File: LSCFuncsResolution.cpp

package info (click to toggle)
intel-graphics-compiler 1.0.12504.6-1%2Bdeb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 83,912 kB
  • sloc: cpp: 910,147; lisp: 202,655; ansic: 15,197; python: 4,025; yacc: 2,241; lex: 1,570; pascal: 244; sh: 104; makefile: 25
file content (828 lines) | stat: -rw-r--r-- 30,553 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
/*========================== begin_copyright_notice ============================

Copyright (C) 2019-2021 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

#include "IGC/common/StringMacros.hpp"
#include "Compiler/Optimizer/OpenCLPasses/LSCFuncs/LSCFuncsResolution.hpp"
#include "Compiler/Optimizer/OCLBIUtils.h"
#include "Compiler/IGCPassSupport.h"
#include "common/LLVMWarningsPush.hpp"
#include <llvm/Pass.h>
#include <llvm/IR/InstVisitor.h>
#include <llvm/IR/Function.h>
#include <llvm/IR/Instructions.h>
#include "common/LLVMWarningsPop.hpp"
#include "visa_igc_common_header.h"
#include <limits>
#include <string>
#include "Probe/Assertion.h"

using namespace llvm;
using namespace IGC;

namespace {
    struct LscTypeInfo {
        LSC_DATA_SIZE dataSize;
        LSC_DATA_ELEMS vectorSize;
        int sizeOfType; // e.g. float4 => sizeof(float4) for D32 V4
    };

    /// @brief  LSCFuncsTranslation pass : tranlate lsc builtin (__builtin_IB_*lsc*) into igc intrinsic.
    ///
    /// This is not automated like the usual builtins because we have to do type
    /// inference and do extra sanity checking here on inputs.
    class LSCFuncsResolution : public FunctionPass, public InstVisitor<LSCFuncsResolution>
    {
    public:
        // Pass identification, replacement for typeid
        static char ID;

        LSCFuncsResolution();

        /// @brief  Provides name of pass
        virtual StringRef getPassName() const override
        {
            return "LSCFuncsResolution";
        }

        void getAnalysisUsage(AnalysisUsage &AU) const override
        {
            AU.addRequired<CodeGenContextWrapper>();
            AU.addRequired<MetaDataUtilsWrapper>();
        }

        virtual bool runOnFunction(Function &F) override;

        void visitCallInst(CallInst& CI);

    private:
        /// LSC Load intrinsics call method
        Instruction* CreateLSCLoadIntrinsicCallInst(GenISAIntrinsic::ID op, bool isLocalMem);

        /// LSC Store intrinsics call method
        Instruction* CreateLSCStoreIntrinsicCallInst(GenISAIntrinsic::ID op, bool isLocalMem);

        /// LSC Prefetch and load status intrinsics
        Instruction* CreateLSCLoadStatusPreftchIntrinsicCallInst(
            GenISAIntrinsic::ID prefetchOp);

        /// LSC Fence intrinsics call method
        Instruction* CreateLSCFenceIntrinsicCallInst();

        /// LSC Atomic intrinsics call method
        Instruction* CreateLSCAtomicIntrinsicCallInst(bool isLocalMem);

        ///////////////////////////////////////////////////////////////////////
        /// Helpers
        ///////////////////////////////////////////////////////////////////////

        /// Decode the data size and vector size from the function name.
        /// Return true if sucessful; false otherwise.
        ///   Suffix's format:  <DS>_<VS>
        ///   DS - dataSize: uchar,ushort,uint,ulong
        ///   VS - vectorSize: <2|3|4|8|16|32|64>
        ///
        LscTypeInfo decodeTypeInfoFromName();

        /// Decode the SFID from the function name.
        /// Return true if sucessful; false otherwise.
        ///     Suffix's format:  <MP>
        ///     MP - memport: ugm,ugml,tgm,slm
        LSC_SFID decodeSfidFromName();

        /// Decode the atomic op from the function name.
        /// Return true if sucessful; false otherwise.
        ///     Suffix's format:  <AOP>
        ///     AOP - atomic operation: FP64 add, FP64 sub
        AtomicOp decodeAtomicOpFromName();

