File: layout.cpp

package info (click to toggle)
intel-graphics-compiler 1.0.12504.6-1%2Bdeb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 83,912 kB
  • sloc: cpp: 910,147; lisp: 202,655; ansic: 15,197; python: 4,025; yacc: 2,241; lex: 1,570; pascal: 244; sh: 104; makefile: 25
file content (671 lines) | stat: -rw-r--r-- 22,071 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
/*========================== begin_copyright_notice ============================

Copyright (C) 2017-2021 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

#include "Compiler/CISACodeGen/layout.hpp"
#include "Compiler/CISACodeGen/ShaderCodeGen.hpp"
#include "Compiler/IGCPassSupport.h"
#include "common/debug/Debug.hpp"
#include "common/debug/Dump.hpp"
#include "common/MemStats.h"
#include "common/LLVMUtils.h"
#include <vector>
#include <set>
#include "Probe/Assertion.h"

using namespace llvm;
using namespace IGC;

#define SUCCSZANY     (true)
#define SUCCHASINST   (succ->size() > 1)
#define SUCCNOINST    (succ->size() <= 1)
#define SUCCANYLOOP   (true)

#define PUSHSUCC(BLK, C1, C2) \
        for(succ_iterator succIter = succ_begin(BLK), succEnd = succ_end(BLK); \
            succIter!=succEnd; ++succIter) {                                   \
            llvm::BasicBlock *succ = *succIter;                                \
            if (!visitSet.count(succ) && C1 && C2) {                           \
                visitVec.push_back(succ);                                      \
                visitSet.insert(succ);                                         \
                break;                                                         \
            }                                                                  \
        }

// Register pass to igc-opt
#define PASS_FLAG "igc-layout"
#define PASS_DESCRIPTION "Layout blocks"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(Layout, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
IGC_INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
IGC_INITIALIZE_PASS_END(Layout, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)

char IGC::Layout::ID = 0;

Layout::Layout() : FunctionPass(ID), m_PDT(nullptr)
{
    initializeLayoutPass(*PassRegistry::getPassRegistry());
}

void Layout::getAnalysisUsage(llvm::AnalysisUsage& AU) const
{
    // Doesn't change the IR at all, it juts move the blocks so no changes in the IR
    AU.setPreservesAll();
    AU.addRequired<llvm::LoopInfoWrapperPass>();
    AU.addRequired<llvm::PostDominatorTreeWrapperPass>();
    AU.addRequired<llvm::DominatorTreeWrapperPass>();
}

bool Layout::runOnFunction(Function& func)
{
    m_PDT = &getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
    m_DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    LoopInfo& LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    if (LI.empty())
    {
        LayoutBlocks(func);
    }
    else
    {
        LayoutBlocks(func, LI);
    }
    MEM_SNAPSHOT(IGC::SMS_AFTER_LAYOUTPASS);
    return true;
}

// check if the instruction is atomic write (xchg or cmpxchng)
bool Layout::isAtomicWrite(llvm::Instruction* inst, bool onlyLocalMem)
{
    if (AtomicRawIntrinsic *atomicRawInst = dyn_cast<AtomicRawIntrinsic>(inst))
    {
        bool isSpinlock = inst->getOperand(0)->getName() == "spinlock";
        bool isLocalMem = inst->getOperand(0)->getType()
            ->getPointerAddressSpace() == ADDRESS_SPACE_LOCAL;
        if ((!onlyLocalMem || isLocalMem) && !isSpinlock)
        {
            llvm::ConstantInt* opOperand = llvm::dyn_cast<llvm::ConstantInt>(inst->getOperand(3));
            if (opOperand)
            {
                AtomicOp atomicOp = static_cast<AtomicOp>(opOperand->getZExtValue());
                if ((atomicOp == EATOMIC_XCHG) || (atomicOp == EATOMIC_CMPXCHG))
                {
                    return true;
                }
            }
            GenISAIntrinsic::ID ID = atomicRawInst->getIntrinsicID();
            if (ID == GenISAIntrinsic::GenISA_icmpxchgatomicraw ||
                ID == GenISAIntrinsic::GenISA_icmpxchgatomicrawA64 ||
                ID == GenISAIntrinsic::GenISA_fcmpxchgatomicraw ||
                ID == GenISAIntrinsic::GenISA_fcmpxchgatomicrawA64)
            {
                return true;
            }
        }
    }

