File: VariableReuseAnalysis.cpp

package info (click to toggle)
intel-graphics-compiler 1.0.12504.6-1%2Bdeb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 83,912 kB
  • sloc: cpp: 910,147; lisp: 202,655; ansic: 15,197; python: 4,025; yacc: 2,241; lex: 1,570; pascal: 244; sh: 104; makefile: 25
file content (1248 lines) | stat: -rw-r--r-- 41,315 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
/*========================== begin_copyright_notice ============================

Copyright (C) 2017-2021 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

#include "VariableReuseAnalysis.hpp"
#include "Compiler/IGCPassSupport.h"
#include "Compiler/CISACodeGen/ShaderCodeGen.hpp"
#include "Compiler/CodeGenPublic.h"
#include "common/LLVMWarningsPush.hpp"
#include <llvm/Support/Debug.h>
#include "llvmWrapper/IR/DerivedTypes.h"
#include "common/LLVMWarningsPop.hpp"
#include <algorithm>
#include "Probe/Assertion.h"

using namespace llvm;
using namespace IGC;

namespace
{
    // If V is scalar, return 1.
    // if V is vector, return the number of elements.
    inline int getNumElts(Value* V) {
        IGCLLVM::FixedVectorType* VTy = dyn_cast<IGCLLVM::FixedVectorType>(V->getType());
        return VTy ? (int)VTy->getNumElements() : 1;
    }

    inline int getTypeSizeInBits(Type* Ty) {
        int scalarBits = Ty->getScalarSizeInBits();
        IGCLLVM::FixedVectorType* VTy = dyn_cast<IGCLLVM::FixedVectorType>(Ty);
        return scalarBits * (VTy ? (int)VTy->getNumElements() : 1);
    }
}

char VariableReuseAnalysis::ID = 0;

IGC_INITIALIZE_PASS_BEGIN(VariableReuseAnalysis, "VariableReuseAnalysis",
    "VariableReuseAnalysis", false, true)
    // IGC_INITIALIZE_PASS_DEPENDENCY(RegisterEstimator)
    IGC_INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    IGC_INITIALIZE_PASS_DEPENDENCY(WIAnalysis)
    IGC_INITIALIZE_PASS_DEPENDENCY(LiveVarsAnalysis)
    IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenPatternMatch)
    IGC_INITIALIZE_PASS_DEPENDENCY(DeSSA)
    IGC_INITIALIZE_PASS_DEPENDENCY(CoalescingEngine)
    IGC_INITIALIZE_PASS_DEPENDENCY(BlockCoalescing)
    IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
    IGC_INITIALIZE_PASS_END(VariableReuseAnalysis, "VariableReuseAnalysis",
        "VariableReuseAnalysis", false, true)

    llvm::FunctionPass* IGC::createVariableReuseAnalysisPass() {
    return new VariableReuseAnalysis;
}

VariableReuseAnalysis::VariableReuseAnalysis()
    : FunctionPass(ID),
    m_pCtx(nullptr), m_WIA(nullptr), m_LV(nullptr), m_DeSSA(nullptr),
    m_PatternMatch(nullptr), m_coalescingEngine(nullptr),
    m_RPE(nullptr), m_SimdSize(0), m_IsFunctionPressureLow(Status::Undef),
    m_IsBlockPressureLow(Status::Undef) {
    initializeVariableReuseAnalysisPass(*PassRegistry::getPassRegistry());
}

bool VariableReuseAnalysis::runOnFunction(Function& F)
{
    m_F = &F;

    m_WIA = &(getAnalysis<WIAnalysis>());
    if (IGC_IS_FLAG_DISABLED(DisableDeSSA))
    {
        m_DeSSA = &getAnalysis<DeSSA>();
    }
    m_LV = &(getAnalysis<LiveVarsAnalysis>().getLiveVars());
    m_PatternMatch = &getAnalysis<CodeGenPatternMatch>();
    m_pCtx = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
    m_coalescingEngine = &getAnalysis<CoalescingEngine>();
    m_DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    m_DL = &F.getParent()->getDataLayout();

    // FIXME: enable RPE.
    // m_RPE = &getAnalysis<RegisterEstimator>();

    // Nothing but cleanup data from previous runs.
    reset();

    if (IGC_IS_FLAG_ENABLED(EnableVariableAlias) &&
        m_DeSSA &&
        !m_pCtx->getModuleMetaData()->compOpt.OptDisable &&
        m_pCtx->platform.GetPlatformFamily() >= IGFX_GEN9_CORE)
    {
        // Setup ArgDeSSARoot (for subroutine, it might be conservative,
        // but it should work.).
        m_ArgDeSSARoot.clear();
        for (auto II = F.arg_begin(), IE = F.arg_end(); II != IE; ++II)
        {
            Value* A = II;
            if (Value * R = m_DeSSA->getRootValue(A)) {
                m_ArgDeSSARoot.push_back(R);
            }
        }

        // 0. Merge Variables
        //    Merge two different variables into a single one.
        //    The two vars that will be merged should have the same
        //    size/type and normally are defined with different values.
        //    Once merged, they are put in the same DeSSA congruent class
        mergeVariables(&F);

        // 1. SubVector aliasing
        //    Two variables alias each other if they have the same values.
        //    Although they have different names, the two variables share
        //    the same values over their live ranges. The cases such as
        //    extractElement/insertElement, etc. Once aliasing is identified,
        //    the liveness of the alias root is updated to be the sum of both.
        //    This is the same as DeSSA alias.
        InsertElementAliasing(&F);

