1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "Compiler/CISACodeGen/VectorProcess.hpp"
#include "Compiler/CISACodeGen/ShaderCodeGen.hpp"
#include "Compiler/CISACodeGen/EmitVISAPass.hpp"
#include "Compiler/IGCPassSupport.h"
#include "common/IGCIRBuilder.h"
#include "common/LLVMWarningsPush.hpp"
#include "llvmWrapper/Support/Alignment.h"
#include "llvmWrapper/IR/DerivedTypes.h"
#include <llvm/IR/DataLayout.h>
#include <llvm/IR/Instructions.h>
#include <llvm/IR/IRBuilder.h>
#include <llvm/IR/InstIterator.h>
#include <llvm/Support/MathExtras.h>
#include "common/LLVMWarningsPop.hpp"
#include "Probe/Assertion.h"
using namespace llvm;
using namespace IGC;
using IGCLLVM::FixedVectorType;
//
// Description of VectorProcess Pass
// The pass is to do data layout of vector explicitly by inserting bitcasts.
// These bitcasts have special meaning and cannot be deleted. We insert
// those bitcasts right before emitting vISA code so that the most codegen
// passes will not need to special-handle those bitcasts.
//
// As we assume that vector type (in llvm ir) is in a "packed form", which means
// that when we group several workitems (each llvm code is a single workitem)
// into a single thread, the elements of a vector in LLVM IR are no longer
// consecutive in their GRF. For example, given <n x T> v, its vISA
// variable under SIMD8 (group 8 workitems into a single thread) will be
// laid out as follow (For readability, C variables are used and C's struct
// layout is assumed):
// struct { T c0, c1, c2, c3, c4, c5, c6, c7 } visaVar[n];
// where c0, c1, ... c7 represent values for simd lane 0 -- 7,
// respectively. For example, assume the original workitem 0 is at SIMD
// lane 0, and its vector v for lane 0 will be
// visaVar[0].c0, visaVar[1].c0, visaVar[2].c0,...... visaVar[n-1].c0,
// which are no longer consecutive in visaVar.
//
// This layout is not guaranteed to be efficiently generated by gathers/scatters.
// For example, <16xi8> can be generated by 16 1-byte byte scattered Reads, each
// read reads 1 byte for every lane; but <16xi8> can be viewed as <4xi32>. And
// a single gather4 can get entire <4xi32>. Thus, to have an efficient message,
// the original vector could be "re-layout" to a different vector type that can
// be mapped to send message more efficently. But this "re-layout" has cost,
// that is, we will have to generate mov instructions (maybe a lot), as shown
// below:
// <16xi8> v
// struct { i8 c0, c1, ..., c7 } visaVar_v[16];
// Note: this array of struct is required in IGC (referred to as
// packed form).
//
// <4xi32> v_as4xi32
// struct { i32 c0, c1, ..., c7 } visaVar_v_as4xi32[4]; or
// struct { i8 c0[4], c1[4], ..., c7[4] } visaVar_v_as4xi32[4];
// note: each element of the array is actually a struct of array!
// visaVar_v_as4xi32 = gather4 &v
//
//
// To convert <4xi32> back to <16xi8> (required as packed-form), the
// following is needed:
// for(i=0; i < 4; ++i)
// for(j=0; j < 4; ++j)
// visaVar_v[i*4 + j].c0 = visaVar_v_as4xi32[i].c0[j];
// ......
// visaVar_v[i*4 + j].c7 = visaVar_v_as4xi32[i].c7[j];
// and this has 4 * 4 * 8 = 128 mov instructions !
//
//
// In order to generate such mov instructions explicitly, we insert bitcast between
// the original vector and one we want to use for load and store, and this bitcast
// basically emits movs similar to the conversion code as shown above. We call
// this bitcast as re-data-layout. The following is the code generated for this
// explicit bitcast (done by emitVectorBitCast):
// before: %v = load <16xi8>* p
//
// after: %np = bitcast p to <4 x i32>*
// %nv = load <4 x i32>* np
// %v = bitcast nv to <16 x i8> <<--- re-data-layout bitcast
//
// Since this could potentially generate a lot of movs (may be optimized away),
// bitcasts are inserted only if it is needed.