    return false;
}

// check if the instruction is atomic read (ATOMIC_OR)
bool Layout::isAtomicRead(llvm::Instruction* inst, bool onlyLocalMem)
{
    if (AtomicRawIntrinsic *atomicRawInst = dyn_cast<AtomicRawIntrinsic>(inst))
    {
        bool isLocalMem = inst->getOperand(0)->getType()
            ->getPointerAddressSpace() == ADDRESS_SPACE_LOCAL;
        if (!onlyLocalMem || isLocalMem)
        {
            AtomicOp atomicOp = atomicRawInst->getAtomicOp();
            if (auto src = llvm::dyn_cast<llvm::ConstantInt>(atomicRawInst->getOperand(2)))
            {
                return ((atomicOp == EATOMIC_OR) || (atomicOp == EATOMIC_OR64)) && (src->getZExtValue() == 0);
            }
        }
    }

    return false;
}

// get memory operand for atomic read or write
llvm::Value* Layout::getMemoryOperand(llvm::Instruction* inst, bool onlyLocalMem)
{
    if (isAtomicRead(inst, onlyLocalMem) || isAtomicWrite(inst, onlyLocalMem))
    {
        llvm::Value* dstAddr = inst->getOperand(1);
        if (llvm::PtrToIntInst* pti = llvm::dyn_cast<llvm::PtrToIntInst>(dstAddr))
        {
            return pti->getPointerOperand();
        }
        return dstAddr;
    }

    return nullptr;
}

bool Layout::isReturnBlock(llvm::BasicBlock* bb)
{
    return llvm::isa<llvm::ReturnInst>(bb->getTerminator());
}

// Try moving atomic write (or its loop) into the given destination loop
// If there are no direct predecessor in the needed loop,
// Try to move it together with a chain of predecessors. New BB is added in chain if
// it is either single predecessor or it is a previous node in current layout.
//
bool Layout::tryMovingWrite(llvm::Instruction* write, llvm::Loop* loop, LoopInfo& LI)
{
    std::vector<llvm::BasicBlock*> blocksToMove;

    if (llvm::Loop* writingLoop = LI.getLoopFor(write->getParent()))
    {
        auto blocks = writingLoop->getBlocks();
        for (auto bbi = blocks.rbegin(), bbEnd = blocks.rend(); bbi != bbEnd; ++bbi)
        {
            llvm::BasicBlock* bb = *bbi;
            if (isReturnBlock(bb))
            {
                return false;
            }
            blocksToMove.push_back(bb);
        }
    }
    else
    {
        if (!isReturnBlock(write->getParent()))
        {
            blocksToMove.push_back(write->getParent());
        }
        else
        {
            return false;
        }
    }

    while (true)
    {
        llvm::BasicBlock* blk = blocksToMove.back();

        // If one (and only one) of the predecessors is in the needed loop, move blocks after it
        llvm::BasicBlock* insertPoint = nullptr;
        int predsInLoop = 0;
        for (pred_iterator predIter = pred_begin(blk), predEnd = pred_end(blk);
            predIter != predEnd; ++predIter)
        {
            llvm::BasicBlock* pred = *predIter;
            if (loop->contains(pred))
            {
                predsInLoop++;
                insertPoint = pred;
            }
        }
        if (predsInLoop == 1)
        {
            for (auto bb : blocksToMove)
            {
                bb->moveAfter(insertPoint);
            }
            return true;
        }
        else if (predsInLoop > 1)
        {
            return false;
        }

        // Add prev node if it is the predecessor of the block
        bool predPushed = false;
        for (pred_iterator predIter = pred_begin(blk), predEnd = pred_end(blk);
            predIter != predEnd; ++predIter)
        {
            llvm::BasicBlock* pred = *predIter;

            if ((pred == blk->getPrevNode()) && !isReturnBlock(pred))
            {
                blocksToMove.push_back(pred);
                predPushed = true;
                break;
            }
        }

        if (predPushed)
        {
            continue;
        }

        // Add predecessor if it is single
        llvm::BasicBlock* pred = blk->getSinglePredecessor();
        if (pred && !isReturnBlock(pred))
        {
            blocksToMove.push_back(pred);
            predPushed = true;
        }
        else
        {
            // Don't move the blocks and return
            return false;
        }
    }
}


