1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#pragma once
#include "common/LLVMWarningsPush.hpp"
#include <llvm/Analysis/AssumptionCache.h>
#include <llvm/IR/Instruction.h>
#include <llvm/IR/Instructions.h>
#include <llvm/IR/Function.h>
#include <llvm/IR/Intrinsics.h>
#include <llvm/IR/IntrinsicInst.h>
#include <llvm/IR/Constants.h>
#include <llvm/IR/DataLayout.h>
#include <llvm/IR/Metadata.h>
#include <llvm/IR/Operator.h>
#include <llvm/IR/CFG.h>
#include <llvmWrapper/IR/IRBuilder.h>
#include <llvm/IR/PassManager.h>
#include <llvm/ADT/SmallSet.h>
#include <llvm/ADT/DenseSet.h>
#include <llvm/Analysis/PostDominators.h>
#include "common/LLVMWarningsPop.hpp"
#include "GenISAIntrinsics/GenIntrinsics.h"
#include "GenISAIntrinsics/GenIntrinsicInst.h"
#include "Compiler/CodeGenPublicEnums.h"
#include "Compiler/CISACodeGen/Platform.hpp"
#include "Compiler/MetaDataApi/MetaDataApi.h"
#include "common/MDFrameWork.h"
#include "common/Types.hpp"
#include "Probe/Assertion.h"
typedef unsigned int uint;
#define SIZE_WORD 2
#define SIZE_DWORD 4
#define SIZE_OWORD 16
#define SIZE_YWORD 32
enum ADDRESS_SPACE : unsigned int;
namespace IGC
{
class CodeGenContext;
struct SProgramOutput;
static const char * const INTEL_SYMBOL_TABLE_VOID_PROGRAM = "Intel_Symbol_Table_Void_Program";
#ifdef _DEBUG
template<typename T, size_t N>
using smallvector = std::vector<T>;
#else
template<typename T, size_t N>
using smallvector = llvm::SmallVector<T, N>;
#endif
// This is used to return true/false/dunno results.
enum class Tristate
{
Unknown = -1, False = 0, True = 1
};
enum e_llvmType
{
e_Instruction = 0,
e_Intrinsic = 1,
e_GenISAIntrinsic = 1,
};
#define LLVMTYPEBYTE 24
#define OPCODE(instName,llvmType) \
instName | llvmType<<LLVMTYPEBYTE
#define DECLARE_OPCODE(instName, llvmType, name, modifiers, sat, pred, condMod, mathIntrinsic, atomicIntrinsic, regioning) \
name = OPCODE(llvm::llvmType::instName,e_##llvmType),
enum EOPCODE
{
#include "opCode.h"
};
#undef DECLARE_OPCODE
#define DECLARE_OPCODE(instName, llvmType, name, modifiers, sat, pred, condMod, mathIntrinsic, atomicIntrinsic, regioning) \
static_assert((llvm::llvmType::instName < ( 1 << LLVMTYPEBYTE ) ), "Enum bitfield range check");
#include "opCode.h"
#undef DECLARE_OPCODE
EOPCODE GetOpCode(const llvm::Instruction* inst);
bool SupportsModifier(llvm::Instruction* inst);
bool SupportsSaturate(llvm::Instruction* inst);
bool SupportsPredicate(llvm::Instruction* inst);
bool SupportsCondModifier(llvm::Instruction* inst);
bool SupportsRegioning(llvm::Instruction* inst);
bool IsMathIntrinsic(EOPCODE opcode);
bool IsAtomicIntrinsic(EOPCODE opcode);
bool IsGradientIntrinsic(EOPCODE opcode);
bool IsExtendedMathInstruction(llvm::Instruction* Inst);
bool IsSubGroupIntrinsicWithSimd32Implementation(EOPCODE opcode);
bool UsesTypedConstantBuffer(
const CodeGenContext* pContext,
const BufferType bufType);
bool ComputesGradient(llvm::Instruction* inst);
BufferType GetBufferType(uint addrSpace);
uint getImmValueU32(const llvm::Value* value);
bool getImmValueBool(const llvm::Value* value);