        /// obnoxious that we can't use std::pair or std::tuple and constexpr
        /// (something about compiler toolchain support made use elminate this
        /// in the past)
        struct SymbolMapping {
            const char *symbol;
            int value;
        };

        /// Searches a table of mappings
        template <typename T,int N>
        bool findFirstInfixMapping(
            StringRef FN, const SymbolMapping enums[N], T &value)
        {
            for (int i = 0; i < N && enums[i].symbol; i++)
                if (FN.find(enums[i].symbol) != StringRef::npos) {
                    value = static_cast<T>(enums[i].value);
                    return true;
                }
            return false;
        }

        //// Gets an i32 with a given value
        Constant *getConstantInt32(int value) {
            Type* i32 = Type::getInt32Ty(m_pCurrInst->getContext());
            return ConstantInt::get(i32, value, true);
        }

        /// E.g. for cache controls, fence options, etc
        Constant *getImmediateEnum(int i, int lo, int hi);

        ///
        /// Fetches and validates the immediate element offset.
        /// Ensures the element offset is immediate and fits in 32b
        // (after scaling by type)
        Constant *getImmediateElementOffset(int ix, LscTypeInfo ti);

        /// Gets an operand as cache control options and sanity checks it.
        /// Atomics have some special constraints.
        Constant *getCacheControlOpts(int i, bool isAtomic = false);

        /// Reports an error in translating the intrinsic
        void reportError(const char *what);

        /// Someone called reportError on the current instruction
        bool hasError() const {
            // ick: tellp is not const
            return m_ErrorMsg.rdbuf() && m_ErrorMsg.rdbuf()->in_avail() > 0;
        }

        /// Indicates if the pass changed the processed function
        bool m_changed;
        bool isHalfSimdMode;

        /// state valid under visitCallInst(...)
        std::stringstream m_ErrorMsg;
        CodeGenContext* m_pCtx;
        CallInst* m_pCurrInst;
        Function* m_pCurrInstFunc;

        static const StringRef PREFIX_LSC_STORE_local;
        static const StringRef PREFIX_LSC_STORE_global;
        static const StringRef PREFIX_LSC_STORE_BLOCK_global;

        static const StringRef PREFIX_LSC_LOAD_local;
        static const StringRef PREFIX_LSC_LOAD_global;
        static const StringRef PREFIX_LSC_LOAD_BLOCK_global;
        static const StringRef PREFIX_LSC_LOAD_status;

        static const StringRef PREFIX_LSC_FENCE;
        static const StringRef PREFIX_LSC_ATOMIC;
        static const StringRef PREFIX_LSC_PREFETCH;
    };
}

char LSCFuncsResolution::ID = 0;

const StringRef LSCFuncsResolution::PREFIX_LSC_STORE_local  = "__builtin_IB_lsc_store_local_";
const StringRef LSCFuncsResolution::PREFIX_LSC_STORE_global = "__builtin_IB_lsc_store_global_";
const StringRef LSCFuncsResolution::PREFIX_LSC_STORE_BLOCK_global = "__builtin_IB_lsc_store_block_global_";

const StringRef LSCFuncsResolution::PREFIX_LSC_LOAD_local  = "__builtin_IB_lsc_load_local_";
const StringRef LSCFuncsResolution::PREFIX_LSC_LOAD_global = "__builtin_IB_lsc_load_global_";
const StringRef LSCFuncsResolution::PREFIX_LSC_LOAD_BLOCK_global = "__builtin_IB_lsc_load_block_global_";
const StringRef LSCFuncsResolution::PREFIX_LSC_LOAD_status = "__builtin_IB_lsc_load_status_global_";

const StringRef LSCFuncsResolution::PREFIX_LSC_FENCE  = "__builtin_IB_lsc_fence_";
const StringRef LSCFuncsResolution::PREFIX_LSC_ATOMIC = "__builtin_IB_lsc_atomic_";
const StringRef LSCFuncsResolution::PREFIX_LSC_PREFETCH = "__builtin_IB_lsc_prefetch_global_";

