1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2018-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
/*========================== begin_copyright_notice ============================
This file is distributed under the University of Illinois Open Source License.
See LICENSE.TXT for details.
============================= end_copyright_notice ===========================*/
// This file provides internal interfaces used to implement the InstCombine.
#ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
#define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetFolder.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Pass.h"
#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
#include "Probe/Assertion.h"
#define DEBUG_TYPE "instcombine"
using namespace llvm;
namespace IGCombiner {
//class llvm::CallSite;
//class llvm::DataLayout;
//class llvm::DominatorTree;
//class llvm::TargetLibraryInfo;
//class llvm::DbgDeclareInst;
//class llvm::MemIntrinsic;
//class llvm::MemSetInst;
/// \brief Assign a complexity or rank value to LLVM Values.
///
/// This routine maps IR values to various complexity ranks:
/// 0 -> undef
/// 1 -> Constants
/// 2 -> Other non-instructions
/// 3 -> Arguments
/// 3 -> Unary operations
/// 4 -> Other instructions
static inline unsigned getComplexity(Value *V) {
if (isa<Instruction>(V)) {
if (BinaryOperator::isNeg(V) || BinaryOperator::isFNeg(V) ||
BinaryOperator::isNot(V))
return 3;
return 4;
}
if (isa<Argument>(V))
return 3;
return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
}
/// \brief Add one to a Constant
static inline Constant *AddOne(Constant *C) {
return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
}
/// \brief Subtract one from a Constant
static inline Constant *SubOne(Constant *C) {
return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
}
/// \brief Return true if the specified value is free to invert (apply ~ to).
/// This happens in cases where the ~ can be eliminated. If WillInvertAllUses
/// is true, work under the assumption that the caller intends to remove all
/// uses of V and only keep uses of ~V.
///
static inline bool IsFreeToInvert(Value *V, bool WillInvertAllUses) {
// ~(~(X)) -> X.
if (BinaryOperator::isNot(V))
return true;
// Constants can be considered to be not'ed values.
if (isa<ConstantInt>(V))
return true;
// A vector of constant integers can be inverted easily.
Constant *CV;
if (V->getType()->isVectorTy() && match(V, PatternMatch::m_Constant(CV))) {
unsigned NumElts = V->getType()->getVectorNumElements();
for (unsigned i = 0; i != NumElts; ++i) {
Constant *Elt = CV->getAggregateElement(i);
if (!Elt)
return false;
if (isa<UndefValue>(Elt))
continue;
if (!isa<ConstantInt>(Elt))
return false;
}
return true;
}
// Compares can be inverted if all of their uses are being modified to use the
// ~V.
if (isa<CmpInst>(V))
return WillInvertAllUses;
// If `V` is of the form `A + Constant` then `-1 - V` can be folded into `(-1
// - Constant) - A` if we are willing to invert all of the uses.
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
if (BO->getOpcode() == Instruction::Add ||
BO->getOpcode() == Instruction::Sub)
if (isa<Constant>(BO->getOperand(0)) || isa<Constant>(BO->getOperand(1)))
return WillInvertAllUses;
return false;
}
/// \brief Specific patterns of overflow check idioms that we match.
enum OverflowCheckFlavor {
OCF_UNSIGNED_ADD,
OCF_SIGNED_ADD,
OCF_UNSIGNED_SUB,
OCF_SIGNED_SUB,
OCF_UNSIGNED_MUL,
OCF_SIGNED_MUL,
OCF_INVALID
};
/// \brief Returns the OverflowCheckFlavor corresponding to a overflow_with_op
/// intrinsic.
static inline OverflowCheckFlavor
IntrinsicIDToOverflowCheckFlavor(unsigned ID) {
switch (ID) {
default:
return OCF_INVALID;
case Intrinsic::uadd_with_overflow:
return OCF_UNSIGNED_ADD;
case Intrinsic::sadd_with_overflow:
return OCF_SIGNED_ADD;
case Intrinsic::usub_with_overflow:
return OCF_UNSIGNED_SUB;
case Intrinsic::ssub_with_overflow:
return OCF_SIGNED_SUB;
case Intrinsic::umul_with_overflow:
return OCF_UNSIGNED_MUL;
case Intrinsic::smul_with_overflow:
return OCF_SIGNED_MUL;
}
}
/// \brief The core instruction combiner logic.