template <typename EnumT>
static inline EnumT getImmValueEnum(const llvm::Value* val)
{
return static_cast<EnumT>(getImmValueU32(val));
}
void VectorToElement(
llvm::Value* inst,
llvm::Value* elem[],
llvm::Type* int32Ty,
llvm::Instruction* insert_before,
int vsize = 4);
llvm::Value* ElementToVector(
llvm::Value* elem[],
llvm::Type* int32Ty,
llvm::Instruction* insert_before,
int vsize = 4);
llvm::Value* ConvertToFloat(llvm::IRBuilder<>& builder, llvm::Value* val);
void ConvertToFloat(llvm::IRBuilder<>& builder, llvm::SmallVectorImpl<llvm::Value*>& instList);
//scalarize aggregate into flattened members
void ScalarizeAggregateMembers(llvm::IRBuilder<>& builder, llvm::Value* val, llvm::SmallVectorImpl<llvm::Value*>& instList);
//scalarize aggregate into flattened member addresses
void ScalarizeAggregateMemberAddresses(IGCLLVM::IRBuilder<>& builder, llvm::Type* type, llvm::Value* val, llvm::SmallVectorImpl<llvm::Value*>& instList, llvm::SmallVector<llvm::Value*, 16> indices);
/// return true if pLLVMInst is load from constant-buffer with immediate constant-buffer index
bool IsLoadFromDirectCB(llvm::Instruction* pLLVMInst, uint& cbId, llvm::Value*& eltPtrVal);
bool IsReadOnlyLoadDirectCB(llvm::Instruction* pLLVMInst, uint& cbId, llvm::Value*& eltPtrVal, BufferType& buftype);
int findSampleInstructionTextureIdx(llvm::Instruction* inst);
llvm::Value* getTextureIndexArgBasedOnOpcode(llvm::Instruction* inst);
llvm::Value* GetBufferOperand(llvm::Instruction* inst);
llvm::LoadInst* cloneLoad(llvm::LoadInst* Orig, llvm::Value* Ptr);
llvm::StoreInst* cloneStore(llvm::StoreInst* Orig, llvm::Value* Val, llvm::Value* Ptr);
llvm::LdRawIntrinsic* CreateLoadRawIntrinsic(llvm::LoadInst* inst, llvm::Value* bufPtr, llvm::Value* offsetVal);
llvm::StoreRawIntrinsic* CreateStoreRawIntrinsic(llvm::StoreInst* inst, llvm::Value* bufPtr, llvm::Value* offsetVal);
void getTextureAndSamplerOperands(llvm::GenIntrinsicInst* pIntr, llvm::Value*& pTextureValue, llvm::Value*& pSamplerValue);
void ChangePtrTypeInIntrinsic(llvm::GenIntrinsicInst*& pIntr, llvm::Value* oldPtr, llvm::Value* newPtr);
llvm::Value* TracePointerSource(llvm::Value* resourcePtr);
llvm::Value* TracePointerSource(llvm::Value* resourcePtr, bool hasBranching, bool enablePhiLoops, bool fillList, std::vector<llvm::Value*>& instList);
llvm::Value* TracePointerSource(llvm::Value* resourcePtr, bool hasBranching, bool enablePhiLoops, bool fillList, std::vector<llvm::Value*>& instList, llvm::SmallSet<llvm::PHINode*, 8> & visitedPHIs);
bool GetResourcePointerInfo(llvm::Value* srcPtr, unsigned& resID, IGC::BufferType& resTy, IGC::BufferAccessType& accessTy, bool& needBufferOffset);
BufferAccessType getDefaultAccessType(BufferType bufTy);
bool GetGRFOffsetFromRTV(llvm::Value* pointerSrc, unsigned& GRFOffset);
bool GetGRFOffsetFromGlobalRootSignatureValue(llvm::Value* pointerSrc, unsigned& GRFOffset);
bool GetStatelessBufferInfo(llvm::Value* pointer, unsigned& bufIdOrGRFOffset, IGC::BufferType& bufferTy, llvm::Value*& bufferSrcPtr, bool& isDirectBuf);
// try to evaluate the address if it is constant.