        // 2. Handle extractElement, etc that handles a single instruction or
        //    a few instruction, not invovled in a complicated patterns like
        //    InsertElement.
        visitLiveInstructions(&F);

        postProcessing();

        if (IGC_IS_FLAG_ENABLED(DumpVariableAlias))
        {
            auto name =
                Debug::DumpName(Debug::GetShaderOutputName())
                .Hash(m_pCtx->hash)
                .Type(m_pCtx->type)
                .Pass("VariableAlias")
                .PostFix(F.getName().str())
                .Extension("txt");
            printAlias(Debug::Dump(name, Debug::DumpType::DBG_MSG_TEXT).stream(), m_F);
        }
    }

    m_F = nullptr;
    return false;
}

static unsigned getMaxReuseDistance(uint16_t size) {
    return (size == 8) ? 10 : 5;
}

bool VariableReuseAnalysis::checkUseInst(Instruction* UseInst, LiveVars* LV) {
    BasicBlock* CurBB = UseInst->getParent();
    if (UseInst->isUsedOutsideOfBlock(CurBB))
        return false;

    // This situation can occur:
    //
    //     ,------.
    //     |      |
    //     |      v
    //     |   t2 = phi ... t1 ...
    //     |      |
    //     |      v
    //     |   t1 = ...
    //     |  ... = ... t1 ...
    //     |      |
    //     `------'
    //
    // Disallow reuse if t1 has a phi use.
    // Disallow reuse if t1 has a far away use when the pressure is not low.
    unsigned DefLoc = LV->getDistance(UseInst);
    unsigned FarUseLoc = 0;
    for (auto UI : UseInst->users()) {
        if (isa<PHINode>(UI))
            return false;

        auto Inst = dyn_cast<Instruction>(UI);
        if (!Inst)
            return false;
        unsigned UseLoc = LV->getDistance(Inst);
        FarUseLoc = std::max(FarUseLoc, UseLoc);
    }

    // When the whole function or block pressure is low, skip the distance check.
    if (isCurFunctionPressureLow() || isCurBlockPressureLow())
        return true;

    // Use distance to limit reuse.
    const unsigned FarUseDistance = getMaxReuseDistance(m_SimdSize);
    return FarUseLoc <= DefLoc + FarUseDistance;
}

bool VariableReuseAnalysis::checkDefInst(Instruction* DefInst,
    Instruction* UseInst, LiveVars* LV) {
    IGC_ASSERT(nullptr != DefInst);
    IGC_ASSERT(nullptr != UseInst);
    if (isa<PHINode>(DefInst))
        return false;

    if (auto CI = dyn_cast<CallInst>(DefInst)) {
        Function* F = CI->getCalledFunction();
        // Do not reuse the return symbol of subroutine/stack calls.
        if (!F || !F->isDeclaration())
            return false;

        if (isa<GenIntrinsicInst>(DefInst)) {
            // Just skip all gen intrinsic calls. Some intrinsic calls may have
            // special meaning.
            return false;
        }
    }

    // This is a block level reuse.
    BasicBlock* CurBB = UseInst->getParent();
    if (DefInst->getParent() != CurBB || DefInst->isUsedOutsideOfBlock(CurBB))
        return false;

    // Check whether UseInst is the last use of DefInst. If not, this source
    // variable cannot be reused.
    Instruction* LastUse = LV->getLVInfo(DefInst).findKill(CurBB);
    if (LastUse != UseInst)
        return false;

    // When the whole function or block pressure is low, skip the distance check.
    if (isCurFunctionPressureLow() || isCurBlockPressureLow())
        return true;

    // Use distance to limit far reuses.
    unsigned DefLoc = LV->getDistance(DefInst);
    unsigned UseLoc = LV->getDistance(UseInst);
    const unsigned FarDefDistance = getMaxReuseDistance(m_SimdSize);
    return UseLoc <= DefLoc + FarDefDistance;
}

void VariableReuseAnalysis::mergeVariables(Function* F)
{
    for (auto II = inst_begin(F), IE = inst_end(F); II != IE; ++II)
    {
        Instruction* I = &*II;
        if (!m_PatternMatch->NeedInstruction(*I))
            continue;
        if (GenIntrinsicInst * CI = dyn_cast<GenIntrinsicInst>(I))
        {
            switch (CI->getIntrinsicID()) {
            case GenISAIntrinsic::GenISA_sub_group_dpas:
            case GenISAIntrinsic::GenISA_dpas:
            {
                if (!m_DeSSA) {
                    // Skip if no DeSSA
                    break;
                }

                Value* out = CI;
                Value* input = CI->getOperand(0);

                if (!(isa<Instruction>(input) || isa<Argument>(input)))
                {
                    // input may be a constant for example
                    break;
                }
                Type* OTy = out->getType();
                Type* ITy = input->getType();
                if (getTypeSizeInBits(OTy) != getTypeSizeInBits(ITy))
                {
                    // If out and input are different size, skip
                    break;
                }

                // For now, coalescing out and input if at least one of them
                // is local, and input is the last use.
                if ((m_WIA && m_WIA->whichDepend(out) == m_WIA->whichDepend(input)) &&
                    !hasBeenPayloadCoalesced(input) &&
                    !hasBeenPayloadCoalesced(out) &&
                    !m_DeSSA->interfere(out, input))
                {
                    // For dpas, alignment for out/input are the same
                    e_alignment align = EALIGN_AUTO;
                    if (m_WIA) {
                        align = GetPreferredAlignment(out, m_WIA, m_pCtx);
                    }
                    // Make sure that nodes have been created before doing union
                    m_DeSSA->addReg(out, align);
                    m_DeSSA->addReg(input, align);
                    m_DeSSA->unionRegs(out, input);
                }
                break;
            }
            default:
                break;
            }  // End of switch
        }
    }
}

void VariableReuseAnalysis::visitLiveInstructions(Function* F)
{
    for (auto BI = F->begin(), BE = F->end(); BI != BE; ++BI)
    {
        BasicBlock* BB = &*BI;
        for (auto II = BB->begin(), IE = BB->end(); II != IE; ++II)
        {
            Instruction& I = *II;
            if (!m_PatternMatch->NeedInstruction(I))
                continue;
            visit(I);
        }
    }
}

