(x16, 16)
// IGC_IR_VECTOR_TYPE(x32, 32)
//
// check or return a legal vector size. 0 means illegal.
static unsigned getLegalVectorSize(unsigned N) {
#if 0
if (N > 32)
return 0;
if (N == 6 || N == 7)
return 8;
if (N == 9)
return 10;
if (N >= 11 && N <= 16)
return 16;
if (N >= 17 && N <= 32)
return 32;
return N;
#else
// Only emit power-of-two vector sizes.
N = 1U << Log2_32_Ceil(N);
return (N > 32) ? 0 : N;
#endif
}
// Check vector size. We may demote the data type if all values can fit into
// smaller data type.
//
static bool checkSize(GlobalVariable* GV, IGCLLVM::FixedVectorType*& DataType,
bool& IsSigned) {
Constant* Init = GV->getInitializer();
IGC_ASSERT(isa<ArrayType>(Init->getType()));
ArrayType* ArrayTy = cast<ArrayType>(Init->getType());
unsigned N = (unsigned)ArrayTy->getArrayNumElements();
Type* BaseTy = ArrayTy->getArrayElementType();
unsigned VectorSize = 1;
if (auto VT = dyn_cast<IGCLLVM::FixedVectorType>(BaseTy)) {
BaseTy = VT->getElementType();
VectorSize = int_cast<unsigned>(VT->getNumElements());
N *= VectorSize;
}
unsigned VS = getLegalVectorSize(N);
// Allow experimental overriding for bigger than 32 elem. tables
if (IGC_IS_FLAG_ENABLED(AllowNonLoopConstantPromotion))
VS = 1U << Log2_32_Ceil(N);
if (VS == 0)
return false;
if (BaseTy->isIntegerTy()) {
// Cached integer types.
Type* Int8Ty = IntegerType::get(GV->getContext(), 8);
Type* Int16Ty = IntegerType::get(GV->getContext(), 16);
// [i32 -1, i32 1] can be represented as {<i8 -1, i8 1>, Signed}
// and [i32 200, i32 1] can be represented as {<i8 200, i8 1>, !Signed}
int64_t Min = INT64_MAX, Max = INT64_MIN;
for (unsigned i = 0; i < ArrayTy->getArrayNumElements(); ++i) {
auto Elt = Init->getAggregateElement(i);
if (isa<UndefValue>(Elt))
continue;
if (Elt->getType()->isVectorTy()) {
for (unsigned j = 0; j < VectorSize; ++j) {
auto VecElt = Elt->getAggregateElement(j);
int64_t Val = cast<ConstantInt>(VecElt)->getSExtValue();
Min = std::min(Min, Val);
Max = std::max(Max, Val);
}
}
else {
int64_t Val = cast<ConstantInt>(Elt)->getSExtValue();
Min = std::min(Min, Val);
Max = std::max(Max, Val);
}
}
unsigned BaseSzInBits = (unsigned int)BaseTy->getPrimitiveSizeInBits();
IGC_ASSERT(BaseSzInBits >= 8);
if (BaseSzInBits > 8 && Min >= 0 && Max <= UINT8_MAX) {
BaseTy = Int8Ty;
IsSigned = false;
}
else if (BaseSzInBits > 8 && Min >= INT8_MIN && Max <= INT8_MAX) {
BaseTy = Int8Ty;
IsSigned = true;
}
else if (BaseSzInBits > 16 && Min >= 0 && Max <= UINT16_MAX) {
BaseTy = Int16Ty;
IsSigned = false;
}
else if (BaseSzInBits > 16 && Min >= INT16_MIN && Max <= INT16_MAX) {
BaseTy = Int16Ty;
IsSigned = true;
}
}
// Two GRFs by default.
unsigned ThresholdInBits = IGC_GET_FLAG_VALUE(ConstantPromotionSize) * 256;
unsigned TotalSzInBits = (unsigned int)BaseTy->getPrimitiveSizeInBits() * VS;
if (TotalSzInBits <= ThresholdInBits) {
DataType = IGCLLVM::FixedVectorType::get(BaseTy, VS);
return true;
}
return false;
}
// Check if a vector of data could be built out of initializer.
static bool checkType(GlobalVariable* GV) {
Constant* Init = GV->getInitializer();
if (auto CDA = dyn_cast<ConstantDataArray>(Init))
return !CDA->isString();
// Not simply data. Need to check if all elements have the same type in a
// constant array.
if (auto CA = dyn_cast<ConstantArray>(Init)) {
auto EltTy = CA->getType()->getElementType();
return EltTy->isFloatingPointTy() || EltTy->isIntegerTy() ||
EltTy->isVectorTy();
}
return false;
}
// Extract N elements from a vector, Idx, ... Idx + N - 1. Return a scalar
// or a vector value depending on N.