// Place basic blocks with atomic write (or the whole loop with the
// atomic write) into the other loop if there is an atomic read
// from the same memory, which dominates the write.
//
// It benefits cases like:
//
// Loop:
//    Load A
//    if (!pred(Load A))
//    {
//        break;
//    }
//    if (success(do_work())
//    {
//        Store A;
//        break;
//    }
// Br Loop
//
// If the Store is placed after the back edge of the loop
// there will be goto instruction disabling channels based on some
// "success(do_work())" condition placed before the back edge in SIMD control flow,
// and the store will be delayed until the whole loop is finished.
// It makes "if (!pred(Load A))" checking useless and doesn't allow
// to perform early break based on the condition.
//
void Layout::moveAtomicWrites2Loop(Function& func, LoopInfo& LI, bool onlyLocalMem)
{
    std::vector<llvm::Instruction*> writes;
    std::vector<llvm::Instruction*> reads;
    for (auto BI = func.begin(), BE = func.end(); BI != BE; BI++)
    {
        for (auto II = BI->begin(), IE = BI->end(); II != IE; II++)
        {
            if (isAtomicWrite(&*II, onlyLocalMem))
            {
                writes.push_back(&*II);
            }
            else if (isAtomicRead(&*II, onlyLocalMem))
            {
                reads.push_back(&*II);
            }
        }
    }

    // write: LoopWhereToMove mapping
    std::map<Instruction*, llvm::Loop*> writesToMove;

    for (auto read : reads)
    {
        for (auto write : writes)
        {
            if (getMemoryOperand(read, onlyLocalMem) == getMemoryOperand(write, onlyLocalMem))
            {
                llvm::Loop* readLoop = LI.getLoopFor(read->getParent());
                llvm::Loop* writeLoop = LI.getLoopFor(write->getParent());
                if (readLoop && (readLoop != writeLoop)
                    && ((m_DT->dominates(read, write))))
                {
                    writesToMove[write] = LI.getLoopFor(read->getParent());
                }
            }
        }
    }

    for (const auto &pair : writesToMove)
    {
        llvm::Instruction* write = pair.first;
        llvm::Loop* loop = pair.second;

        tryMovingWrite(write, loop, LI);
    }
}

#define BREAK_BLOCK_SIZE_LIMIT 3

static bool HasThreadGroupBarrierInBlock(BasicBlock * blk)
{
    std::string Name = GenISAIntrinsic::getName(GenISAIntrinsic::GenISA_threadgroupbarrier);
    Module* Mod = blk->getParent()->getParent();
    if (auto GroupBarrier = Mod->getFunction(Name))
    {
        for (auto U : GroupBarrier->users())
        {
            auto Inst = dyn_cast<Instruction>(U);
            if (Inst && Inst->getParent() == blk)
            {
                return true;
            }
        }
    }
    return false;
}

BasicBlock* Layout::getLastReturnBlock(Function& Func)
{
    // If Func has any return BB, return the last return BB (may have multiple);
    // otherwise, return the last BB that has no succ;
    //     or nullptr if every BB has Succ (infinite looping)
    BasicBlock* noRetAndNoSucc = nullptr;  // for func that never returns
    Function::BasicBlockListType& bblist = Func.getBasicBlockList();
    for (Function::BasicBlockListType::reverse_iterator RI = bblist.rbegin(),
        RE = bblist.rend();  RI != RE; ++RI)
    {
        BasicBlock* bb = &*RI;
        if (succ_begin(bb) == succ_end(bb))
        {
            if (isa_and_nonnull<ReturnInst>(bb->getTerminator()))
            {
                return bb;
            }
            if (!noRetAndNoSucc)
            {
                noRetAndNoSucc = bb;
            }
        }
    }
    // Function does not have a return block
    return noRetAndNoSucc;
}

//
// selectSucc: select a succ with condition SelectNoInstBlk and return it.
//
// This is used to select one if there are two Successors with condition
// SelectNoInstBlk, rather than take the first one in the succ list.
//
// Condition SelectNoInstBlk: If SelectNoInstBlk is true, select an empty
// block, if it is false, select non-empty block.
//
BasicBlock* Layout::selectSucc(
    BasicBlock* CurrBlk,
    bool SelectNoInstBlk,
    const LoopInfo& LI,
    const std::set<BasicBlock*>& VisitSet)
{
    SmallVector<BasicBlock*, 4> Succs;
    for (succ_iterator SI = succ_begin(CurrBlk), SE = succ_end(CurrBlk);
        SI != SE; ++SI)
    {
        BasicBlock* succ = *SI;
        if (VisitSet.count(succ) == 0 &&
            ((SelectNoInstBlk && succ->size() <= 1) ||
            (!SelectNoInstBlk && succ->size() > 1)))
        {
            Succs.push_back(succ);
        }
    }