// Given a root Value RootVal, all its values that are coalesced
// with it are in AllVals. This function finds the place to insert
// the lifeTimeStart for RootVal, which is either at the end of a
// BB or right before the first definition. If any value is argument,
// no lifeTimeStart is needed.
// (For assisting visa for liveness analysis.)
void VariableReuseAnalysis::setLifeTimeStartPos(
    Value* RootVal,
    ValueVectorTy& AllVals,
    BlockCoalescing* theBC)
{
    SmallSet<BasicBlock*, 8> defBBSet;
    SmallSet<BasicBlock*, 8> phiSrcMovBBSet;
    for (int i = 0, sz = (int)AllVals.size(); i < sz; ++i)
    {
        Value* V = AllVals[i];
        Instruction* I = dyn_cast<Instruction>(V);
        if (!I) {
            // For arg, global etc., its start is on entry.
            // Thus, no need to insert lifetime start.
            defBBSet.clear();
            phiSrcMovBBSet.clear();
            break;
        }

        if (PHINode * PHI = dyn_cast<PHINode>(I)) {
            Value* PHI_root = m_DeSSA->getRootValue(PHI);
            int sz1 = (int)PHI->getNumIncomingValues();
            for (int i1 = 0; i1 < sz1; ++i1)
            {
                Value* Src = PHI->getIncomingValue(i1);
                Value* Src_root = m_DeSSA->getRootValue(Src);
                if (!Src_root || PHI_root != Src_root) {
                    // Need Src-side phi mov
                    BasicBlock* BB = PHI->getIncomingBlock(i1);
                    phiSrcMovBBSet.insert(BB);
                }
            }
        }
        else {
            BasicBlock* BB = I->getParent();
            defBBSet.insert(BB);
        }
    }

    if (defBBSet.size() == 0 && phiSrcMovBBSet.size() == 0) {
        return;
    }

    auto BSI = defBBSet.begin();
    auto BSE = defBBSet.end();
    BasicBlock* NearestDomBB = *BSI;
    for (++BSI; BSI != BSE; ++BSI)
    {
        BasicBlock* aB = *BSI;
        NearestDomBB = m_DT->findNearestCommonDominator(NearestDomBB, aB);
    }

    // phiSrcMovBBSet
    for (auto II = phiSrcMovBBSet.begin(), IE = phiSrcMovBBSet.end();
        II != IE; ++II)
    {
        BasicBlock* aB = *II;
        NearestDomBB = m_DT->findNearestCommonDominator(NearestDomBB, aB);
    }

    // Skip emptry BBs that are going to be skipped in codegen emit.
    while (theBC->IsEmptyBlock(NearestDomBB))
    {
        auto Node = m_DT->getNode(NearestDomBB);
        NearestDomBB = Node->getIDom()->getBlock();
    }

    if (defBBSet.count(NearestDomBB))
    {
        // lifeTimeStart insert pos is in a BB where a def exists
        m_LifetimeAt1stDefOfBB[RootVal] = NearestDomBB;
    }
    else
    {
        // No def in the bb, it must be at the end of BB
        // (must be before phiSrcMov too).
        m_LifetimeAtEndOfBB[NearestDomBB].push_back(RootVal);
    }
}

void VariableReuseAnalysis::postProcessing()
{
    // BlockCoalescing : check if a BB is a to-be-skipped empty BB.
    // It is used for selecting BB to add lifetime start
    BlockCoalescing* theBC = &getAnalysis<BlockCoalescing>();
    if (!m_DeSSA || m_pCtx->getVectorCoalescingControl() < 3)
        return;

    DenseMap<Value*, int> dessaRootVisited;
    auto IS = m_aliasMap.begin();
    auto IE = m_aliasMap.end();
    for (auto II = IS; II != IE; ++II)
    {
        SSubVecDesc* SV = II->second;
        Value* aliasee = SV->BaseVector;
        if (aliasee != SV->Aliaser)
            continue;

        // An alias set of an aliasee (base) :
        //     The aliasee and all its aliasers; and for each of them, all values
        //     in its dessa CC.
        //
        // For each Aliasee, record its lifetime start, which is the
        // nearest dominator that dominates all value defs in an alias set.
        // This BB is either one that has no defintion of values in the set;
        // or one that has a defintion to a value in the set. For the former,
        // m_LifetimeAtEndOfBB is used to keep track of it; for the latter,
        // m_LifetimeAt1stDefOfBB is used.
        ValueVectorTy AllVals;
        SmallVector<Value*, 8> valInCC;
        m_DeSSA->getAllValuesInCongruentClass(aliasee, valInCC);
        AllVals.insert(AllVals.end(), valInCC.begin(), valInCC.end());

        // update visited for aliasee
        Value* aliaseeRoot = m_DeSSA->getRootValue(aliasee);
        aliaseeRoot = aliaseeRoot ? aliaseeRoot : aliasee;
        dessaRootVisited[aliaseeRoot] = 1;
        for (int i = 0, sz = (int)SV->Aliasers.size(); i < sz; ++i)
        {
            SSubVecDesc* aSV = SV->Aliasers[i];
            Value* aliaser = aSV->Aliaser;
            valInCC.clear();
            m_DeSSA->getAllValuesInCongruentClass(aliaser, valInCC);
            AllVals.insert(AllVals.end(), valInCC.begin(), valInCC.end());