//
// ** Note, we guarantee that the size of a vector is either 1, 2 bytes,
// ** or multiple of DW at this point. This is guaranteed by VectorPreProcess
// ** (as <3 x i8> cannot be mapped to a single send message, has to be
// ** splitted. We split <3 x i8> in VectorPreProcess so that we don't have
// ** to worry about splitting vector here).
//
// Given a vector < n x T>, the type of load/store is calculated "conceptually"
// as the following, note that if sizeof(T) is 4 or 8, we normally do not
// need to do conversion at all (but there are exception when load/store is
// is mis-aligned). (Keep in mind that sizeof(T)*n is 1|2|multiple-of-DW.)
// if (n * sizeof(T) < 4 bytes) {
// <n x T> ---> S; where S is the scalar type whose size == n * sizeof(T);
// } else if ( (sizeof(T) != 4 && Using A32 message ) ||
// (sizeof(T) != 4|8 && Using A64 message) ) {
//
// <n x T> --> <n1 x i64> : sizeof(T) == 8 && A64 messages; or
// <n1 x i32> : otherwise
// }
//
// For example,
// (1) %1 = load <8 x i16> *p
// converted into
// new_p = bitcast p to <4 x i32>*
// %2 = load <4 x i32> *new_p
// %1 = bitcast %2 to <8 x i16>
//
// (2) %1 = load <4 x i64> *p
// Using A32, converted into
// new_p = bitcast p to <8 x i32>*
// %2 = load <8 x i32> *new_p
// %1 = bitcast %2 to <4 x i64>
//
// Using A64, do nothing.
//
namespace
{
class VectorProcess : public FunctionPass
{
public:
typedef SmallVector<Instruction*, 32> InstWorkVector;
static char ID; // Pass identification, replacement for typeid
VectorProcess()
: FunctionPass(ID)
, m_DL(nullptr)
, m_C(nullptr)
, has_8Byte_A64_BS(true)
, m_WorkList()
{
initializeVectorProcessPass(*PassRegistry::getPassRegistry());
}
StringRef getPassName() const override { return "VectorProcess"; }
bool runOnFunction(Function& F) override;
void getAnalysisUsage(AnalysisUsage& AU) const override
{
AU.setPreservesCFG();
AU.addRequired<CodeGenContextWrapper>();
}
private:
bool reLayoutLoadStore(Instruction* Inst);
bool optimizeBitCast(BitCastInst* BC);
private:
const DataLayout* m_DL;
LLVMContext* m_C;
bool has_8Byte_A64_BS; // true if 8-byte A64 Byte scattered is supported
InstWorkVector m_WorkList;
};
}
// Register pass to igc-opt
#define PASS_FLAG "igc-vectorprocess"
#define PASS_DESCRIPTION "Process vector loads/stores for explicit vISA variable layout"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(VectorProcess, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_END(VectorProcess, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
char VectorProcess::ID = 0;
FunctionPass* IGC::createVectorProcessPass()
{
return new VectorProcess();
}
bool VectorProcess::reLayoutLoadStore(Instruction* Inst)
{
LoadInst* const LI = dyn_cast<LoadInst>(Inst);
StoreInst* const SI = dyn_cast<StoreInst>(Inst);
GenIntrinsicInst* const II = dyn_cast<GenIntrinsicInst>(Inst);
Value* Ptr = nullptr;
Type* Ty = nullptr;
if (nullptr != LI)
{
Ptr = LI->getPointerOperand();
Ty = LI->getType();
}
else if (nullptr != SI)
{
IGC_ASSERT(0 < SI->getNumOperands());