static Value* extractNElts(unsigned N, Value* VectorData, Value* Offset,
IRBuilder<>& IRB) {
if (N == 1)
return IRB.CreateExtractElement(VectorData, Offset);
Type* Ty = cast<VectorType>(VectorData->getType())->getElementType();
Ty = IGCLLVM::FixedVectorType::get(Ty, N);
Value* Result = UndefValue::get(Ty);
for (unsigned i = 0; i < N; ++i) {
Value* VectorIdx = ConstantInt::get(Offset->getType(), i);
if (i == 0) {
auto Val = IRB.CreateExtractElement(VectorData, Offset);
Result = IRB.CreateInsertElement(Result, Val, VectorIdx);
}
else {
auto Idx = IRB.CreateAdd(Offset, VectorIdx);
auto Val = IRB.CreateExtractElement(VectorData, Idx);
Result = IRB.CreateInsertElement(Result, Val, VectorIdx);
}
}
return Result;
}
static Constant* getConstantVal(Type* VEltTy, Constant* V, bool IsSigned) {
if (V->getType() == VEltTy)
return V;
IGC_ASSERT(VEltTy->isIntegerTy());
int64_t IVal = cast<ConstantInt>(V)->getSExtValue();
return ConstantInt::get(VEltTy, IVal, IsSigned);
}
static void promote(GlobalVariable* GV, IGCLLVM::FixedVectorType* AllocaType, bool IsSigned,
Function* F) {
// Build the constant vector from constant array.
unsigned VS = int_cast<unsigned>(AllocaType->getNumElements());
SmallVector<Constant*, 16> Vals(VS, nullptr);
Type* VEltTy = AllocaType->getElementType();
auto Init = GV->getInitializer();
if (auto CDA = dyn_cast<ConstantDataArray>(Init)) {
unsigned NElts = CDA->getNumElements();
for (unsigned i = 0; i < NElts; ++i) {
Constant* Elt = CDA->getAggregateElement(i);
IGC_ASSERT_MESSAGE(nullptr != Elt, "Null AggregateElement");
Vals[i] = getConstantVal(VEltTy, Elt, IsSigned);
}
}
else {
IGC_ASSERT_MESSAGE(isa<ConstantArray>(Init), "out of sync");
ConstantArray* CA = cast<ConstantArray>(Init);
unsigned NElts = CA->getNumOperands();
for (unsigned i = 0; i < NElts; ++i) {
Constant* const Elt = CA->getAggregateElement(i);
IGC_ASSERT_MESSAGE(nullptr != Elt, "Null AggregateElement");
if (auto EltTy = dyn_cast<VectorType>(Elt->getType())) {
unsigned VectorSize = (unsigned)cast<IGCLLVM::FixedVectorType>(EltTy)->getNumElements();
for (unsigned j = 0; j < VectorSize; ++j) {
Constant* V = Elt->getAggregateElement(j);
Vals[i * VectorSize + j] = getConstantVal(VEltTy, V, IsSigned);
}
}
else
Vals[i] = getConstantVal(VEltTy, Elt, IsSigned);
}
}
// Fill the missing values with undef, if any.
for (int i = VS - 1; i >= 0; --i) {
if (Vals[i] != nullptr)
break;
Vals[i] = UndefValue::get(VEltTy);
}
Constant* VectorData = ConstantVector::get(Vals);
// Transform all uses
for (auto UI = GV->user_begin(); UI != GV->user_end(); /*empty*/) {
auto GEP = dyn_cast<GetElementPtrInst>(*UI++);
// might be Constant user in llvm.used
if (!GEP || GEP->getParent()->getParent() != F)
continue;
IGC_ASSERT(GEP->getNumIndices() == 2);
// This is the index to address the array, and the first index is to address
// the global variable itself.
Value* Index = GEP->getOperand(2);
// Demote the index type to int32 to avoid 64 multiplications during vISA
// emission, e.g. it is illegal to emit Q x W.
if (Index->getType()->getPrimitiveSizeInBits() > 32) {
IRBuilder<> Builder(GEP);
Index = Builder.CreateTrunc(Index, Builder.getInt32Ty());
}
for (auto I = GEP->user_begin(); I != GEP->user_end(); /*empty*/) {
auto LI = dyn_cast<LoadInst>(*I++);
IGC_ASSERT_MESSAGE(nullptr != LI, "nullptr");
IRBuilder<> Builder(LI);
Type* Ty = LI->getType();
unsigned N = 1;
Value* Offset = Index;
if (Ty->isVectorTy()) {
N = (unsigned)cast<IGCLLVM::FixedVectorType>(Ty)->getNumElements();
Offset = Builder.CreateMul(Offset, ConstantInt::get(Offset->getType(), N));
}
Value* Val = extractNElts(N, VectorData, Offset, Builder);
if (Val->getType() != LI->getType()) {
IGC_ASSERT(Val->getType()->isIntOrIntVectorTy());
Val = Builder.CreateIntCast(Val, LI->getType(), IsSigned);
}
LI->replaceAllUsesWith(Val);
LI->eraseFromParent();
}
}
}
static Constant* getElt(Constant* Init, int k) {
int n = (int)Init->getType()->getArrayNumElements();
if (k >= n)
return UndefValue::get(Init->getType()->getArrayElementType());
return Init->getAggregateElement(k);
};
// Recursively emit cmp+sel tree.