            // update visited for aliaser
            Value* aRoot = m_DeSSA->getRootValue(aliaser);
            aRoot = aRoot ? aRoot : aliaser;
            dessaRootVisited[aRoot] = 1;
        }

        setLifeTimeStartPos(aliaseeRoot, AllVals, theBC);
    }

    // For other vector values
    if (m_pCtx->getVectorCoalescingControl() < 4)
        return;

    for (auto II = inst_begin(*m_F), IE = inst_end(*m_F); II != IE; ++II)
    {
        Instruction* I = &*II;
        if (!m_PatternMatch->NeedInstruction(*I))
            continue;
        if (!I->getType()->isVectorTy())
            continue;
        Value* rootV = m_DeSSA->getRootValue(I);
        rootV = rootV ? rootV : I;
        if (dessaRootVisited.find(rootV) != dessaRootVisited.end()) {
            // Already handled by sub-vector aliasing, skip
            continue;
        }

        ValueVectorTy AllVals;
        SmallVector<Value*, 8> valInCC;
        m_DeSSA->getAllValuesInCongruentClass(rootV, valInCC);
        AllVals.insert(AllVals.end(), valInCC.begin(), valInCC.end());

        setLifeTimeStartPos(rootV, AllVals, theBC);
    }
}

Value* VariableReuseAnalysis::getRootValue(Value* V)
{
    Value* dessaRV = nullptr;
    if (m_DeSSA) {
        dessaRV = m_DeSSA->getRootValue(V);
    }
    return dessaRV ? dessaRV : V;
}

Value* VariableReuseAnalysis::getAliasRootValue(Value* V)
{
    Value* V_nv = m_DeSSA ? m_DeSSA->getNodeValue(V) : V;
    auto II = m_aliasMap.find(V_nv);
    if (II == m_aliasMap.end()) {
        return V_nv;
    }
    return II->second->BaseVector;
}

// Returns true for the following pattern:
//   a = extractElement <vectorType> EEI_Vec, <constant EEI_ix>
//   b = insertElement  <vectorType> V1,  a,  <constant IEI_ix>
// where EEI_ix and IEI_ix are constants; Return false otherwise.
bool VariableReuseAnalysis::getVectorIndicesIfConstant(
    InsertElementInst* IEI, int& IEI_ix, Value*& EEI_Vec, int& EEI_ix)
{
    // Check if I has constant index, skip if not.
    ConstantInt* CI = dyn_cast<ConstantInt>(IEI->getOperand(2));
    if (!CI) {
        return false;
    }
    IEI_ix = (int)CI->getZExtValue();

    // Check that the elements inserted are from extractElement
    // Also, special-handling of insertelement itself.
    Value* elem = IEI->getOperand(1);
    ExtractElementInst* EEI = dyn_cast<ExtractElementInst>(elem);
    if (!EEI) {
        // Just insertelement itself
        EEI_ix = 0;
        EEI_Vec = elem;
        return true;
    }
    ConstantInt* CI1 = dyn_cast<ConstantInt>(EEI->getIndexOperand());
    if (!CI1) {
        return false;
    }
    EEI_ix = (int)CI1->getZExtValue();
    EEI_Vec = EEI->getVectorOperand();
    return true;
}

void VariableReuseAnalysis::visitExtractElementInst(ExtractElementInst& I)
{
    if (m_pCtx->getVectorCoalescingControl() == 0) {
        return;
    }

    ExtractElementInst* EEI = &I;
    Value* vecVal = EEI->getVectorOperand();

    // Before doing extractMask explicitly, don't do aliasing
    // for extractElement whose vector operand are the candidate
    // of the existing extractMask optimization, as doing so will
    // disable the existing extractMask optimization, which will
    // cause perf regression.
    if (Instruction * Inst = dyn_cast<Instruction>(vecVal))
    {
        if (IGC_IS_FLAG_DISABLED(EnableExtractMask) &&
            (isSampleInstruction(Inst) || isLdInstruction(Inst)))
        {
            // OCL can have sample (image read), not ld. For 3d/mac,
            // need to check more
            return;
        }
    }

    // If inst is dead, EEI is an argument, or EEI & vecVal have
    // different uniformness, skip it. (Current igc & visa interface
    // requires any argument value to be a root value, not alias.)
    if (m_HasBecomeNoopInsts.count(EEI) ||
        m_DeSSA->isNoopAliaser(EEI) ||
        isOrCoalescedWithArg(EEI) ||
        (m_WIA && m_WIA->whichDepend(EEI) != m_WIA->whichDepend(vecVal))) {
        return;
    }

    Value* EEI_nv = m_DeSSA->getNodeValue(EEI);
    Value* vec_nv = m_DeSSA->getNodeValue(vecVal);

    // If EEI has been payload-coalesced or has been vec-aliased,
    // skip it for now (implementation choice).
    // Note that payload-coalescing does not use node value yet.
    if (hasBeenPayloadCoalesced(EEI) ||
        hasAnotherInDCCAsAliasee(vec_nv) ||
        hasAnyOfDCCAsAliaser(EEI_nv)) {
        return;
    }

    // Can only do alias if idx is a known constant.
    Value* IdxVal = EEI->getIndexOperand();
    ConstantInt* Idx = dyn_cast<ConstantInt>(IdxVal);
    if (!Idx) {
        return;
    }

    int iIdx = (int)Idx->getZExtValue();
    if (aliasInterfere(EEI_nv, vec_nv, iIdx)) {
        return;
    }

    // Valid vec alias and add it into alias map
    addVecAlias(EEI_nv, vec_nv, iIdx);

    // Mark this inst as noop inst
    m_HasBecomeNoopInsts[EEI] = 1;
}

void VariableReuseAnalysis::printAlias(raw_ostream& OS, const Function* F) const
{
    // Assign each inst/arg a unique integer so that the output
    // would be in order. It is useful when doing comparison.
    DenseMap<const Value*, int> Val2IntMap;
    int id = 0;
    if (F) {
        // All arguments
        for (auto AI = F->arg_begin(), AE = F->arg_end(); AI != AE; ++AI) {
            const Value* aVal = AI;
            Val2IntMap[aVal] = (++id);
        }
        // All instructions
        for (auto II = inst_begin(F), IE = inst_end(F); II != IE; ++II) {
            const Instruction* Inst = &*II;
            Val2IntMap[(Value*)Inst] = (++id);
        }
    }

    auto SubVecCmp = [&](const SSubVecDesc* SV0, const SSubVecDesc* SV1) -> bool {
        int n0 = Val2IntMap[SV0->Aliaser];
        int n1 = Val2IntMap[SV1->Aliaser];
        return n0 < n1;
    };