IGC_ASSERT(nullptr != SI->getOperand(0));
Ptr = SI->getPointerOperand();
Ty = SI->getOperand(0)->getType();
}
else
{
IGC_ASSERT(nullptr != II);
IGC_ASSERT(0 < II->getNumOperands());
IGC_ASSERT(nullptr != II->getOperand(0));
Ptr = II->getOperand(0);
if (II->getIntrinsicID() == GenISAIntrinsic::GenISA_ldrawvector_indexed)
{
Ty = II->getType();
}
else
{
IGC_ASSERT(II->getIntrinsicID() == GenISAIntrinsic::GenISA_storerawvector_indexed);
IGC_ASSERT(2 < IGCLLVM::getNumArgOperands(II));
IGC_ASSERT(nullptr != II->getArgOperand(2));
Ty = II->getArgOperand(2)->getType();
}
}
IGC_ASSERT(nullptr != Ptr);
IGC_ASSERT(nullptr != Ty);
IGCLLVM::FixedVectorType* const VTy = dyn_cast<IGCLLVM::FixedVectorType>(Ty);
// Treat a scalar as 1-element vector
uint32_t nelts = VTy ? int_cast<uint32_t>(VTy->getNumElements()) : 1;
Type* eTy = VTy ? VTy->getElementType() : Ty;
uint32_t eTyBits = int_cast<unsigned int>(m_DL->getTypeSizeInBits(eTy));
IGC_ASSERT_MESSAGE((eTyBits == 8 || eTyBits == 16 || eTyBits == 32 || eTyBits == 64), "the Size of Vector element must be 8/16/32/64 bits.");
uint32_t eTyBytes = (eTyBits >> 3);
uint32_t TBytes = nelts * eTyBytes; // Total size in bytes
//
// Assumption:
// 1. if the size of vector < 4 bytes, it must be 1 or 2 bytes (never 3);
// 2. if the size of vector >= 4 bytes, it must be multiple of DW
// Those 2 assumption are guaranteed by VectorPreProcess.
//
// So far, we are using A32 untyped and byte scattered messages,
// and A64 scattered messages and A64 untyped messages.
//
// A32: using DW as the new element type.
// A64: the new element type will be:
// unaligned load/store: DW if no 8-byte A64 byte scattered message
// QW otherwise;
// aligned vector of long type: use QW
// others: use DW.
// For vector whose size is smaller than 4 bytes, they must be converted
// to a 1-element vector (or scalar) so all elements are read/written with
// a single message.
//
Type* new_eTy;
uint32_t new_nelts;
PointerType* PtrTy = cast<PointerType>(Ptr->getType());
if (TBytes == 1)
{
IGC_ASSERT_MESSAGE(nelts == 1, "Internal Error: something wrong");
return false;
}
else if (TBytes == 2 || TBytes == 4)
{
if (nelts == 1)
{
// No conversion needed.
return false;
}
new_nelts = 1;
new_eTy = (TBytes == 2) ? Type::getInt16Ty(*m_C)
: Type::getInt32Ty(*m_C);
}
else
{
// This handles all the other cases
CodeGenContext* cgCtx = nullptr;
cgCtx = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
bool useA64 = IGC::isA64Ptr(PtrTy, cgCtx);
uint32_t align;
if (LI)
{
align = (uint32_t)LI->getAlignment();
}
else if (SI)
{
align = (uint32_t)SI->getAlignment();
}
else
{
align = 1;
}
bool useQW = useA64 && ((TBytes % 8) == 0) &&
((has_8Byte_A64_BS && align < 4) || (eTyBytes == 8U && align >= 8U));
if (cgCtx->platform.LSCEnabled())
{
// With LSC, want to use QW if element size is 8 bytes.
useQW = (eTyBytes == 8);
}
const uint32_t new_eTyBytes = useQW ? 8 : 4;
if (eTyBytes == new_eTyBytes && !eTy->isAggregateType())
{
// The original vector is already a good one. Skip.
