1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2020-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "Compiler/GenRotate.hpp"
#include "Compiler/CISACodeGen/ShaderCodeGen.hpp"
#include "Compiler/CodeGenPublic.h"
#include "Compiler/IGCPassSupport.h"
#include "common/LLVMWarningsPush.hpp"
#include <llvm/IR/Instructions.h>
#include <llvm/IR/BasicBlock.h>
#include <llvm/IR/Function.h>
#include <llvm/IR/Module.h>
#include <llvm/IR/IRBuilder.h>
#include <llvm/IR/PatternMatch.h>
#include <llvm/Support/Debug.h>
#include "common/LLVMWarningsPop.hpp"
using namespace llvm;
using namespace IGC;
namespace
{
class GenRotate : public FunctionPass
{
public:
static char ID; // Pass identification, replacement for typeid
GenRotate() : FunctionPass(ID)
{
initializeGenRotatePass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function& F) override;
void getAnalysisUsage(AnalysisUsage& AU) const override
{
AU.addRequired<MetaDataUtilsWrapper>();
AU.addRequired<CodeGenContextWrapper>();
AU.setPreservesCFG();
}
private:
CodeGenContext* m_Ctx = nullptr;
Function* m_F = nullptr;
const DataLayout* m_DL = nullptr;
// Indicate supported integer width
bool m_SupportInt8 = false;
bool m_SupportInt16 = false;
bool m_SupportInt32 = false;
bool m_SupportInt64 = false;
bool m_Changed = false;
void matchRotate(Instruction* I);
};
} // namespace
#define PASS_FLAG "igc-genrotate"
#define PASS_DESCRIPTION "Generate rotate with llvm funnel shift intrinsic"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(GenRotate, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_END(GenRotate, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
char GenRotate::ID = 0;
FunctionPass* IGC::createGenRotatePass()
{
return new GenRotate();
}
bool GenRotate::runOnFunction(Function& F)
{
CodeGenContextWrapper* pCtxWrapper = &getAnalysis<CodeGenContextWrapper>();
m_Ctx = pCtxWrapper->getCodeGenContext();
if (!m_Ctx->platform.supportRotateInstruction()) {
return false;
}
m_SupportInt8 = false;
m_SupportInt16 = true;
m_SupportInt32 = true;
m_SupportInt64 = false;
m_SupportInt64 = m_Ctx->platform.supportQWRotateInstructions();
m_Changed = false;
for (auto BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI)
{
// scan bottom-up
BasicBlock* BB = &*BBI;
for (auto II = BB->rbegin(), IE = BB->rend(); II != IE; /*empty */)
{
Instruction* I = &*II;
// Increase II in case I is deleted in matchRotate()
++II;
matchRotate(I);
}
}
return m_Changed;
}
//
// rol (V, amt) = (V << amt) | ((unsigned(V) >> (N - amt))
// where V is of type T (integer) with N bits, and amt is of integer type.
//
// This function finds the following pattern, note that [insts] denotes that "insts" are optional.
// [amt = and amt, N-1]
// high = shl V0, amt
// [amt0 = sub 0, amt || amt0 = sub N, amt]
// [amt0 = and amt0, N-1]
// low = lshr V1, amt0
// R = or high, low
//
// case 0: [ likely, V is i32 or i64]
// V = V0 (V0 == V1)
//
// case 1: [ likely V is i16 or i8]
// V0 = sext V || zext V
// V1 = zext V
// Res = trunc R
//
// Res's type == V's type
//
// ror can be handled similarly. Note that
// ror (x, amt) = ((unsigned)x >> amt) | ( x << (N - amt))
// = rol (x, N - amt);
//
void GenRotate::matchRotate(Instruction* I)
{
// Note that if succesful, I is erased !
using namespace llvm::PatternMatch;
if (I->use_empty() || I->getType()->isVectorTy())
{
return;
}
Instruction* OrInst = nullptr;
if (I->getOpcode() == Instruction::Trunc)
{
if (BinaryOperator* tmp = dyn_cast<BinaryOperator>(I->getOperand(0)))
{
if (tmp->getOpcode() == Instruction::Or)
{
OrInst = tmp;
}
}
}
else if (I->getOpcode() == Instruction::Or)
{
OrInst = I;
}
if (OrInst == nullptr)
{
return;
}
// Do rotate only if
// 1) type is supported 16/32/64; and
// 2) both operands are instructions.
uint64_t typeWidth = I->getType()->getScalarSizeInBits();
bool typeWidthSupported =
((m_SupportInt8 && typeWidth == 8) || (m_SupportInt16 && typeWidth == 16) ||
(m_SupportInt32 && typeWidth == 32) || (m_SupportInt64 && typeWidth == 64));
Instruction* LHS = dyn_cast<Instruction>(OrInst->getOperand(0));
Instruction* RHS = dyn_cast<Instruction>(OrInst->getOperand(1));
if (!LHS || !RHS || !typeWidthSupported)
{
return;
}
// Make adjustment so that LHS is shl.