    // Right now, only handle the case of two empty blocks.
    // If it has no two empty blocks, just take the first
    // one and return it.
    if (Succs.size() != 2 || !SelectNoInstBlk) {
        return Succs.empty() ? nullptr : Succs[0];
    }

    // For two empty blocks, the case we want to handle
    // is the following:
    //
    //     (B0 = CurrBlk)
    //   B0 : if (c) goto THEN  (else goto ELSE)
    //   ELSE : goto B2
    //   B1 : ....
    //   B2 : ....
    //    ......
    //   Bn :
    //      (ELSE, B1, B2, ..., Bn) has END as single exit
    //   THEN: goto END:
    //   END :
    //       PHI...
    //
    // where ELSE and THEN are empty BBs, and END has phi in it.
    // In this case, THEN and ELSE might have phi moves as the result
    // DeSSA when emitting visa. For example, suppose  d0 = s0 will
    // be emitted in THEN.  If s0 is dead after THEN, it would be good
    // to lay out THEN right after B0 as the live-range of s0 will not
    // be overlapped with ones in ELSE. (If s0 is live out of THEN,
    // moving THEN right after B0 or right before END does not matter
    // as far as liveness is concerned.).  To lay out THEN first, this
    // function will select ELSE to return (as the algo does layout
    // backward).
    //
    // For simplicity, assume those BBs are not inside loops. It could
    // be applied to Loop later when appropriate testing is done.
    BasicBlock* S0 = Succs[0], * S1 = Succs[1];
    BasicBlock* SS0 = S0->getSingleSuccessor();

    if (SS0 && (SS0 != S1) && isa<PHINode>(&*SS0->begin()) &&
        !LI.getLoopFor(S0) &&
        m_PDT->dominates(SS0, S1))
    {
        return S1;
    }

    return S0;
}

void Layout::LayoutBlocks(Function& func, LoopInfo& LI)
{
    std::vector<llvm::BasicBlock*> visitVec;
    std::set<llvm::BasicBlock*> visitSet;
    // Insertion Position per loop header
    std::map<llvm::BasicBlock*, llvm::BasicBlock*> InsPos;

    llvm::BasicBlock* entry = &(func.getEntryBlock());
    visitVec.push_back(entry);
    visitSet.insert(entry);
    InsPos[entry] = entry;

    // Push a return block to make sure the last BB is the return block.
    if (BasicBlock * lastReturnBlock = getLastReturnBlock(func))
    {
        if (lastReturnBlock != entry)
        {
            visitVec.push_back(lastReturnBlock);
            visitSet.insert(lastReturnBlock);
        }
    }

    while (!visitVec.empty())
    {
        llvm::BasicBlock* blk = visitVec.back();
        llvm::Loop* curLoop = LI.getLoopFor(blk);
        if (curLoop)
        {
            auto hd = curLoop->getHeader();
            if (blk == hd && InsPos.find(hd) == InsPos.end())
            {
                InsPos[blk] = blk;
            }
        }
        // FIXME: this is a hack to workaround an irreducible test case
        if (func.getName() == "ocl_test_kernel")
        {
            // push: time for DFS visit
            PUSHSUCC(blk, SUCCANYLOOP, SUCCNOINST);
            if (blk != visitVec.back())
                continue;
            // push: time for DFS visit
            PUSHSUCC(blk, SUCCANYLOOP, SUCCHASINST);
        }
        else
        {
            // push: time for DFS visit
            PUSHSUCC(blk, SUCCANYLOOP, SUCCHASINST);
            if (blk != visitVec.back())
                continue;
            // push: time for DFS visit
            if (BasicBlock * aBlk = selectSucc(blk, true, LI, visitSet))
            {
                visitVec.push_back(aBlk);
                visitSet.insert(aBlk);
                continue;
            }
            //PUSHSUCC(blk, SUCCANYLOOP, SUCCNOINST);
        }
        // pop: time to move the block to the right location
        if (blk == visitVec.back())
        {
            visitVec.pop_back();
            if (curLoop)
            {
                auto hd = curLoop->getHeader();
                if (blk != hd)
                {
                    // move the block to the beginning of the loop
                    auto insp = InsPos[hd];
                    IGC_ASSERT(insp);
                    if (blk != insp)
                    {
                        blk->moveBefore(insp);
                        InsPos[hd] = blk;
                    }
                }
                else
                {
                    // move the entire loop to the beginning of
                    // the parent loop
                    auto LoopStart = InsPos[hd];
                    IGC_ASSERT(LoopStart);
                    auto PaLoop = curLoop->getParentLoop();
                    auto PaHd = PaLoop ? PaLoop->getHeader() : entry;
                    auto insp = InsPos[PaHd];
                    if (LoopStart == hd)
                    {
                        // single-block loop
                        hd->moveBefore(insp);
                    }
                    else
                    {
                        // loop-header is not moved yet, so should be at the end
                        // use splice
                        llvm::Function::BasicBlockListType& BBList = func.getBasicBlockList();
                        BBList.splice(insp->getIterator(), BBList,
                            LoopStart->getIterator(),
                            hd->getIterator());
                        hd->moveBefore(LoopStart);
                    }
                    InsPos[PaHd] = hd;
                }
            }
            else
            {
                auto insp = InsPos[entry];
                if (blk != insp)
                {
                    blk->moveBefore(insp);
                    InsPos[entry] = blk;
                }
            }
        }
    }