    OS << "\nSummary of Variable Alias Info: "
        << (F ? F->getName().str() : "Function")
        << "\n";

    SmallVector<SSubVecDesc*, 64> sortedAlias;
    for (auto& MI : m_aliasMap) {
        SSubVecDesc* SV = MI.second;
        sortedAlias.push_back(SV);
    }
    std::sort(sortedAlias.begin(), sortedAlias.end(), SubVecCmp);

    for (int i = 0, sz = (int)sortedAlias.size(); i < sz; ++i)
    {
        SSubVecDesc* SV = sortedAlias[i];
        Value* aliasee = SV->BaseVector;
        if (SV->Aliaser != aliasee) {
            // Not alias root
            continue;
        }
        OS << "Aliasee : " << *aliasee << "\n";
        std::sort(SV->Aliasers.begin(), SV->Aliasers.end(), SubVecCmp);
        for (auto VI : SV->Aliasers)
        {
            SSubVecDesc* aSV = VI;
            Value* aliaser = aSV->Aliaser;
            Value* dessaRoot = m_DeSSA ? m_DeSSA->getRootValue(aliaser) : nullptr;
            const char* inCC = dessaRoot ? ".inDessaCC" : "";
            OS << "    " << *aliaser
                << "  [" << aSV->StartElementOffset << "]"
                << inCC << "\n";
        }
        OS << "\n";
    }
    OS << "\n";
}

void VariableReuseAnalysis::dumpAlias() const
{
    printAlias(dbgs(), m_F);
}

// Add alias Aliaser ->Aliasee[Idx]
void VariableReuseAnalysis::addVecAlias(
    Value* Aliaser, Value* Aliasee, int Idx)
{
    SSubVecDesc* aliaserSV = getOrCreateSubVecDesc(Aliaser);
    SSubVecDesc* aliaseeSV = getOrCreateSubVecDesc(Aliasee);
    Value* aliaseeRoot = aliaseeSV->BaseVector;
    aliaserSV->BaseVector = aliaseeRoot;
    aliaserSV->StartElementOffset = Idx + aliaseeSV->StartElementOffset;

    // If Aliaser exists as a root (aliasee), re-alias all its
    // aliasers to the new root 'aliaseeRoot'.
    SSubVecDesc* rootSV = getOrCreateSubVecDesc(aliaseeRoot);
    if (aliaserSV->Aliasers.size() > 0)
    {
        for (int i = 0, sz = (int)aliaserSV->Aliasers.size(); i < sz; ++i)
        {
            SSubVecDesc* SV = aliaserSV->Aliasers[i];
            SV->BaseVector = aliaseeRoot;
            SV->StartElementOffset += Idx;
            rootSV->Aliasers.push_back(SV);
        }

        // Clear aliaser's Aliasers as it is no longer a root
        aliaserSV->Aliasers.clear();
    }

    // Finally, add aliaserSV into root's Aliaser vector and
    // update aliaser to its root map if aliaser's not isolated.
    rootSV->Aliasers.push_back(aliaserSV);

    // aliaser
    Value* rv0 = m_DeSSA ? m_DeSSA->getRootValue(Aliaser) : nullptr;
    if (rv0) {
        m_root2AliasMap[rv0] = Aliaser;
    }
    // aliasee, note that re-defining it does not matter.
    Value* rv1 = m_DeSSA ? m_DeSSA->getRootValue(Aliasee) : nullptr;
    if (rv1) {
        m_root2AliasMap[rv1] = Aliasee;
    }
}

SSubVecDesc* VariableReuseAnalysis::getOrCreateSubVecDesc(Value* V)
{
    if (m_aliasMap.count(V) == 0) {
        SSubVecDesc* SV = new(Allocator) SSubVecDesc(V);
        m_aliasMap.insert(std::make_pair(V, SV));
    }
    return m_aliasMap[V];
}

// Return true if V itself is sub-vector aliased.
// Note that other values in V's DeSSA CC are not checked.
bool VariableReuseAnalysis::isAliased(Value* V) const
{
    Value* V_nv = m_DeSSA ? m_DeSSA->getNodeValue(V) : V;
    return m_aliasMap.count(V_nv) > 0;
}

// DCC: DeSSA Congruent Class
// If any value in V's DCC is aliaser, return true.
bool VariableReuseAnalysis::hasAnyOfDCCAsAliaser(Value* V) const
{
    auto II = m_aliasMap.find(V);
    if (II != m_aliasMap.end()) {
        // If it is in the map, all of its DCC should
        // be either aliaser or aliasee, never have the
        // mix of aliaser and aliasee (implementation
        // must guarantee this).
        SSubVecDesc* SV = II->second;
        return SV->Aliaser != SV->BaseVector;
    }

    // If V is not in the map, check others in its DCC
    Value* rv = m_DeSSA ? m_DeSSA->getRootValue(V) : nullptr;
    if (rv) {
        auto II = m_root2AliasMap.find(rv);
        if (II != m_root2AliasMap.end()) {
            Value* aV = II->second;
            auto MI = m_aliasMap.find(aV);
            IGC_ASSERT(MI != m_aliasMap.end());
            SSubVecDesc* SV = MI->second;
            return (SV->Aliaser != SV->BaseVector);
        }
    }
    return false;
}