return false;
}
new_eTy = useQW ? Type::getInt64Ty(*m_C) : Type::getInt32Ty(*m_C);
IGC_ASSERT(new_eTyBytes);
IGC_ASSERT_MESSAGE((TBytes % new_eTyBytes) == 0, "Wrong new vector size");
new_nelts = TBytes / new_eTyBytes;
}
IGCIRBuilder<> Builder(Inst);
Type* newVTy;
if (new_nelts == 1)
{
newVTy = new_eTy;
}
else
{
newVTy = FixedVectorType::get(new_eTy, new_nelts);
}
Type* newPtrTy = PointerType::get(newVTy, PtrTy->getPointerAddressSpace());
Value* newPtr;
if (IntToPtrInst * i2p = dyn_cast<IntToPtrInst>(Ptr))
{
newPtr = Builder.CreateIntToPtr(i2p->getOperand(0), newPtrTy, "IntToPtr2");
}
else
{
newPtr = Builder.CreateBitCast(Ptr, newPtrTy, "vptrcast");
}
if (LI)
{
LoadInst* load = Builder.CreateAlignedLoad(newPtr,
IGCLLVM::getCorrectAlign(LI->getAlignment()),
LI->isVolatile(),
"vCastload");
load->copyMetadata(*LI);
Value* V = load;
if (eTy->isPointerTy())
{
// cannot bitcast int to ptr; need to use intToptr.
// First, cast the loaded value to a vector type that is same to
// the original vector type with ptr element type replaced
// with int-element type.
// second, IntToPtr cast to the original vector type.
Type* int_eTy = Type::getIntNTy(*m_C, eTyBits);
Type* new_intTy = VTy ? FixedVectorType::get(int_eTy, nelts) : int_eTy;
V = Builder.CreateBitCast(V, new_intTy);
if (VTy)
{
// If we need a vector inttoptr, scalarize it here.
auto* BC = V;
V = UndefValue::get(Ty);
for (unsigned i = 0; i < nelts; i++)
{
auto* EE = Builder.CreateExtractElement(BC, i);
auto* ITP = Builder.CreateIntToPtr(EE, eTy);
V = Builder.CreateInsertElement(V, ITP, i);
}
}
else
{
V = Builder.CreateIntToPtr(V, Ty);
}
}
else
{
// TODO: if Ty is Aggregate type then this bitCast conradicts to LLVM spec
V = Builder.CreateBitCast(V, Ty);
}
LI->replaceAllUsesWith(V);
LI->eraseFromParent();
}
else
if (SI)
{
Value* StoreVal = SI->getValueOperand();
Value* V;
if (eTy->isPointerTy())
{
// Similar to the load. First, PtrtoInt cast to a new vector,
// and then bitcast to the stored type.
Type* int_eTy = Type::getIntNTy(*m_C, eTyBits);
if (VTy)
{
// If we need a vector inttoptr, scalarize it here.
V = UndefValue::get(FixedVectorType::get(int_eTy, nelts));
for (unsigned i = 0; i < nelts; i++)
{
auto* EE = Builder.CreateExtractElement(StoreVal, i);
auto* ITP = Builder.CreatePtrToInt(EE, int_eTy);
V = Builder.CreateInsertElement(V, ITP, i);
}
}
else if (isa<IntToPtrInst>(StoreVal) &&
cast<IntToPtrInst>(StoreVal)->getOperand(0)->getType() == int_eTy)
{
// Detect case when creating PtrToInt and BitCast instructions
// is not needed. This is when store value is created from
// a vector with the same type as the target vector type.