///
/// This class provides both the logic to recursively visit instructions and
/// combine them.
//LLVM_LIBRARY_VISIBILITY
class InstCombiner
: public InstVisitor<InstCombiner, Instruction *> {
// FIXME: These members shouldn't be public.
public:
/// \brief A worklist of the instructions that need to be simplified.
InstCombineWorklist &Worklist;
/// \brief An IRBuilder that automatically inserts new instructions into the
/// worklist.
typedef IRBuilder<TargetFolder, IRBuilderCallbackInserter> BuilderTy;
BuilderTy *Builder;
private:
// Mode in which we are running the combiner.
const bool MinimizeSize;
/// Enable combines that trigger rarely but are costly in compiletime.
const bool ExpensiveCombines;
AliasAnalysis *AA;
// Required analyses.
AssumptionCache &AC;
TargetLibraryInfo &TLI;
DominatorTree &DT;
const DataLayout &DL;
// Optional analyses. When non-null, these can both be used to do better
// combining and will be updated to reflect any changes.
LoopInfo *LI;
bool MadeIRChange;
public:
InstCombiner(InstCombineWorklist &Worklist, BuilderTy *Builder,
bool MinimizeSize, bool ExpensiveCombines, AliasAnalysis *AA,
AssumptionCache &AC, TargetLibraryInfo &TLI,
DominatorTree &DT, const DataLayout &DL, LoopInfo *LI)
: Worklist(Worklist), Builder(Builder), MinimizeSize(MinimizeSize),
ExpensiveCombines(ExpensiveCombines), AA(AA), AC(AC), TLI(TLI), DT(DT),
DL(DL), LI(LI), MadeIRChange(false) {}
/// \brief Run the combiner over the entire worklist until it is empty.
///
/// \returns true if the IR is changed.
bool run();
AssumptionCache &getAssumptionCache() const { return AC; }
const DataLayout &getDataLayout() const { return DL; }
DominatorTree &getDominatorTree() const { return DT; }
LoopInfo *getLoopInfo() const { return LI; }
TargetLibraryInfo &getTargetLibraryInfo() const { return TLI; }
// Visitation implementation - Implement instruction combining for different
// instruction types. The semantics are as follows:
// Return Value:
// null - No change was made
// I - Change was made, I is still valid, I may be dead though
// otherwise - Change was made, replace I with returned instruction
//
Instruction *visitAdd(BinaryOperator &I);
Instruction *visitFAdd(BinaryOperator &I);
Value *OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty);
Instruction *visitSub(BinaryOperator &I);
Instruction *visitFSub(BinaryOperator &I);
Instruction *visitMul(BinaryOperator &I);
Value *foldFMulConst(Instruction *FMulOrDiv, Constant *C,
Instruction *InsertBefore);
Instruction *visitFMul(BinaryOperator &I);
Instruction *visitURem(BinaryOperator &I);
Instruction *visitSRem(BinaryOperator &I);
Instruction *visitFRem(BinaryOperator &I);
bool SimplifyDivRemOfSelect(BinaryOperator &I);
Instruction *commonRemTransforms(BinaryOperator &I);
Instruction *commonIRemTransforms(BinaryOperator &I);
Instruction *commonDivTransforms(BinaryOperator &I);
Instruction *commonIDivTransforms(BinaryOperator &I);
Instruction *visitUDiv(BinaryOperator &I);
Instruction *visitSDiv(BinaryOperator &I);
Instruction *visitFDiv(BinaryOperator &I);
Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted);
Value *FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS);
Value *FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
Instruction *visitAnd(BinaryOperator &I);
Value *FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction *CxtI);
Value *FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op, Value *A,
Value *B, Value *C);
Instruction *FoldXorWithConstants(BinaryOperator &I, Value *Op, Value *A,
Value *B, Value *C);
Instruction *visitOr(BinaryOperator &I);