bool EvalConstantAddress(llvm::Value* address, unsigned int& offset, const llvm::DataLayout* pDL, llvm::Value* ptrSrc = nullptr);
bool getConstantAddress(llvm::Instruction& I, ConstantAddress& cl, CodeGenContext* pContext, bool& directBuf, bool& statelessBuf, bool& bindlessBuf,bool& rootconstantBuf, unsigned int& TableOffset);
bool isSampleLoadGather4InfoInstruction(const llvm::Instruction* inst);
bool isSampleInstruction(const llvm::Instruction* inst);
bool isInfoInstruction(const llvm::Instruction* inst);
bool isLdInstruction(const llvm::Instruction* inst);
bool isGather4Instruction(const llvm::Instruction* inst);
bool IsMediaIOIntrinsic(const llvm::Instruction* inst);
bool IsSIMDBlockIntrinsic(const llvm::Instruction* inst);
bool isSubGroupIntrinsic(const llvm::Instruction* I);
bool isSubGroupIntrinsicPVC(const llvm::Instruction* I);
bool hasSubGroupIntrinsicPVC(llvm::Function& F);
bool isBarrierIntrinsic(const llvm::Instruction* I);
bool isUserFunctionCall(const llvm::Instruction* I);
bool IsStatelessMemLoadIntrinsic(llvm::GenISAIntrinsic::ID id);
bool IsStatelessMemStoreIntrinsic(llvm::GenISAIntrinsic::ID id);
bool IsStatelessMemAtomicIntrinsic(llvm::GenIntrinsicInst& inst, llvm::GenISAIntrinsic::ID id);
bool isURBWriteIntrinsic(const llvm::Instruction* inst);
llvm::Instruction* AdjustSystemValueCall(llvm::GenIntrinsicInst* inst);
unsigned EncodeAS4GFXResource(
const llvm::Value& bufIdx,
BufferType bufType,
unsigned uniqueIndAS = IGC::DefaultIndirectIdx);
unsigned SetBufferAsBindless(unsigned addressSpaceOfPtr, BufferType bufferType);
bool isStatefulAddrSpace(unsigned AS);
BufferType DecodeAS4GFXResource(unsigned addrSpace, bool& directIdx, unsigned& bufId);
BufferType DecodeBufferType(unsigned addrSpace);
int getConstantBufferLoadOffset(llvm::LoadInst* ld);
unsigned getNumberOfExitBlocks(llvm::Function& function);
bool isDummyBasicBlock(llvm::BasicBlock* BB);
bool IsDirectIdx(unsigned addrSpace);
bool isNaNCheck(llvm::FCmpInst& FC);
inline bool IsBindless(BufferType t)
{
return t == BINDLESS || t == BINDLESS_CONSTANT_BUFFER || t == BINDLESS_TEXTURE;
}
inline bool IsSSHbindless(BufferType t)
{
return t == SSH_BINDLESS || t == SSH_BINDLESS_CONSTANT_BUFFER || t == SSH_BINDLESS_TEXTURE;
}
bool IsUnsignedCmp(const llvm::CmpInst::Predicate Pred);
bool IsSignedCmp(const llvm::CmpInst::Predicate Pred);
bool IsBitCastForLifetimeMark(const llvm::Value* V);
// isA64Ptr - Queries whether given pointer type requires 64-bit representation in vISA
bool isA64Ptr(llvm::PointerType* PT, CodeGenContext* pContext);
inline llvm::Function* getIntelSymbolTableVoidProgram(llvm::Module* pM)
{
return pM->getFunction(INTEL_SYMBOL_TABLE_VOID_PROGRAM);
}
inline bool isIntelSymbolTableVoidProgram(llvm::Function* pF)
{
return (pF == getIntelSymbolTableVoidProgram(pF->getParent()));
}
int getFunctionControl(const CodeGenContext* pContext);
inline bool ForceAlwaysInline(const CodeGenContext* pContext)
{
// return true if FunctionControl is set to INLINE, and SelectiveFunctionControl does not force fcalls.
return getFunctionControl(pContext) == FLAG_FCALL_FORCE_INLINE &&
(IGC_GET_FLAG_VALUE(SelectiveFunctionControl) == FLAG_FCALL_DEFAULT ||
IGC_GET_FLAG_VALUE(SelectiveFunctionControl) == FLAG_FCALL_FORCE_INLINE);
}
/// Return true if F is an entry function of a kernel or a shader.