//
// e.g. example from a Vulkan shader with variable pointers:
// Before:
// %7 = bitcast <2 x i32> %assembled.vect7 to i64
// %Temp-26.i.VP = inttoptr i64 %7 to i32 addrspace(1179648)*
// store i32 addrspace(1179648)* %Temp-26.i.VP, i32 addrspace(1179648)** %6, align 8
// After:
// store <2 x i32> %assembled.vect7, <2 x i32>* %vptrcast, align 8
V = cast<IntToPtrInst>(StoreVal)->getOperand(0);
}
else
{
V = Builder.CreatePtrToInt(StoreVal, int_eTy);
}
if (isa<BitCastInst>(V) &&
(cast<BitCastInst>(V)->getOperand(0)->getType() == newVTy))
{
V = cast<BitCastInst>(V)->getOperand(0);
}
else
{
V = Builder.CreateBitCast(V, newVTy);
}
}
else
{
V = Builder.CreateBitCast(StoreVal, newVTy);
}
StoreInst* store = nullptr;
if (SI->getAlignment() == 0)
{
store = Builder.CreateStore(V, newPtr, SI->isVolatile());
}
else
{
store = Builder.CreateAlignedStore(V, newPtr, IGCLLVM::getAlign(SI->getAlignment()), SI->isVolatile());
}
store->copyMetadata(*SI);
SI->eraseFromParent();
}
else if (II->getIntrinsicID() == GenISAIntrinsic::GenISA_ldrawvector_indexed)
{
Type* types[] =
{
newVTy,
newPtrTy
};
Function* F = GenISAIntrinsic::getDeclaration(
II->getParent()->getParent()->getParent(),
GenISAIntrinsic::GenISA_ldrawvector_indexed,
types);
Value* V = Builder.CreateCall4(F, newPtr, II->getOperand(1), II->getOperand(2), II->getOperand(3));
V = Builder.CreateBitCast(V, Ty);
II->replaceAllUsesWith(V);
II->eraseFromParent();
}
else
{
Type* types[] =
{
newPtrTy,
newVTy
};
Function* F = GenISAIntrinsic::getDeclaration(
II->getParent()->getParent()->getParent(),
GenISAIntrinsic::GenISA_storerawvector_indexed,
types);
Value* V = Builder.CreateBitCast(II->getOperand(2), newVTy);
Builder.CreateCall5(F, newPtr, II->getOperand(1), V, II->getOperand(3), II->getOperand(4));
II->eraseFromParent();
}
return true;
}
bool VectorProcess::optimizeBitCast(BitCastInst* BC)
{
bool change = false;
Value* Src = BC->getOperand(0);
Type* SrcTy = Src->getType();
Type* Ty = BC->getType();
if (Ty == SrcTy)
{
BC->replaceAllUsesWith(Src);
return true;
}
// Only handle non-pointer bitcast
if (isa<PointerType>(Ty) || isa<PointerType>(SrcTy))
{
return false;
}
for (Value::user_iterator UI = BC->user_begin(), UE = BC->user_end();
UI != UE; ++UI)
{
if (BitCastInst * Inst = dyn_cast<BitCastInst>(*UI))
{
IRBuilder<> Builder(Inst);
Type* Ty1 = Inst->getType();
if (SrcTy == Ty1)
{
Inst->replaceAllUsesWith(Src);
}
else
{
BitCastInst* nBC = (BitCastInst*)Builder.CreateBitCast(Src, Ty1);
Inst->replaceAllUsesWith(nBC);
// Add nBC so it will be processed again.
m_WorkList.push_back(nBC);
}
change = true;
}
}
return change;
}
bool VectorProcess::runOnFunction(Function& F)
{
CodeGenContext* cgCtx = nullptr;
cgCtx = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
bool changed = false;
m_DL = &F.getParent()->getDataLayout();
m_C = &F.getContext();
has_8Byte_A64_BS = cgCtx->platform.has8ByteA64ByteScatteredMessage();
// Adjust load/store layout by inserting bitcast.
// Those bitcasts should not be optimized away.
for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
{
Instruction* inst = &*I;
if (isa<LoadInst>(inst) || isa<StoreInst>(inst))
{
m_WorkList.push_back(inst);
}
else
if (GenIntrinsicInst * intrin = dyn_cast<GenIntrinsicInst>(inst))
{
if (intrin->getIntrinsicID() == GenISAIntrinsic::GenISA_ldrawvector_indexed ||
intrin->getIntrinsicID() == GenISAIntrinsic::GenISA_storerawvector_indexed)
{
m_WorkList.push_back(inst);
}
}
}
for (unsigned i = 0; i < m_WorkList.size(); ++i)
{
if (reLayoutLoadStore(m_WorkList[i]))
{
changed = true;
}
}
m_WorkList.clear();
// To remove unnecessary bitcast
if (changed)
{
for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
{
Instruction* inst = &*I;
if (isa<BitCastInst>(inst))
{
m_WorkList.push_back(inst);
}
}
bool doclean = false;
for (unsigned i = 0; i < m_WorkList.size(); ++i)
{
if (BitCastInst * Inst = dyn_cast<BitCastInst>(m_WorkList[i]))
{
if (optimizeBitCast(Inst))
{
doclean = true;
}
}
}
while (doclean)
{
// Given b2 = bitcast A, T2
// b1 = bitcast b2, T1
// we say b1's level is 1, b2's level is 2.