Instruction *visitXor(BinaryOperator &I);
Instruction *visitShl(BinaryOperator &I);
Instruction *visitAShr(BinaryOperator &I);
Instruction *visitLShr(BinaryOperator &I);
Instruction *commonShiftTransforms(BinaryOperator &I);
Instruction *visitFCmpInst(FCmpInst &I);
Instruction *visitICmpInst(ICmpInst &I);
Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
BinaryOperator &I);
Instruction *commonCastTransforms(CastInst &CI);
Instruction *commonPointerCastTransforms(CastInst &CI);
Instruction *visitTrunc(TruncInst &CI);
Instruction *visitZExt(ZExtInst &CI);
Instruction *visitSExt(SExtInst &CI);
Instruction *visitFPTrunc(FPTruncInst &CI);
Instruction *visitFPExt(CastInst &CI);
Instruction *visitFPToUI(FPToUIInst &FI);
Instruction *visitFPToSI(FPToSIInst &FI);
Instruction *visitUIToFP(CastInst &CI);
Instruction *visitSIToFP(CastInst &CI);
Instruction *visitPtrToInt(PtrToIntInst &CI);
Instruction *visitIntToPtr(IntToPtrInst &CI);
Instruction *visitBitCast(BitCastInst &CI);
Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
Instruction *FoldItoFPtoI(Instruction &FI);
Instruction *visitSelectInst(SelectInst &SI);
Instruction *visitCallInst(CallInst &CI);
Instruction *visitInvokeInst(InvokeInst &II);
Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
Instruction *visitPHINode(PHINode &PN);
Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
Instruction *visitAllocaInst(AllocaInst &AI);
Instruction *visitAllocSite(Instruction &FI);
Instruction *visitFree(CallInst &FI);
Instruction *visitLoadInst(LoadInst &LI);
Instruction *visitStoreInst(StoreInst &SI);
Instruction *visitBranchInst(BranchInst &BI);
Instruction *visitSwitchInst(SwitchInst &SI);
Instruction *visitReturnInst(ReturnInst &RI);
Instruction *visitInsertValueInst(InsertValueInst &IV);
Instruction *visitInsertElementInst(InsertElementInst &IE);
Instruction *visitExtractElementInst(ExtractElementInst &EI);
Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
Instruction *visitExtractValueInst(ExtractValueInst &EV);
Instruction *visitLandingPadInst(LandingPadInst &LI);
Instruction *visitVAStartInst(VAStartInst &I);
Instruction *visitVACopyInst(VACopyInst &I);
/// Specify what to return for unhandled instructions.
Instruction *visitInstruction(Instruction &I) { return nullptr; }
/// True when DB dominates all uses of DI except UI.
/// UI must be in the same block as DI.
/// The routine checks that the DI parent and DB are different.
bool dominatesAllUses(const Instruction *DI, const Instruction *UI,
const BasicBlock *DB) const;
/// Try to replace select with select operand SIOpd in SI-ICmp sequence.
bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp,
const unsigned SIOpd);
private:
bool ShouldChangeType(unsigned FromBitWidth, unsigned ToBitWidth) const;
bool ShouldChangeType(Type *From, Type *To) const;
Value *dyn_castNegVal(Value *V) const;
Value *dyn_castFNegVal(Value *V, bool NoSignedZero = false) const;
Type *FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
SmallVectorImpl<Value *> &NewIndices);
/// Classify whether a cast is worth optimizing.
///
/// This is a helper to decide whether the simplification of
/// logic(cast(A), cast(B)) to cast(logic(A, B)) should be performed.
///
/// \param CI The cast we are interested in.
///
/// \return true if this cast actually results in any code being generated and
/// if it cannot already be eliminated by some other transformation.
bool shouldOptimizeCast(CastInst *CI);
/// \brief Try to optimize a sequence of instructions checking if an operation
/// on LHS and RHS overflows.