/// A entry function must have an entry in FunctionInfoMetaData
/// with type KernelFunction;
/// A non-entry function may have an entry, if so, that entry in
/// FunctionInfoMetaData must have type UserFunction.
inline bool isEntryFunc(const IGCMD::MetaDataUtils* pM, const llvm::Function* CF)
{
llvm::Function* F = const_cast<llvm::Function*>(CF);
if (F == nullptr || F->empty() ||
pM->findFunctionsInfoItem(F) == pM->end_FunctionsInfo())
return false;
IGCMD::FunctionInfoMetaDataHandle Info = pM->getFunctionsInfoItem(F);
IGC_ASSERT_MESSAGE(Info->isTypeHasValue(), "FunctionInfoMetaData missing type!");
return Info->getType() == FunctionTypeMD::KernelFunction;
}
inline bool isPixelShaderPhaseFunction(const llvm::Function *CF) {
const llvm::Module* M = CF->getParent();
static const char* const phases[] = { NAMED_METADATA_COARSE_PHASE,
NAMED_METADATA_PIXEL_PHASE };
for (auto phase : phases) {
if (auto MD = M->getNamedMetadata(phase)) {
if (MD->getOperand(0) && MD->getOperand(0)->getOperand(0)) {
auto Func = llvm::mdconst::dyn_extract<llvm::Function>(
MD->getOperand(0)->getOperand(0));
if (Func == CF)
return true;
}
}
}
return false;
}
inline bool isCoarsePhaseFunction(const llvm::Function* CF) {
const llvm::Module * M = CF->getParent();
if (auto MD = M->getNamedMetadata(NAMED_METADATA_COARSE_PHASE)) {
if (MD->getOperand(0) && MD->getOperand(0)->getOperand(0)) {
auto Func = llvm::mdconst::dyn_extract<llvm::Function>(
MD->getOperand(0)->getOperand(0));
return Func == CF;
}
}
return false;
}
inline bool isPixelPhaseFunction(const llvm::Function* CF) {
const llvm::Module* M = CF->getParent();
if (auto MD = M->getNamedMetadata(NAMED_METADATA_PIXEL_PHASE)) {
if (MD->getOperand(0) && MD->getOperand(0)->getOperand(0)) {
auto Func = llvm::mdconst::dyn_extract<llvm::Function>(
MD->getOperand(0)->getOperand(0));
return Func == CF;
}
}
return false;
}
inline bool isNonEntryMultirateShader(const llvm::Function* CF) {
if (isPixelPhaseFunction(CF))
{
const llvm::Module* CM = CF->getParent();
if (auto MD = CM->getNamedMetadata(NAMED_METADATA_COARSE_PHASE)) {
if (MD->getOperand(0) && MD->getOperand(0)->getOperand(0)) {
auto Func = llvm::mdconst::dyn_extract<llvm::Function>(
MD->getOperand(0)->getOperand(0));
return Func != nullptr;
}
}
}
return false;
}
// Return a unique entry function.
// If more than one entry exists, return the first and and set it as unique.
// All subsequent calls to this function will get the entry set by the first call.
llvm::Function* getUniqueEntryFunc(const IGCMD::MetaDataUtils* pM, IGC::ModuleMetaData* pModMD);
// \brief Get next instruction, returning null if it's the last of the BB.
// This is the replacement of Instruction::getNextNode(), since getNextNode()
// on last inst of BB will return sentinel node as instruction, which will
// cause memory corruption. A better solution is to switch to iterator and
// avoid using getNextNode().