//
// This pass, in theory, can have two-level dead bitcasts.
// Therefore, we expect "while" will take three iterations at most. And
// WorkList is the set of bitcasts, which isn't expected to be big.
doclean = false;
for (unsigned i = 0; i < m_WorkList.size(); ++i)
{
if (m_WorkList[i] && m_WorkList[i]->use_empty())
{
m_WorkList[i]->eraseFromParent();
m_WorkList[i] = NULL;
doclean = true;
}
}
}
m_WorkList.clear();
}
//DumpLLVMIR(cgCtx, "vectorprocess");
return changed;
}
//
// getInfo maps vector to the right messages. It assume that a vector
// can be mapped to more than one messages, and those messages may be
// different as long as the message returns exactly the same "packed form"
// of the vector.
//
// getInfo() initializes the array of struct (insts), which specifies
// the number of send instructions (or gathers/scatters visa instructions)
// needed to read/write this vector into vISA variable. The clients will
// access this array of struct directly after getInfo() call.
//
// VectorProcess() will change each vector load and store into a new vector
// load and store that can map exactly to these messages. getInfo() has
// the following agreement with VectorProcess():
// 1) If sizeof(Ty) >= 4 bytes, sizeof(Ty) must be multiple of 4 bytes.
// And futhermore, the element type of 'Ty' if 'Ty" is a vector type
// or 'Ty' if 'Ty' is a scalar type, must be either 4 bytes (DW) or
// 8 bytes (QW).
// 2) If sizeof(Ty) < 4 bytes, sizeof(Ty) must be either 1 byte or
// 2 bytes. The sizeof(Ty) cannot be 3 bytes!
// (Note that VectorMessage and VectorProcess must be in sync with regard
// to this agreetment.)
//
void VectorMessage::getInfo(Type* Ty, uint64_t Align, bool useA32,
bool forceByteScatteredRW)
{
VectorType* VTy = dyn_cast<VectorType>(Ty);
Type* eTy = VTy ? cast<VectorType>(VTy)->getElementType() : Ty;
unsigned eltSize = Shader->GetScalarTypeSizeInRegister(eTy);
unsigned nElts = VTy ? (unsigned)cast<IGCLLVM::FixedVectorType>(VTy)->getNumElements() : 1;
// total bytes
const unsigned TBytes = nElts * eltSize;
// Per-channel Max Bytes (MB) that can be read/written by a single send inst
unsigned MB;
SIMDMode SM = Shader->m_SIMDSize;
bool has_8B_A64_BS =
Shader->m_Platform->has8ByteA64ByteScatteredMessage();
bool has_8DW_A64_SM =
Shader->m_Platform->has8DWA64ScatteredMessage();
//
// Set up default message and the data type of the message
//
MESSAGE_KIND defaultKind;
VISA_Type defaultDataType;
if (Align < 4 || TBytes < 4 || forceByteScatteredRW)
{
if (forceByteScatteredRW)
{
IGC_ASSERT(useA32);
}
defaultKind = useA32
? MESSAGE_A32_BYTE_SCATTERED_RW
: MESSAGE_A64_SCATTERED_RW;
MB = useA32
? A32_BYTE_SCATTERED_MAX_BYTES
: ((has_8B_A64_BS && eltSize == 8)
? A64_BYTE_SCATTERED_MAX_BYTES_8B
: A64_BYTE_SCATTERED_MAX_BYTES);
defaultDataType = ISA_TYPE_UB;
// To make sure that vector and message match.
