1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "Compiler/Optimizer/OpenCLPasses/AggregateArguments/AggregateArguments.hpp"
#include "Compiler/IGCPassSupport.h"
#include "llvmWrapper/IR/DerivedTypes.h"
#include "common/LLVMWarningsPush.hpp"
#include "llvmWrapper/IR/IRBuilder.h"
#include "llvm/IR/Function.h"
#include "common/LLVMWarningsPop.hpp"
#include "Probe/Assertion.h"
using namespace llvm;
using namespace IGC;
using namespace IGC::IGCMD;
// Register pass to igc-opt
#define PASS_FLAG1 "igc-agg-arg-analysis"
#define PASS_DESCRIPTION1 "Analyze aggregate arguments"
#define PASS_CFG_ONLY1 false
#define PASS_ANALYSIS1 false
IGC_INITIALIZE_PASS_BEGIN(AggregateArgumentsAnalysis, PASS_FLAG1, PASS_DESCRIPTION1, PASS_CFG_ONLY1, PASS_ANALYSIS1)
IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_END(AggregateArgumentsAnalysis, PASS_FLAG1, PASS_DESCRIPTION1, PASS_CFG_ONLY1, PASS_ANALYSIS1)
// Register pass to igc-opt
#define PASS_FLAG2 "igc-agg-arg"
#define PASS_DESCRIPTION2 "Resolve aggregate arguments"
#define PASS_CFG_ONLY2 false
#define PASS_ANALYSIS2 false
IGC_INITIALIZE_PASS_BEGIN(ResolveAggregateArguments, PASS_FLAG2, PASS_DESCRIPTION2, PASS_CFG_ONLY2, PASS_ANALYSIS2)
IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_END(ResolveAggregateArguments, PASS_FLAG2, PASS_DESCRIPTION2, PASS_CFG_ONLY2, PASS_ANALYSIS2)
char AggregateArgumentsAnalysis::ID = 0;
char ResolveAggregateArguments::ID = 0;
bool isSupportedAggregateArgument(Argument* arg)
{
if (arg->getType()->isPointerTy() && arg->hasByValAttr())
{
Type* type = arg->getType()->getPointerElementType();
if (StructType * structType = dyn_cast<StructType>(type))
{
return !structType->isOpaque();
}
}
return false;
}
AggregateArgumentsAnalysis::AggregateArgumentsAnalysis() : ModulePass(ID)
{
initializeAggregateArgumentsAnalysisPass(*PassRegistry::getPassRegistry());
}
//
// This pass "flattens" aggregate (struct and array, non pointer) kernel
// arguments into multiple implicit basic type arguments. This pass
// must be run after function inlining.
//
bool AggregateArgumentsAnalysis::runOnModule(Module& M)
{
bool changed = false;
m_pMdUtils = getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils();
for (Function& F : M)
{
if (F.isDeclaration())
{
continue;
}
if (!isEntryFunc(m_pMdUtils, &F))
{
continue;
}
m_pDL = &F.getParent()->getDataLayout();
Function::arg_iterator argument = F.arg_begin();
for (; argument != F.arg_end(); ++argument)
{
Argument* arg = &(*argument);
// According to level-zero documentation https://spec.oneapi.io/level-zero/latest/core/SPIRV.html#kernel-arguments
// Array type is not allowed as a kernel argument
if (arg->getType()->isArrayTy())
{
getAnalysis<CodeGenContextWrapper>().getCodeGenContext()->EmitError("Array type is not allowed as a kernel argument", arg);
}
// Handling case where array is passed as a pointer with byVal attribute
else if (arg->getType()->isPointerTy() && arg->hasByValAttr())
{
Type* type = arg->getType()->getPointerElementType();
if (ArrayType* arrayType = dyn_cast<ArrayType>(type))
{
getAnalysis<CodeGenContextWrapper>().getCodeGenContext()->EmitError("Array type is not allowed as a kernel argument", arg);
}
}
if (!isSupportedAggregateArgument(arg))
{
continue;
}
m_argList.clear();
Type* type = arg->getType()->getPointerElementType();
IGC_ASSERT(m_pDL->getStructLayout(cast<StructType>(type))->getSizeInBytes() < UINT_MAX);
addImplictArgs(type, 0);
ImplicitArgs::addStructArgs(F, arg, m_argList, m_pMdUtils);
changed = true;
}
}
if (changed)
m_pMdUtils->save(M.getContext());
return changed;
}
static uint64_t getNumElements(Type* type)
{
if (ArrayType * arrayType = dyn_cast<ArrayType>(type))
{
return arrayType->getNumElements();
}
if (IGCLLVM::FixedVectorType * vectorType = dyn_cast<IGCLLVM::FixedVectorType>(type))
{
return vectorType->getNumElements();
}
IGC_ASSERT_MESSAGE(0, "expected array or vector");
return 0;
}
void AggregateArgumentsAnalysis::addImplictArgs(Type* type, uint64_t baseAllocaOffset)
{
IGC_ASSERT(baseAllocaOffset < UINT_MAX);
// Structs and Unions are StructTypes
if (StructType * structType = dyn_cast<StructType>(type))
{
const StructLayout* layout = m_pDL->getStructLayout(structType);
unsigned int numElements = structType->getStructNumElements();
// build the implicit arguments forwards for all elements
// in the struct
for (unsigned int i = 0; i < numElements; ++i)
{
Type* elementType = structType->getElementType(i);
uint64_t elementOffsetInStruct = layout->getElementOffset(i);
addImplictArgs(elementType, baseAllocaOffset + elementOffsetInStruct);
}
}
else if (isa<ArrayType>(type) || isa<VectorType>(type))
{
uint64_t numElements = getNumElements(type);
IGC_ASSERT(numElements < UINT_MAX);
Type* elementType = type->getContainedType(0);
uint64_t elementSize = m_pDL->getTypeStoreSize(elementType);
// build the implicit arguments forwards for all elements of the
// array. If this happens to be an array of struct, the elements
// of the struct will be handled in the recursive step.