inline llvm::Instruction* GetNextInstruction(llvm::Instruction* inst)
{
llvm::BasicBlock::iterator I = llvm::BasicBlock::iterator(inst);
if (++I == inst->getParent()->end())
{
return nullptr;
}
return &(*I);
}
template <typename T>
inline bool RTWriteHasSource0Alpha(
const T* rtWrite,
ModuleMetaData* md)
{
return (nullptr != rtWrite->getSource0Alpha()) && !llvm::isa<llvm::UndefValue>(rtWrite->getSource0Alpha());
}
template <typename T>
inline bool DoesRTWriteSrc0AlphaBelongToHomogeneousPart(
const T* rtWrite,
ModuleMetaData* md)
{
return !rtWrite->hasMask() && RTWriteHasSource0Alpha(rtWrite, md);
}
inline bool VectorUsedByConstExtractOnly(
llvm::Value* val,
llvm::SmallVector< llvm::SmallVector<llvm::ExtractElementInst*, 1>, 4> & extracts)
{
for (auto UI = val->user_begin(), UE = val->user_end(); UI != UE; ++UI)
{
llvm::ExtractElementInst* ei =
llvm::dyn_cast<llvm::ExtractElementInst>(*UI);
if (!ei)
{
return false;
}
else
{
llvm::ConstantInt* idxv =
llvm::dyn_cast<llvm::ConstantInt>(ei->getIndexOperand());
if (!idxv)
{
return false;
}
uint idx = (uint)idxv->getZExtValue();
extracts[idx].push_back(ei);
}
}
return true;
}
inline bool LoadUsedByConstExtractOnly(
llvm::LoadInst* ld,
llvm::SmallVector< llvm::SmallVector<llvm::ExtractElementInst*, 1>, 4> & extracts)
{
return VectorUsedByConstExtractOnly(ld, extracts);
}
llvm::Value* mutatePtrType(llvm::Value* ptrv, llvm::PointerType* newType,
llvm::IRBuilder<>& builder, const llvm::Twine& name = "");
unsigned int AppendConservativeRastWAHeader(IGC::SProgramOutput* program, SIMDMode simdmode);
unsigned int AppendConservativeRastWAHeader(void*& pBinary, unsigned int& binarySize, SIMDMode simdmode);
bool DSDualPatchEnabled(class CodeGenContext* ctx);
/// \brief Check whether inst precedes given position in one basic block
inline bool isInstPrecede(
const llvm::Instruction* inst,
const llvm::Instruction* pos)
{
// must within same basic block
IGC_ASSERT(inst->getParent() == pos->getParent());
if (inst == pos)
{
return true;
}
auto II = inst->getParent()->begin();
for (; &*II != inst && &*II != pos; ++II)
;
return &*II == inst;
}
// If true, the codegen will not emit any code for this instruction
// (So dst and src are aliased to each other.)
bool isNoOpInst(llvm::Instruction* I, CodeGenContext* Ctx);
// CxtI is the instruction at which V is checked whether
// it is positive or not.
bool valueIsPositive(
llvm::Value* V,
const llvm::DataLayout* DL,
llvm::AssumptionCache* AC = nullptr,
llvm::Instruction* CxtI = nullptr);
inline float GetThreadOccupancyPerSubslice(SIMDMode simdMode, unsigned threadGroupSize, unsigned hwThreadPerSubslice, unsigned slmSize, unsigned slmSizePerSubSlice)
{
unsigned simdWidth = 8;
switch (simdMode)
{
case SIMDMode::SIMD8: simdWidth = 8; break;
case SIMDMode::SIMD16: simdWidth = 16; break;
case SIMDMode::SIMD32: simdWidth = 32; break;
default:
IGC_ASSERT_MESSAGE(0, "Invalid SIMD mode");
break;
}
IGC_ASSERT(simdWidth);
const unsigned nThreadsPerTG = (threadGroupSize + simdWidth - 1) / simdWidth;
IGC_ASSERT(nThreadsPerTG);
const unsigned TGPerSubsliceNoSLM = hwThreadPerSubslice / nThreadsPerTG;
const unsigned nTGDispatch = (slmSize == 0) ? TGPerSubsliceNoSLM : std::min(TGPerSubsliceNoSLM, slmSizePerSubSlice / slmSize);
IGC_ASSERT(float(hwThreadPerSubslice));
const float occupancy = float(nTGDispatch * nThreadsPerTG) / float(hwThreadPerSubslice);
return occupancy;
}
// Duplicate of the LLVM function in llvm/Transforms/Utils/ModuleUtils.h