static Value* getVal(IRBuilder<>& Builder, Constant* Init, Value* Index,
int Low, int Hi) {
IGC_ASSERT(Hi > Low);
Type* IdxTy = Index->getType();
// base case.
if (Hi == 1 + Low) {
Value* Cmp = Builder.CreateICmpEQ(Index, ConstantInt::get(IdxTy, Low));
return Builder.CreateSelect(Cmp, getElt(Init, Low), getElt(Init, Hi));
}
// There are more than two elements to be compared.
int Mid = (Low + Hi + 1) / 2;
Value* LHS = getVal(Builder, Init, Index, Low, Mid - 1);
Value* RHS = getVal(Builder, Init, Index, Mid, Hi);
Value* Cmp = Builder.CreateICmpSLT(Index, ConstantInt::get(IdxTy, Mid));
return Builder.CreateSelect(Cmp, LHS, RHS);
}
static bool rewriteAsCmpSel(GlobalVariable* GV, Function& F) {
bool Changed = false;
Type* Ty = GV->getInitializer()->getType();
IGC_ASSERT(Ty->isArrayTy());
unsigned NElts = (unsigned)Ty->getArrayNumElements();
for (auto UI = GV->user_begin(); UI != GV->user_end(); /*empty*/) {
auto GEP = dyn_cast<GetElementPtrInst>(*UI++);
// might be Constant user in llvm.used
if (!GEP || GEP->getParent()->getParent() != &F)
continue;
// This is the index to address the array, and the first index is to
// address the global variable itself.
IGC_ASSERT(GEP->getNumIndices() == 2);
Value* Index = GEP->getOperand(2);
if (Index->getType()->getPrimitiveSizeInBits() > 32) {
IRBuilder<> Builder(GEP);
Index = Builder.CreateTrunc(Index, Builder.getInt32Ty());
}
for (auto I = GEP->user_begin(); I != GEP->user_end(); /*empty*/) {
auto LI = dyn_cast<LoadInst>(*I++);
IGC_ASSERT_MESSAGE(nullptr != LI, "nullptr");
IRBuilder<> Builder(LI);
int n = (int)NextPowerOf2(NElts - 1);
Value* Val = nullptr;
if (n > 1)
Val = getVal(Builder, GV->getInitializer(), Index, 0, n - 1);
else
Val = getElt(GV->getInitializer(), 0);
LI->replaceAllUsesWith(Val);
LI->eraseFromParent();
Changed = true;
}
}
return Changed;
}
// Check if it is profitable to emit cmp-sel.
//
// For an array of size N = 2^k, (N - 1) cmp + (N - 1) sel is needed to extract
// a single element. We use the following threshold:
//
// (1) if N <= 4, return true, or
// (2) if N <= 8 and element type is vector, return true, otherwise
// (3) return false.
//
// [4 x float], 6 ops, presumably better than a send
// [4 x <2 x float> ], 6 ops, ditto
// [8 x <2 x float> ], 14 ops, ditto
// [16 x <2 x float> ], 30 ops, close to a send
//
static bool isCmpSelProfitable(GlobalVariable* GV) {
Constant* Init = GV->getInitializer();
unsigned NElts = (unsigned)Init->getType()->getArrayNumElements();
unsigned CmpSelSize = IGC_GET_FLAG_VALUE(ConstantPromotionCmpSelSize);
if (NElts <= CmpSelSize)
return true;
Type* EltTy = Init->getType()->getArrayElementType();
return EltTy->isVectorTy() && NElts <= CmpSelSize * 2;
}
bool PromoteConstant::runOnFunction(Function& F) {
if (skipFunction(F))
return false;
LoopInfo& LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
Module* M = F.getParent();
bool Changed = false;
auto gv = M->getGlobalVariable("llvm.used");
ConstantArray* llvm_used = gv ? dyn_cast_or_null<ConstantArray>(gv->getInitializer()) : nullptr;
for (auto I = M->global_begin(); I != M->global_end(); /*empty*/) {
GlobalVariable* GV = &(*I++);
if (GV->user_empty() || !GV->isConstant() || !GV->hasInitializer() ||
GV->getType()->getAddressSpace() != ADDRESS_SPACE_CONSTANT)
continue;
if (!checkType(GV))
continue;
if (!checkUses(GV, &F, LI, llvm_used))
continue;
// Rewrite as cmp+sel sequence if profitable.
if (isCmpSelProfitable(GV)) {
Changed |= rewriteAsCmpSel(GV, F);
continue;
}
// If possible demote the data into smaller type. Uses of value will be
// promoted back with ZExt or SExt.
IGCLLVM::FixedVectorType* AllocaType = nullptr;
bool IsSigned = false;
if (!checkSize(GV, AllocaType, IsSigned))
continue;
IGC_ASSERT(AllocaType);
promote(GV, AllocaType, IsSigned, &F);
Changed = true;
}
return Changed;
}
|