    moveAtomicWrites2Loop(func, LI, false);

    // if function has a single exit, then the last block must be an exit
    // comment this out due to infinite loop example in OCL
    // IGC_ASSERT(PDT.getRootNode()->getBlock() == 0x0 || PDT.getRootNode()->getBlock() == &(func.getBasicBlockList().back()));
    // fix the loop-exit pattern, put break-blocks into the loop
    for (llvm::Function::iterator blkIter = func.begin(), blkEnd = func.end();
        blkIter != blkEnd; ++blkIter)
    {
        llvm::BasicBlock* blk = &(*blkIter);
        llvm::Loop* curLoop = LI.getLoopFor(blk);
        bool allPredLoopExit = true;
        unsigned numPreds = 0;
        llvm::SmallPtrSet<llvm::BasicBlock*, 4> predSet;
        for (pred_iterator predIter = pred_begin(blk), predEnd = pred_end(blk);
            predIter != predEnd; ++predIter)
        {
            llvm::BasicBlock* pred = *predIter;
            numPreds++;
            llvm::Loop* predLoop = LI.getLoopFor(pred);
            if (curLoop == predLoop)
            {
                llvm::BasicBlock* predPred = pred->getSinglePredecessor();
                if (predPred)
                {
                    llvm::Loop* predPredLoop = LI.getLoopFor(predPred);
                    if (predPredLoop != curLoop &&
                        (!curLoop || curLoop->contains(predPredLoop)))
                    {
                        if (pred->size() <= BREAK_BLOCK_SIZE_LIMIT &&
                            !HasThreadGroupBarrierInBlock(pred))
                        {
                            predSet.insert(pred);
                        }
                        else
                        {
                            allPredLoopExit = false;
                            break;
                        }

                    }
                }
            }
            else if (!curLoop || curLoop->contains(predLoop))
                continue;
            else
            {
                allPredLoopExit = false;
                break;
            }
        }
        if (allPredLoopExit && numPreds > 1)
        {
            for (SmallPtrSet<BasicBlock*, 4>::iterator predIter = predSet.begin(),
                predEnd = predSet.end(); predIter != predEnd; ++predIter)
            {
                llvm::BasicBlock* pred = *predIter;
                llvm::BasicBlock* predPred = pred->getSinglePredecessor();
                pred->moveAfter(predPred);
            }
        }
    }
}

void Layout::LayoutBlocks(Function& func)
{
    std::vector<llvm::BasicBlock*> visitVec;
    std::set<llvm::BasicBlock*> visitSet;
    // Reorder basic block to allow more fall-through
    llvm::BasicBlock* entry = &(func.getEntryBlock());
    visitVec.push_back(entry);

    // Push a return block to make sure the last BB is the return block.
    if (BasicBlock * lastReturnBlock = getLastReturnBlock(func))
    {
        if (lastReturnBlock != entry)
        {
            visitVec.push_back(lastReturnBlock);
            visitSet.insert(lastReturnBlock);
        }
    }

    while (!visitVec.empty())
    {
        llvm::BasicBlock* blk = visitVec.back();
        // push in the empty successor
        PUSHSUCC(blk, SUCCANYLOOP, SUCCNOINST);
        if (blk != visitVec.back())
            continue;
        // push in all the same-loop successors
        PUSHSUCC(blk, SUCCANYLOOP, SUCCSZANY);
        // pop
        if (blk == visitVec.back())
        {
            visitVec.pop_back();
            if (blk != entry)
            {
                blk->moveBefore(entry);
                entry = blk;
            }
        }
    }
}