///
/// If this overflow check is done via one of the overflow check intrinsics,
/// then CtxI has to be the call instruction calling that intrinsic. If this
/// overflow check is done by arithmetic followed by a compare, then CtxI has
/// to be the arithmetic instruction.
///
/// If a simplification is possible, stores the simplified result of the
/// operation in OperationResult and result of the overflow check in
/// OverflowResult, and return true. If no simplification is possible,
/// returns false.
bool OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS, Value *RHS,
Instruction &CtxI, Value *&OperationResult,
Constant *&OverflowResult);
Instruction *visitCallSite(CallSite CS);
Instruction *tryOptimizeCall(CallInst *CI);
bool transformConstExprCastCall(CallSite CS);
Instruction *transformCallThroughTrampoline(CallSite CS,
IntrinsicInst *Tramp);
/// Transform (zext icmp) to bitwise / integer operations in order to
/// eliminate it.
///
/// \param ICI The icmp of the (zext icmp) pair we are interested in.
/// \parem CI The zext of the (zext icmp) pair we are interested in.
/// \param DoTransform Pass false to just test whether the given (zext icmp)
/// would be transformed. Pass true to actually perform the transformation.
///
/// \return null if the transformation cannot be performed. If the
/// transformation can be performed the new instruction that replaces the
/// (zext icmp) pair will be returned (if \p DoTransform is false the
/// unmodified \p ICI will be returned in this case).
Instruction *transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
bool DoTransform = true);
Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS, Instruction &CxtI);
bool WillNotOverflowSignedSub(Value *LHS, Value *RHS, Instruction &CxtI);
bool WillNotOverflowUnsignedSub(Value *LHS, Value *RHS, Instruction &CxtI);
bool WillNotOverflowSignedMul(Value *LHS, Value *RHS, Instruction &CxtI);
Value *EmitGEPOffset(User *GEP);
Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
Value *EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask);
Instruction *foldCastedBitwiseLogic(BinaryOperator &I);
Instruction *shrinkBitwiseLogic(TruncInst &Trunc);
Instruction *optimizeBitCastFromPhi(CastInst &CI, PHINode *PN);
/// Determine if a pair of casts can be replaced by a single cast.
///
/// \param CI1 The first of a pair of casts.
/// \param CI2 The second of a pair of casts.
///
/// \return 0 if the cast pair cannot be eliminated, otherwise returns an
/// Instruction::CastOps value for a cast that can replace the pair, casting
/// CI1->getSrcTy() to CI2->getDstTy().
///
/// \see CastInst::isEliminableCastPair
Instruction::CastOps isEliminableCastPair(const CastInst *CI1,
const CastInst *CI2);
public:
/// \brief Inserts an instruction \p New before instruction \p Old
///
/// Also adds the new instruction to the worklist and returns \p New so that
/// it is suitable for use as the return from the visitation patterns.
Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
IGC_ASSERT(nullptr != New);
IGC_ASSERT_MESSAGE(nullptr == New->getParent(), "New instruction already inserted into a basic block.");
BasicBlock *BB = Old.getParent();
BB->getInstList().insert(Old.getIterator(), New); // Insert inst
Worklist.Add(New);
return New;
}
/// \brief Same as InsertNewInstBefore, but also sets the debug loc.
Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
New->setDebugLoc(Old.getDebugLoc());
return InsertNewInstBefore(New, Old);
}
/// \brief A combiner-aware RAUW-like routine.
///
/// This method is to be used when an instruction is found to be dead,
/// replaceable with another preexisting expression. Here we add all uses of
/// I to the worklist, replace all uses of I with the new value, then return
/// I, so that the inst combiner will know that I was modified.
Instruction *replaceInstUsesWith(Instruction &I, Value *V) {
// If there are no uses to replace, then we return nullptr to indicate that
// no changes were made to the program.
if (I.use_empty()) return nullptr;
Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist.