// DCC: DeSSA Congruent Class
// If there is another value in V's DCC that is aliasee, return true.
bool VariableReuseAnalysis::hasAnotherInDCCAsAliasee(Value* V) const
{
    // Check if any value of its dessa CC has been aliased already.
    Value* rv = m_DeSSA ? m_DeSSA->getRootValue(V) : nullptr;
    if (rv) {
        auto II = m_root2AliasMap.find(rv);
        if (II != m_root2AliasMap.end()) {
            Value* aV = II->second;
            auto MI = m_aliasMap.find(aV);
            IGC_ASSERT(MI != m_aliasMap.end());
            SSubVecDesc* SV = MI->second;
            const Value* tV = SV->Aliaser;
            return (tV == SV->BaseVector && tV != V);
        }
    }
    return false;
}

// A chain of IEIs is used to define a vector. If all elements of this vector
// are inserted via this chain IEI that has a constant index, populate AllIEIs.
//   input:  FirstIEI (first IEI, usually with index = 0)
//   output: AllIEIs (collect all values used to initialize the vector)
// Return value:
//   true :  if all elements are inserted with IEI of constant index
//   false:  otherwise.
bool VariableReuseAnalysis::getAllInsEltsIfAvailable(
    InsertElementInst* FirstIEI, VecInsEltInfoTy& AllIEIs)
{
    int nelts = getNumElts(FirstIEI);

    // Sanity
    if (nelts < 2)
        return false;

    // AllIEIs are fixed to the number of elements of the vector.
    AllIEIs.resize(nelts);

    InsertElementInst* LastIEI = FirstIEI;
    InsertElementInst* I = FirstIEI;
    Value* dessaRoot = m_DeSSA->getRootValue(FirstIEI);
    while (I)
    {
        LastIEI = I;

        // For insertElement, it should be in the same dessa CC
        // already, as dessa special-handles it. Make sure they
        // are indeed in the same CC, otherwise, skip.
        if (hasBeenPayloadCoalesced(I) ||
            m_DeSSA->getRootValue(I) != dessaRoot)
            return false;

        Value* V = nullptr;
        Value* E = nullptr;
        int IEI_ix = 0, V_ix = 0;
        if (!getElementValue(I, IEI_ix, E, V, V_ix)) {
            return false;
        }

        IGC_ASSERT_MESSAGE(IEI_ix < nelts, "ICE: IEI's index out of bound!");
        SVecInsEltInfo& InsEltInfo = AllIEIs[IEI_ix];
        if (InsEltInfo.IEI) {
            // One element is inserted more than once, skip.
            return false;
        }
        InsEltInfo.IEI = I;
        InsEltInfo.Elt = E;
        InsEltInfo.FromVec = V;
        InsEltInfo.FromVec_eltIx = V_ix;
        if (E) {
            InsEltInfo.EEI = dyn_cast<ExtractElementInst>(E);
        }

        if (!I->hasOneUse()) {
            break;
        }

        I = dyn_cast<InsertElementInst>(I->user_back());
    }

    // Special cases.
    if (AllIEIs.empty() || LastIEI->use_empty()) {
        return false;
    }

    // Make sure all elements are present
    for (int i = 0; i < nelts; ++i) {
        if (AllIEIs[i].IEI == nullptr)
            return false;
    }
    return true;
}

Value* VariableReuseAnalysis::traceAliasValue(Value* V)
{
    if (CastInst * CastI = dyn_cast_or_null<CastInst>(V))
    {
        Value* Src = CastI->getOperand(0);
        if (isa<Constant>(Src))
            return CastI;

        Value* NV0 = m_DeSSA->getNodeValue(CastI);
        Value* NV1 = m_DeSSA->getNodeValue(Src);
        if (NV0 == NV1)
        {
            // Meaning they are aliased already by dessa
            return traceAliasValue(Src);
        }
    }
    return V;
}

//
// Returns true if the following is true
//     IEI = insertElement  <vectorType> Vec,  A,  <constant IEI_ix>
// Return false, otherwise.
//
// When the above condition is true, S, V, V_ix are used for the
// following cases:
//     1. sub-vector (V, V_ix),  S = A
//        A = extractElement <vectorType> V, <constant V_ix>
//        A is the element denoted by (V, V_ix)
//     2. non-sub-vector: V=nullptr, V_ix=0,  S = A
//        A is a candidate inserted and can be alias to Vec
//
//  Input: IEI
//  Output: IEI_ix, S, V, V_ix
bool VariableReuseAnalysis::getElementValue(
    InsertElementInst* IEI, int& IEI_ix, Value*& S, Value*& V, int& V_ix)
{
    // Return value: S or (V, V_ix)
    S = nullptr;
    V = nullptr;
    V_ix = 0;
    IEI_ix = 0;

    // Check if I has constant index, skip if not.
    ConstantInt* CI = dyn_cast<ConstantInt>(IEI->getOperand(2));
    if (!CI) {
        return false;
    }

    // From now on, this func must return true.
    IEI_ix = (int)CI->getZExtValue();

    // Check that the elements inserted are from extractElement.
    // Also, if no ExtractELement, get IEI's element value as S.
    Value* elem0 = IEI->getOperand(1);
    if (hasBeenPayloadCoalesced(elem0) ||
        isa<Constant>(elem0) ||
        isOrCoalescedWithArg(elem0))
    {
        // If elem0 has been payload-coalesced, is constant,
        // or it has been aliased to an argument, it cannot
        // be aliased to IEI.
        return false;
    }

    Value* elem = traceAliasValue(elem0);
    ExtractElementInst* EEI = dyn_cast<ExtractElementInst>(elem);
    S = elem;
    if (!EEI) {
        // case 2. No sub-vector alias, but it is okay
        //         to use non-sub-vector aliasing.
        return true;
    }
    ConstantInt* CI1 = dyn_cast<ConstantInt>(EEI->getIndexOperand());
    if (!CI1 ||
        !m_DeSSA->isSingleValued(elem))
    {
        // case 2
        //   1. EEI's index isn't constant, or
        //   2. EEI is not single-valued (implementation)
        // No sub-vector aliasing, but non-sub-vector aliasing
        // is okay.
        return true;
    }