IGC_ASSERT_MESSAGE((MB == eltSize || (MB > eltSize && nElts == 1)), "Internal Error: mismatch layout for vector");
}
else
{
defaultKind = useA32
? MESSAGE_A32_UNTYPED_SURFACE_RW
: MESSAGE_A64_SCATTERED_RW;
MB = useA32
? A32_UNTYPED_MAX_BYTES
: ((has_8DW_A64_SM && SM == SIMDMode::SIMD8)
? A64_SCATTERED_MAX_BYTES_8DW_SIMD8
: A64_SCATTERED_MAX_BYTES_4DW);
bool allowQWMessage = !useA32 && eltSize == 8 && Align >= 8U;
defaultDataType = (eltSize == 8) ? ISA_TYPE_UQ : ISA_TYPE_UD;
//To make sure that send returns the correct layout for vector.
IGC_ASSERT_MESSAGE((eltSize == 4 /* common */ || allowQWMessage /* A64, QW */), "Internal Error: mismatch layout for vector");
}
MESSAGE_KIND kind = defaultKind;
VISA_Type dataType = defaultDataType;
unsigned bytes = TBytes;
size_t i = 0;
for (; bytes >= MB; ++i, bytes -= MB)
{
IGC_ASSERT(i < (sizeof(insts) / sizeof(*insts)));
insts[i].startByte = (uint16_t)(TBytes - bytes);
insts[i].kind = kind;
insts[i].blkType = dataType;
insts[i].blkInBytes = (uint16_t)CEncoder::GetCISADataTypeSize(dataType);
IGC_ASSERT(insts[i].blkInBytes);
insts[i].numBlks = MB / insts[i].blkInBytes;
}
// Process the remaining elements if any. It could have at most
// two separate sends. For example, assuming the remaining bytes
// are for <7 x i32> and it is for A64 SIMD8 with align >=4; thus
// we will need two sends: one for the first <4 x i32> and the
// second for the remaining <3 x i32>.
if (MB == A64_SCATTERED_MAX_BYTES_8DW_SIMD8)
{ // MB == 32 bytes
unsigned MB2 = A64_SCATTERED_MAX_BYTES_8DW_SIMD8 / 2; // 16 bytes
if (bytes > MB2)
{
IGC_ASSERT(i < (sizeof(insts) / sizeof(*insts)));
insts[i].startByte = (uint16_t)(TBytes - bytes);
insts[i].kind = kind;
insts[i].blkInBytes = (uint16_t)CEncoder::GetCISADataTypeSize(dataType);
IGC_ASSERT(insts[i].blkInBytes);
insts[i].numBlks = MB2 / insts[i].blkInBytes;
++i;
bytes -= MB2;
}
}
if (bytes > 0)
{
if (Align >= 4)
{
if (!useA32 && eltSize == 4 && bytes == 12)
{
kind = MESSAGE_A64_UNTYPED_SURFACE_RW;
}
}
IGC_ASSERT(i < (sizeof(insts) / sizeof(*insts)));
insts[i].startByte = (uint16_t)(TBytes - bytes);
insts[i].kind = kind;
insts[i].blkType = dataType;
insts[i].blkInBytes = (uint16_t)CEncoder::GetCISADataTypeSize(dataType);
IGC_ASSERT(insts[i].blkInBytes);
insts[i].numBlks = (uint16_t)bytes / insts[i].blkInBytes;
++i;
}
numInsts = i;
IGC_ASSERT_MESSAGE(numInsts <= VECMESSAGEINFO_MAX_LEN, "Vector's size is too big, increase MAX_VECMESSAGEINFO_LEN to fix it!");
IGC_ASSERT_MESSAGE(numInsts <= (sizeof(insts) / sizeof(*insts)), "Vector's size is too big, increase MAX_VECMESSAGEINFO_LEN to fix it!");
}
void VectorMessage::getLSCInfo(llvm::Type* Ty, uint64_t Align, CodeGenContext* ctx, bool useA32, bool transpose)
{
IGC_ASSERT(nullptr != ctx);