// Global can now be any pointer type that uses addrspace
void appendToUsed(llvm::Module& M, llvm::ArrayRef<llvm::GlobalValue*> Values);
bool safeScheduleUp(llvm::BasicBlock* BB, llvm::Value* V, llvm::Instruction*& InsertPos, llvm::DenseSet<llvm::Instruction*> Scheduled);
inline unsigned GetHwThreadsPerWG(const IGC::CPlatform& platform)
{
unsigned hwThreadPerWorkgroup = platform.getMaxNumberHWThreadForEachWG();
if (platform.supportPooledEU())
{
hwThreadPerWorkgroup = std::min(platform.getMaxNumberThreadPerWorkgroupPooledMax(), (unsigned)64);
}
return hwThreadPerWorkgroup ? hwThreadPerWorkgroup : 1;
}
inline SIMDMode getLeastSIMDAllowed(unsigned int threadGroupSize, unsigned int hwThreadPerWorkgroup)
{
if (hwThreadPerWorkgroup == 0)
{
hwThreadPerWorkgroup = 42; //On GT1 HW, there are 7 threads/EU and 6 EU/subslice, 42 is the minimum threads/workgroup any HW can support
}
if (threadGroupSize <= hwThreadPerWorkgroup * 8)
{
return SIMDMode::SIMD8;
}
else if (threadGroupSize <= hwThreadPerWorkgroup * 16)
{
return SIMDMode::SIMD16;
}
else
{
return SIMDMode::SIMD32;
}
}
// Debug line info helper function
inline void updateDebugLoc(llvm::Instruction* pOrigin, llvm::Instruction* pNew)
{
IGC_ASSERT_MESSAGE(nullptr != pOrigin, "Expect valid instructions");
IGC_ASSERT_MESSAGE(nullptr != pNew, "Expect valid instructions");
pNew->setDebugLoc(pOrigin->getDebugLoc());
}
llvm::ConstantInt* getConstantSInt(llvm::IRBuilder<>& Builder, const int bitSize, int64_t val);
llvm::ConstantInt* getConstantUInt(llvm::IRBuilder<>& Builder, const int bitSize, uint64_t val);
llvm::Value* CreateMulhS64(llvm::IRBuilder<>& B, llvm::Value* const u, llvm::Value* const v);
llvm::Value* CreateMulhU64(llvm::IRBuilder<>& B, llvm::Value* const u, llvm::Value* const v);
llvm::Value* CreateMulh(llvm::Function& F, llvm::IRBuilder<>& B, const bool isSigned, llvm::Value* const u, llvm::Value* const v);
// Ported from PostDominators.cpp of llvm10 or later
// replace this with PDT.dominates(I1, I2) once we upgrade
bool PDT_dominates(llvm::PostDominatorTree& PTD,
const llvm::Instruction* I1,
const llvm::Instruction* I2);
// Returns true if a function has an inline asm call instruction
bool hasInlineAsmInFunc(llvm::Function& F);
std::tuple<std::string, std::string, unsigned> ParseVectorVariantFunctionString(llvm::StringRef varStr);
// Return base type of complex type or nullptr if it cannot be processed
llvm::Type* GetBaseType(llvm::Type* ProcessedType);
// Function modifies address space in selected uses of given input value
void FixAddressSpaceInAllUses(llvm::Value* ptr, uint newAS, uint oldAS);
llvm::Value* CombineSampleOrGather4Params(
llvm::IRBuilder<>& builder,
llvm::Value* param1,
llvm::Value* param2,
uint numBits,
const std::string& param1Name,
const std::string& param2Name);
// Returns the dynamic URB base offset and an immediate const offset
// from the dynamic base. The function calculates the result by walking
// the use-def chain of pUrbOffset.
// If pUrbOffset is an immediate constant (==offset) then
// <nullptr, offset> is returned.
// In all other cases <pUrbOffset, 0> is returned.
std::pair<llvm::Value*, unsigned int> GetURBBaseAndOffset(llvm::Value* pUrbOffset);
std::vector<std::pair<unsigned int, std::string>> GetPrintfStrings(llvm::Module &M);
template<typename Fn>
struct Defer
{
Defer(Fn F) : F(F) {}
~Defer() {
if (Do) F();
}
void operator()() {
if (Do) F();
Do = false;
}
private:
bool Do = true;
Fn F;
};
} // namespace IGC
|