for (unsigned int i = 0; i < numElements; ++i)
{
addImplictArgs(elementType, baseAllocaOffset + i * elementSize);
}
}
else
{
// ...finally we have found a basic type contained inside
// the aggregate. Add it to the list of implicit args.
unsigned int elementSize = (unsigned int)type->getPrimitiveSizeInBits();
if (PointerType *PT = dyn_cast<PointerType>(type)) {
elementSize = m_pDL->getPointerSize(PT->getAddressSpace()) * 8;
}
ImplicitArg::ArgType implicitArgType = ImplicitArg::CONSTANT_REG_DWORD;
switch (elementSize)
{
case 8:
implicitArgType = ImplicitArg::CONSTANT_REG_BYTE;
break;
case 16:
implicitArgType = ImplicitArg::CONSTANT_REG_WORD;
break;
case 32:
if (type->isFloatTy())
{
implicitArgType = ImplicitArg::CONSTANT_REG_FP32;
}
else
{
implicitArgType = ImplicitArg::CONSTANT_REG_DWORD;
}
break;
case 64:
implicitArgType = ImplicitArg::CONSTANT_REG_QWORD;
break;
default:
IGC_ASSERT_MESSAGE(0, "unknown primitve type");
break;
};
m_argList.push_back(ImplicitArg::StructArgElement(implicitArgType, static_cast<unsigned int>(baseAllocaOffset)));
}
}
ResolveAggregateArguments::ResolveAggregateArguments() : FunctionPass(ID)
{
initializeResolveAggregateArgumentsPass(*PassRegistry::getPassRegistry());
}
bool ResolveAggregateArguments::runOnFunction(Function& F)
{
if (!isEntryFunc(getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils(), &F))
{
return false;
}
m_implicitArgs = ImplicitArgs(F, getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils());
m_pFunction = &F;
bool changed = false;
IGCLLVM::IRBuilder<> irBuilder(&F.getEntryBlock(), F.getEntryBlock().begin());
Function::arg_iterator argument = F.arg_begin();
for (; argument != F.arg_end(); ++argument)
{
Argument* arg = &(*argument);
if (!isSupportedAggregateArgument(arg))
{
continue;
}
StructType* structType = cast<StructType>(arg->getType()->getPointerElementType());
// LLVM assumes the caller has create an alloca and pushed the contents
// of the struct on the stack. Since we dont have a caller, create
// the alloca here.
std::string allocaName = std::string(arg->getName()) + "_alloca";
llvm::AllocaInst* base = irBuilder.CreateAlloca(structType, 0, allocaName);
// Now that we have the alloca push the contents of the struct onto the stack
storeArgument(arg, base, irBuilder);
arg->replaceAllUsesWith(base);
changed = true;
}
return changed;
}
void ResolveAggregateArguments::storeArgument(const Argument* arg, AllocaInst* base, IGCLLVM::IRBuilder<>& irBuilder)
{
unsigned int startArgNo, endArgNo;
getImplicitArg(arg->getArgNo(), startArgNo, endArgNo);
unsigned int baseImplicitArg = m_pFunction->arg_size() - m_implicitArgs.size();
// Iterate over all function arguments till reach the first implicit argument
// associated with the explicit given argument.
Function::arg_iterator implicitArgToStore = m_pFunction->arg_begin();
for (unsigned int i = 0; i < baseImplicitArg + startArgNo; ++i, ++implicitArgToStore);
Value* baseAsPtri8 = irBuilder.CreateBitCast(base, Type::getInt8PtrTy(base->getContext(), ADDRESS_SPACE_PRIVATE));
// Iterate over all base type args of the structure and store them
// into the correct offset from the alloca.
for (unsigned int i = startArgNo; i < endArgNo; ++i, ++implicitArgToStore)
{
unsigned int baseAllocaOffset = m_implicitArgs.getStructArgOffset(i);
Value* offsetFromBase = ConstantInt::get(Type::getInt32Ty(base->getContext()), baseAllocaOffset);
Value* storeAddress = irBuilder.CreateGEP(baseAsPtri8, offsetFromBase);
Value* offsetAsPointer = irBuilder.CreateBitCast(storeAddress,
implicitArgToStore->getType()->getPointerTo(ADDRESS_SPACE_PRIVATE));
irBuilder.CreateStore(&(*implicitArgToStore), offsetAsPointer);
}
}
void ResolveAggregateArguments::getImplicitArg(unsigned int explicitArgNo, unsigned int& startArgNo, unsigned int& endArgNo)
{
unsigned int numImplicitArgs = m_implicitArgs.size();
unsigned int implicitAtgIndex = 0;
// look for the first implicit arg that maps back to our explicit argument
for (; implicitAtgIndex < numImplicitArgs; ++implicitAtgIndex)
{
// If found first implicit argument associated with given explicit argument index, break.
if (m_implicitArgs.getExplicitArgNum(implicitAtgIndex) == explicitArgNo) break;
}
startArgNo = implicitAtgIndex;
// look for the last implicit arg that maps back to our explicit argument
for (; implicitAtgIndex < numImplicitArgs; ++implicitAtgIndex)
{
// If passed last implicit argument associated with given explicit argument index, break;.
if (m_implicitArgs.getExplicitArgNum(implicitAtgIndex) != explicitArgNo) break;
}
endArgNo = implicitAtgIndex;
}
|