if (LHS->getOpcode() == Instruction::LShr)
{
Instruction* t = LHS;
LHS = RHS;
RHS = t;
}
if (LHS->getOpcode() != Instruction::Shl ||
RHS->getOpcode() != Instruction::LShr)
{
return;
}
// first: find V
Value* V0 = LHS->getOperand(0);
Value* V1 = RHS->getOperand(0);
Value* V = nullptr;
if (I->getOpcode() == Instruction::Or)
{
if (V0 == V1)
{
V = V0;
}
}
else
{
Value* X0 = nullptr, * X1 = nullptr;
if ((match(V0, m_ZExt(m_Value(X0))) || match(V0, m_SExt(m_Value(X0)))) &&
match(V1, m_ZExt(m_Value(X1))))
{
if (X0 == X1 && X0->getType()->getScalarSizeInBits() == typeWidth)
{
V = X0;
}
}
}
if (!V)
{
return;
}
// Second: find amt
uint64_t typeMask = typeWidth - 1;
Value* LAmt = LHS->getOperand(1);
Value* RAmt = RHS->getOperand(1);
ConstantInt* C_LAmt = dyn_cast<ConstantInt>(LAmt);
ConstantInt* C_RAmt = dyn_cast<ConstantInt>(RAmt);
Value* X0 = nullptr, * X1 = nullptr;
Value* Amt = nullptr;
bool isROL = true;
if (C_LAmt || C_RAmt)
{
// If only one of shift-amounts is constant, it cannot be rotate.
if (C_LAmt && C_RAmt)
{
// For shift amount that is beyond the typewidth, the result is
// undefined. Here, we just use the LSB.
uint64_t c0 = C_LAmt->getZExtValue() & typeMask;
uint64_t c1 = C_RAmt->getZExtValue() & typeMask;
if ((c0 + c1) == typeWidth)
{
Amt = LAmt;
isROL = true;
}
}
}
else
{
if (match(RAmt, m_And(m_Sub(m_Zero(), m_Value(X1)), m_SpecificInt(typeMask))) ||
match(RAmt, m_And(m_Sub(m_SpecificInt(typeWidth), m_Value(X1)), m_SpecificInt(typeMask))) ||
match(RAmt, m_Sub(m_Zero(), m_Value(X1))) ||
match(RAmt, m_Sub(m_SpecificInt(typeWidth), m_Value(X1))))
{
if (LAmt == X1 ||
(match(LAmt, m_And(m_Value(X0), m_SpecificInt(typeMask))) && (X1 == X0)))
{
Amt = X1;
isROL = true;
}
}
if (!Amt &&
(match(LAmt, m_And(m_Sub(m_Zero(), m_Value(X1)), m_SpecificInt(typeMask))) ||
match(LAmt, m_And(m_Sub(m_SpecificInt(typeWidth), m_Value(X1)), m_SpecificInt(typeMask))) ||
match(LAmt, m_Sub(m_Zero(), m_Value(X1))) ||
match(LAmt, m_Sub(m_SpecificInt(typeWidth), m_Value(X1)))))
{
if (RAmt == X1 ||
(match(RAmt, m_And(m_Value(X0), m_SpecificInt(typeMask))) && (X1 == X0)))
{
Amt = X1;
isROL = false;
}
}
if (Amt)
{
Value* X0, * X1, * X2 = nullptr;
// 1) simple case: amt = typeWidth - X0; use amt1 as shift amount.
bool isReverse = match(Amt, m_Sub(m_SpecificInt(typeWidth), m_Value(X0)));
// 2) t = 16 - X0 | t = 0 - X0 ; for example, t is i16/i8, etc
// t1 = t & 15
// amt = zext t1, i32
isReverse = isReverse ||
(match(Amt, m_ZExt(m_Value(X1))) &&
match(X1, m_And(m_Value(X2), m_SpecificInt(typeMask))) &&
(match(X2, m_Sub(m_SpecificInt(typeWidth), m_Value(X0))) ||
match(X2, m_Sub(m_Zero(), m_Value(X0)))));
if (isReverse)
{
Amt = X0;
isROL = !isROL;
}
}
}
if (!Amt)
{
return;
}
// Replace I with llvm.fshl or llvm.fshr
IRBuilder<> Builder(I);
// Create zext in case Amt has smaller width than V
Amt = Builder.CreateZExt(Amt, V->getType());
Intrinsic::ID rotateID = isROL ? Intrinsic::fshl : Intrinsic::fshr;
Value* Args[3] = { V, V, Amt };
#if LLVM_VERSION_MAJOR >= 8
Type* Ty = V->getType();
CallInst* rotateCall = Builder.CreateIntrinsic(rotateID, Ty, Args, nullptr, "rotate");
#else
CallInst* rotateCall = Builder.CreateIntrinsic(rotateID, Args, nullptr, "rotate");
#endif
rotateCall->setDebugLoc(I->getDebugLoc());
I->replaceAllUsesWith(rotateCall);
I->eraseFromParent();
m_Changed = true;
return;
}
|