// If we are replacing the instruction with itself, this must be in a
// segment of unreachable code, so just clobber the instruction.
if (&I == V)
V = UndefValue::get(I.getType());
DEBUG(dbgs() << "IC: Replacing " << I << "\n"
<< " with " << *V << '\n');
I.replaceAllUsesWith(V);
return &I;
}
/// Creates a result tuple for an overflow intrinsic \p II with a given
/// \p Result and a constant \p Overflow value.
Instruction *CreateOverflowTuple(IntrinsicInst *II, Value *Result,
Constant *Overflow) {
Constant *V[] = {UndefValue::get(Result->getType()), Overflow};
StructType *ST = cast<StructType>(II->getType());
Constant *Struct = ConstantStruct::get(ST, V);
return InsertValueInst::Create(Struct, Result, 0);
}
/// \brief Combiner aware instruction erasure.
///
/// When dealing with an instruction that has side effects or produces a void
/// value, we can't rely on DCE to delete the instruction. Instead, visit
/// methods should return the value returned by this function.
Instruction *eraseInstFromFunction(Instruction &I) {
DEBUG(dbgs() << "IC: ERASE " << I << '\n');
IGC_ASSERT_MESSAGE(I.use_empty(), "Cannot erase instruction that is used!");
// Make sure that we reprocess all operands now that we reduced their
// use counts.
if (I.getNumOperands() < 8) {
for (Use &Operand : I.operands())
if (auto *Inst = dyn_cast<Instruction>(Operand))
Worklist.Add(Inst);
}
Worklist.Remove(&I);
I.eraseFromParent();
MadeIRChange = true;
return nullptr; // Don't do anything with FI
}
void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
unsigned Depth, Instruction *CxtI) const {
return llvm::computeKnownBits(V, KnownZero, KnownOne, DL, Depth, &AC, CxtI,
&DT);
}
bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth = 0,
Instruction *CxtI = nullptr) const {
return llvm::MaskedValueIsZero(V, Mask, DL, Depth, &AC, CxtI, &DT);
}
unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0,
Instruction *CxtI = nullptr) const {
return llvm::ComputeNumSignBits(Op, DL, Depth, &AC, CxtI, &DT);
}
void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
unsigned Depth = 0, Instruction *CxtI = nullptr) const {
return llvm::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth, &AC, CxtI,
&DT);
}
OverflowResult computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
const Instruction *CxtI) {
return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
}
OverflowResult computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
const Instruction *CxtI) {
return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
}
private:
/// \brief Performs a few simplifications for operators which are associative
/// or commutative.
bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
/// \brief Tries to simplify binary operations which some other binary
/// operation distributes over.
///
/// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
/// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
/// & (B | C) -> (A&B) | (A&C)" if this is a win). Returns the simplified
/// value, or null if it didn't simplify.
Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
/// \brief Attempts to replace V with a simpler value based on the demanded
/// bits.
Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, APInt &KnownZero,
APInt &KnownOne, unsigned Depth,
Instruction *CxtI);
bool SimplifyDemandedBits(Use &U, const APInt &DemandedMask, APInt &KnownZero,
APInt &KnownOne, unsigned Depth = 0);
/// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
/// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
Value *SimplifyShrShlDemandedBits(Instruction *Lsr, Instruction *Sftl,
const APInt &DemandedMask, APInt &KnownZero,
APInt &KnownOne);
/// \brief Tries to simplify operands to an integer instruction based on its
/// demanded bits.
bool SimplifyDemandedInstructionBits(Instruction &Inst);
Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
APInt &UndefElts, unsigned Depth = 0);
Value *SimplifyVectorOp(BinaryOperator &Inst);
Value *SimplifyBSwap(BinaryOperator &Inst);
/// Given a binary operator, cast instruction, or select which has a PHI node
/// as operand #0, see if we can fold the instruction into the PHI (which is
/// only possible if all operands to the PHI are constants).
Instruction *FoldOpIntoPhi(Instruction &I);
/// Given an instruction with a select as one operand and a constant as the
/// other operand, try to fold the binary operator into the select arguments.
/// This also works for Cast instructions, which obviously do not have a
/// second operand.
Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
/// This is a convenience wrapper function for the above two functions.