IGC_ASSERT(nullptr != Shader);
IGCLLVM::FixedVectorType* VTy = dyn_cast<IGCLLVM::FixedVectorType>(Ty);
Type* eTy = VTy ? VTy->getContainedType(0) : Ty;
unsigned eltSize = Shader->GetScalarTypeSizeInRegister(eTy);
unsigned nElts = VTy ? (unsigned)VTy->getNumElements() : 1;
// total bytes
const unsigned TBytes = nElts * eltSize;
char TRANS_VEC_SIZE[8] = { 1, 2, 3, 4, 8, 16, 32, 64 };
MESSAGE_KIND kind = useA32
? MESSAGE_A32_LSC_RW
: MESSAGE_A64_LSC_RW;
VISA_Type dataType = GetType(Ty, ctx);
uint16_t blkInBytes = (uint16_t)CEncoder::GetCISADataTypeSize(dataType);
// Per-channel Max Bytes (MB) that can be read/written by a single send inst
const unsigned int numLanesForSIMDSize = numLanes(Shader->m_SIMDSize);
IGC_ASSERT(numLanesForSIMDSize);
unsigned int MB = (8 * ctx->platform.getGRFSize()) / numLanesForSIMDSize;
if (Align < 4 || (eltSize == 8 && Align < 8)) {
MB = eltSize;
}
size_t i = 0;
if (transpose)
{
unsigned bytes = TBytes;
for (int j = 0; j < 8; j++)
{
const unsigned int denominator = blkInBytes * TRANS_VEC_SIZE[7 - j];
IGC_ASSERT(denominator);
if (bytes % denominator == 0)
{
IGC_ASSERT(i < (sizeof(insts) / sizeof(*insts)));
insts[i].startByte = (uint16_t)(TBytes - bytes);
insts[i].kind = kind;
insts[i].blkType = dataType;
insts[i].blkInBytes = blkInBytes;
insts[i].numBlks = TRANS_VEC_SIZE[7 - j];
bytes -= insts[i].numBlks * blkInBytes;
i++;
break;
}
else //
{
if (bytes / denominator != 0)
{
IGC_ASSERT(i < (sizeof(insts) / sizeof(*insts)));
insts[i].startByte = (uint16_t)(TBytes - bytes);
insts[i].kind = kind;
insts[i].blkType = dataType;
insts[i].blkInBytes = blkInBytes;
insts[i].numBlks = TRANS_VEC_SIZE[7 - j];
bytes -= insts[i].numBlks * blkInBytes;
i++;
} // else j++;
}
}
IGC_ASSERT(bytes == 0);
}
else
{
unsigned bytes = TBytes;
for (; bytes >= MB; ++i, bytes -= MB)
{
insts[i].startByte = (uint16_t)(TBytes - bytes);
insts[i].kind = kind;
insts[i].blkType = dataType;
insts[i].blkInBytes = (uint16_t)CEncoder::GetCISADataTypeSize(dataType);
IGC_ASSERT(insts[i].blkInBytes);
insts[i].numBlks = MB / insts[i].blkInBytes;
}
if (bytes > 0)
{
insts[i].startByte = (uint16_t)(TBytes - bytes);
insts[i].kind = kind;
insts[i].blkType = dataType;
insts[i].blkInBytes = (uint16_t)CEncoder::GetCISADataTypeSize(dataType);
IGC_ASSERT(insts[i].blkInBytes);
insts[i].numBlks = (uint16_t)bytes / insts[i].blkInBytes;
++i;
}
}
numInsts = i;
IGC_ASSERT_MESSAGE(numInsts <= VECMESSAGEINFO_MAX_LEN, "Vector's size is too big, increase MAX_VECMESSAGEINFO_LEN to fix it!");
IGC_ASSERT_MESSAGE(numInsts <= (sizeof(insts) / sizeof(*insts)), "Vector's size is too big, increase MAX_VECMESSAGEINFO_LEN to fix it!");
}
VectorMessage::VectorMessage(EmitPass* emitter) : Shader(emitter->m_currShader)
{
numInsts = 0;
}
|