    V = EEI->getVectorOperand();
    if (isa<Constant>(V) ||
        hasBeenPayloadCoalesced(V))
    {
        // case 2 again, just non-sub-vector aliasing
        V = nullptr;
        return true;
    }

    // case 1.
    V_ix = (int)CI1->getZExtValue();
    return true;
}

void VariableReuseAnalysis::InsertElementAliasing(Function* F)
{
    // Do it if VATemp >= 2 and for ocl only for now
    if (m_pCtx->getVectorCoalescingControl() < 2) {
        return;
    }

    for (auto II = inst_begin(F), IE = inst_end(F); II != IE; ++II)
    {
        Instruction* I = &*II;
        if (!m_PatternMatch->NeedInstruction(*I))
            continue;

        InsertElementInst* IEI = dyn_cast<InsertElementInst>(I);
        if (!IEI)
            continue;

        // Two cases for sub-vector aliasing:
        //   1. extractFrom: sub-vector is created from a base vector.
        //      For example:
        //         given base: int8 b;  a sub-vector s (int4) can be:
        //         s = (int4)(b.s4, b.s5, b.s6, b.s7)
        //      In this case, 's' becomes a part of 'b'. In LLVM IR,
        //      there are a chain of extElt and insElt instructions for
        //      doing so.
        //   2. insertTo: sub-vector is used to create a base vector.
        //      For example:
        //         given sub-vector int4 s0, s1;  int8 vector b is created like:
        //           b = (int8) (s0, s1)
        //      In this case,  both s0 and s1 become part of b.

        // Start insertElement pattern from the first InsertElement (one
        // with UndefValue. Note that that this's also the dessa insElt root.
        if (!isa<UndefValue>(IEI->getOperand(0)))
            continue;

        // First, collect all insertElementInst and extractElementInst.
        VecInsEltInfoTy AllIEIs;
        if (!getAllInsEltsIfAvailable(IEI, AllIEIs)) {
            continue;
        }

        // Check if this is an extractFrom pattern.
        // If so, add alias and return true.
        if (processExtractFrom(AllIEIs)) {
            continue;
        }

        // Check if this is an insertTo pattern.
        // If so, add alias and return true.
        if (processInsertTo(AllIEIs)) {
            continue;
        }
    }
}

// Check if the vector value of InsertElement is
// a sub-vector of another one, return true if so.
bool VariableReuseAnalysis::processExtractFrom(VecInsEltInfoTy& AllIEIs)
{
    int nelts = (int)AllIEIs.size();
    Value* BaseVec = AllIEIs[0].FromVec;
    int BaseStartIx = AllIEIs[0].FromVec_eltIx;
    if (!BaseVec) {
        // Base is not a vector, so IEI cannot be
        // a subvector of another vector!
        return false;
    }
    int base_nelts = getNumElts(BaseVec);

    // If Base's size is smaller than IEI's, IEI cannot be sub-vector
    if (base_nelts < nelts) {
        return false;
    }

    for (int i = 1; i < nelts; ++i)
    {
        if (AllIEIs[i].FromVec != BaseVec ||
            AllIEIs[i].FromVec_eltIx != (BaseStartIx + i))
            return false;
    }

    // Interference checking
    Value* Sub = AllIEIs[0].IEI;
    Value* Sub_nv = m_DeSSA->getNodeValue(Sub);
    Value* Base_nv = m_DeSSA->getNodeValue(BaseVec);

    // If Sub is an arg of function, skip (Base is okay to be an arg)
    if (isOrCoalescedWithArg(Sub)) {
        return false;
    }

    // Implementation restriction
    if (hasAnyOfDCCAsAliaser(Sub_nv) ||
        hasAnotherInDCCAsAliasee(Base_nv)) {
        return false;
    }

    if (aliasInterfere(Sub_nv, Base_nv, BaseStartIx)) {
        return false;
    }

    // add alias
    addVecAlias(Sub_nv, Base_nv, BaseStartIx);

    // Make sure noop insts are in the map.
    for (int i = 0, sz = (int)AllIEIs.size(); i < sz; ++i)
    {
        InsertElementInst* IEI = AllIEIs[i].IEI;
        if (m_DeSSA->isNoopAliaser(IEI))
            continue;
        m_HasBecomeNoopInsts[IEI] = 1;

        ExtractElementInst* EEI = AllIEIs[i].EEI;
        IGC_ASSERT(EEI);
        if (m_DeSSA->isNoopAliaser(EEI))
            continue;
        m_HasBecomeNoopInsts[EEI] = 1;
    }
    return true;
}

// Check if IEI is a base vector created by other sub-vectors
// or scalars. If it is, create alias and return true.
bool VariableReuseAnalysis::processInsertTo(VecInsEltInfoTy& AllIEIs)
{
    int nelts = (int)AllIEIs.size();
    Value* Sub = AllIEIs[0].FromVec;
    int SubStartIx = 0;
    SmallVector<std::pair<Value*, int>, 8> SubVecs;

    auto IsInSubVecs = [&](Value* Val) -> bool {
        for (int j = 0, sz = (int)SubVecs.size(); j < sz; ++j) {
            if (SubVecs[j].first == Val)
                return true;
        }
        return false;
    };