Instruction *foldOpWithConstantIntoOperand(Instruction &I);
/// \brief Try to rotate an operation below a PHI node, using PHI nodes for
/// its operands.
Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
Instruction *FoldPHIArgZextsIntoPHI(PHINode &PN);
/// Helper function for FoldPHIArgXIntoPHI() to get debug location for the
/// folded operation.
DebugLoc PHIArgMergedDebugLoc(PHINode &PN);
Instruction *foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
ICmpInst::Predicate Cond, Instruction &I);
Instruction *foldAllocaCmp(ICmpInst &ICI, const AllocaInst *Alloca,
const Value *Other);
Instruction *foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
GlobalVariable *GV, CmpInst &ICI,
ConstantInt *AndCst = nullptr);
Instruction *foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
Constant *RHSC);
Instruction *foldICmpAddOpConst(Instruction &ICI, Value *X, ConstantInt *CI,
ICmpInst::Predicate Pred);
Instruction *foldICmpWithCastAndCast(ICmpInst &ICI);
Instruction *foldICmpUsingKnownBits(ICmpInst &Cmp);
Instruction *foldICmpWithConstant(ICmpInst &Cmp);
Instruction *foldICmpInstWithConstant(ICmpInst &Cmp);
Instruction *foldICmpInstWithConstantNotInt(ICmpInst &Cmp);
Instruction *foldICmpBinOp(ICmpInst &Cmp);
Instruction *foldICmpEquality(ICmpInst &Cmp);
Instruction *foldICmpTruncConstant(ICmpInst &Cmp, Instruction *Trunc,
const APInt *C);
Instruction *foldICmpAndConstant(ICmpInst &Cmp, BinaryOperator *And,
const APInt *C);
Instruction *foldICmpXorConstant(ICmpInst &Cmp, BinaryOperator *Xor,
const APInt *C);
Instruction *foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
const APInt *C);
Instruction *foldICmpMulConstant(ICmpInst &Cmp, BinaryOperator *Mul,
const APInt *C);
Instruction *foldICmpShlConstant(ICmpInst &Cmp, BinaryOperator *Shl,
const APInt *C);
Instruction *foldICmpShrConstant(ICmpInst &Cmp, BinaryOperator *Shr,
const APInt *C);
Instruction *foldICmpUDivConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
const APInt *C);
Instruction *foldICmpDivConstant(ICmpInst &Cmp, BinaryOperator *Div,
const APInt *C);
Instruction *foldICmpSubConstant(ICmpInst &Cmp, BinaryOperator *Sub,
const APInt *C);
Instruction *foldICmpAddConstant(ICmpInst &Cmp, BinaryOperator *Add,
const APInt *C);
Instruction *foldICmpAndConstConst(ICmpInst &Cmp, BinaryOperator *And,
const APInt *C1);
Instruction *foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
const APInt *C1, const APInt *C2);
Instruction *foldICmpShrConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
const APInt &C2);
Instruction *foldICmpShlConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
const APInt &C2);
Instruction *foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
BinaryOperator *BO,
const APInt *C);
Instruction *foldICmpIntrinsicWithConstant(ICmpInst &ICI, const APInt *C);
// Helpers of visitSelectInst().
Instruction *foldSelectExtConst(SelectInst &Sel);
Instruction *foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
Instruction *foldSelectIntoOp(SelectInst &SI, Value *, Value *);
Instruction *foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
Value *A, Value *B, Instruction &Outer,
SelectPatternFlavor SPF2, Value *C);
Instruction *foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
ConstantInt *AndRHS, BinaryOperator &TheAnd);
Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
bool isSub, Instruction &I);
Value *insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi,
bool isSigned, bool Inside);
Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
Instruction *MatchBSwap(BinaryOperator &I);
bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
Instruction *SimplifyMemSet(MemSetInst *MI);
Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
/// \brief Returns a value X such that Val = X * Scale, or null if none.
///
/// If the multiplication is known not to overflow then NoSignedWrap is set.
Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap);
};
} // end namespace llvm.
#undef DEBUG_TYPE
#endif
|