    // Check alias interference
    InsertElementInst* FirstIEI = AllIEIs[0].IEI;
    Value* Base_nv = m_DeSSA->getNodeValue(FirstIEI);
    // Early check to see if Base_nv could be used as Base.
    if (hasAnotherInDCCAsAliasee(Base_nv)) {
        return false;
    }

    bool isSubCandidate = true;
    for (int i = 0; i < nelts; ++i)
    {
        // On entry to the iteration, AllIEIs[i].FromVec must be the
        // same as Sub.  If the next Sub is different from the current
        // one, the current element (AllIEIs[i]) is the last one element
        // for the Sub.
        //
        // Note
        //   case 1:  if Elt == nullptr, no aliasing
        //   case 2:  if Elt != nullptr && Fromvec == nullptr, Elt aliasing
        //   case 3:  if Elt != nullptr && FromVec != nullptr,
        //            (FromVec, FromVec_eltIx) sub-vector aliasing
        //
        Value* Elt = AllIEIs[i].Elt;
        if (!Elt ||
            (Sub && (i - SubStartIx) != AllIEIs[i].FromVec_eltIx)) {
            isSubCandidate = false;
            continue;
        }

        // If Sub == nullptr or NextSub != Sub, this is the last element
        // of the current Sub (it is a scalar in case of sub == nullpr).
        Value* NextSub = (i < (nelts - 1)) ? AllIEIs[i + 1].FromVec : nullptr;
        if (!Sub || Sub != NextSub)
        {
            // End of the current Sub
            if (isSubCandidate)
            {
                Value* aliaser = Sub ? Sub : Elt;
                int sub_nelts = getNumElts(aliaser);
                // If Sub's size is not smaller than IEI's, or not all sub's
                // elements are used, skip.
                if (sub_nelts < nelts && (i - SubStartIx) == (sub_nelts - 1))
                {
                    SubVecs.push_back(std::make_pair(aliaser, SubStartIx));
                }
            }

            // NextSub should be the new sub-vector.
            // Make sure it is not used yet.
            // Note this works for special case in which NextSub = nullptr.
            isSubCandidate = true;
            Value* NextElt = (i < (nelts - 1)) ? AllIEIs[i + 1].Elt : nullptr;
            if (!NextElt ||
                (NextSub && IsInSubVecs(NextSub)) ||
                (!NextSub && IsInSubVecs(NextElt))) {
                isSubCandidate = false;
            }
            Sub = NextSub;
            SubStartIx = i + 1;
        }
    }

    // Check alias interference
    bool hasAlias = false;
    for (int i = 0, sz = (int)SubVecs.size(); i < sz; ++i)
    {
        std::pair<Value*, int>& aPair = SubVecs[i];
        Value* V = aPair.first;

        // If V is an arg, skip it
        if (isOrCoalescedWithArg(V)) {
            continue;
        }

        int V_ix = aPair.second;
        Value* V_nv = m_DeSSA->getNodeValue(V);
        if (hasAnyOfDCCAsAliaser(V_nv)) {
            continue;
        }
        if (aliasInterfere(V_nv, Base_nv, V_ix)) {
            continue;
        }
        addVecAlias(V_nv, Base_nv, V_ix);

        int V_sz = getNumElts(V);
        if (V_sz > 1)
        {
            // set up Noop inst
            // Make sure noop insts are in the map.
            for (int j = V_ix, sz = V_ix + V_sz; j < sz; ++j)
            {
                InsertElementInst* IEI = AllIEIs[j].IEI;
                if (m_DeSSA->isNoopAliaser(IEI))
                    continue;
                m_HasBecomeNoopInsts[IEI] = 1;

                ExtractElementInst* EEI = AllIEIs[j].EEI;
                IGC_ASSERT(EEI);
                // Sub-vector
                if (m_DeSSA->isNoopAliaser(EEI))
                    continue;
                m_HasBecomeNoopInsts[EEI] = 1;

                Value* EEI_nv = m_DeSSA->getNodeValue(EEI);
                addVecAlias(EEI_nv, Base_nv, j);
            }
        }
        hasAlias = true;
    }
    return hasAlias;
}

// Return all aliased values of VecAliasee, given the alias:
//           Aliaser->(VecAliasee, Idx)
void VariableReuseAnalysis::getAllAliasVals(
    ValueVectorTy& AliasVals,
    Value* Aliaser,
    Value* VecAliasee,
    int    Idx)
{
    AliasVals.clear();
    auto II = m_aliasMap.find(VecAliasee);
    AliasVals.push_back(VecAliasee);
    if (II != m_aliasMap.end())
    {
        SSubVecDesc* aliaseeSV = II->second;
        int nelts = getNumElts(Aliaser);
        int Idx_end = Idx + nelts - 1;
        for (int i = 0, sz = (int)(aliaseeSV->Aliasers.size()); i < sz; ++i)
        {
            SSubVecDesc* SV = aliaseeSV->Aliasers[i];
            int start = SV->StartElementOffset;
            int end = start + SV->NumElts - 1;
            if ((start > Idx_end) || (end < Idx))
                continue;
            AliasVals.push_back(SV->Aliaser);
        }
    }
}


// Check if two potentially-aliased values (must be dessa node
// values) interfere each other.
bool VariableReuseAnalysis::aliasInterfere(Value* Sub, Value* Base, int BaseIdx)
{
    ValueVectorTy Vec0, Vec1;
    Vec0.push_back(Sub);
    getAllAliasVals(Vec1, Sub, Base, BaseIdx);
    auto II0 = m_aliasMap.find(Sub);
    if (II0 != m_aliasMap.end()) {
        SSubVecDesc* SV0 = II0->second;
        for (int i = 0, sz = (int)SV0->Aliasers.size(); i < sz; ++i) {
            SSubVecDesc* tSV = SV0->Aliasers[i];
            Vec0.push_back(tSV->Aliaser);
        }
    }

    for (int i0 = 0, sz0 = (int)Vec0.size(); i0 < sz0; ++i0)
    {
        Value* V0 = Vec0[i0];
        for (int i1 = 0, sz1 = (int)Vec1.size(); i1 < sz1; ++i1) {
            Value* V1 = Vec1[i1];
            if (m_DeSSA->aliasInterfere(V0, V1))
                return true;
        }
    }
    return false;
}