// Register pass to igc-opt
#define PASS_FLAG "igc-lsc-funcs-translation"
#define PASS_DESCRIPTION "Translate lsc builtin functions into igc intrinsics"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(LSCFuncsResolution, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
IGC_INITIALIZE_PASS_END(LSCFuncsResolution, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)



LSCFuncsResolution::LSCFuncsResolution() : FunctionPass(ID)
{
    initializeLSCFuncsResolutionPass(*PassRegistry::getPassRegistry());
}

bool LSCFuncsResolution::runOnFunction(Function &F)
{
    m_pCtx = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();

    int defaultSimdSize = 0;

    switch (m_pCtx->platform.getPlatformInfo().eProductFamily)
    {
    case IGFX_DG2:
    case IGFX_METEORLAKE:
        defaultSimdSize = 16;
        break;
    default:
        defaultSimdSize = 32;
        break;
    }

    auto m_pMdUtils = getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils();
    auto funcInfoMD = m_pMdUtils->getFunctionsInfoItem(&F);
    int actualSimdSize = funcInfoMD->getSubGroupSize()->getSIMD_size();
    isHalfSimdMode = defaultSimdSize != actualSimdSize; // SIMD8 on DG2, SIMD16 on PVC

    m_changed = false;

    visit(F);

    if (hasError()) {
        m_pCtx->EmitError(m_ErrorMsg.str().c_str(), &F);
        m_ErrorMsg.str(std::string()); // clear stringstream
    }
    return m_changed;
}

void LSCFuncsResolution::visitCallInst(CallInst &CI)
{
    /// Process LCS intrinsics
    m_pCurrInstFunc = CI.getCalledFunction();
    if (!m_pCurrInstFunc)
        return;
    m_pCurrInst = &CI;

    StringRef FN = m_pCurrInstFunc->getName();
    Instruction* lscCall = nullptr;

    //////////////
    // loads
    if (FN.startswith(LSCFuncsResolution::PREFIX_LSC_LOAD_global)) {
        lscCall = CreateLSCLoadIntrinsicCallInst(
            GenISAIntrinsic::GenISA_LSCLoad, false);
    } else if (FN.startswith(LSCFuncsResolution::PREFIX_LSC_LOAD_BLOCK_global)) {
        lscCall = CreateLSCLoadIntrinsicCallInst(
            GenISAIntrinsic::GenISA_LSCLoadBlock, false);
    } else if (FN.startswith(LSCFuncsResolution::PREFIX_LSC_LOAD_local)) {
        lscCall = CreateLSCLoadIntrinsicCallInst(
            GenISAIntrinsic::GenISA_LSCLoad, true);
    //////////////
    // prefetches
    } else if (FN.startswith(LSCFuncsResolution::PREFIX_LSC_LOAD_status)) {
        lscCall = CreateLSCLoadStatusPreftchIntrinsicCallInst(
            GenISAIntrinsic::GenISA_LSCLoadStatus);
    } else if (FN.startswith(LSCFuncsResolution::PREFIX_LSC_PREFETCH)) {
        lscCall = CreateLSCLoadStatusPreftchIntrinsicCallInst(
            GenISAIntrinsic::GenISA_LSCPrefetch);
    //////////////
    // stores
    } else if (FN.startswith(LSCFuncsResolution::PREFIX_LSC_STORE_global)) {
        lscCall = CreateLSCStoreIntrinsicCallInst(
            GenISAIntrinsic::GenISA_LSCStore, false);
    } else if (FN.startswith(LSCFuncsResolution::PREFIX_LSC_STORE_BLOCK_global)) {
        lscCall = CreateLSCStoreIntrinsicCallInst(
            GenISAIntrinsic::GenISA_LSCStoreBlock, false);
    } else if (FN.startswith(LSCFuncsResolution::PREFIX_LSC_STORE_local)) {
        lscCall = CreateLSCStoreIntrinsicCallInst(
            GenISAIntrinsic::GenISA_LSCStore, true);
    //////////////
    // atomics
    } else if (FN.startswith(LSCFuncsResolution::PREFIX_LSC_ATOMIC)) {
        bool isLocalMem = FN.find("_local_") != StringRef::npos;
        lscCall = CreateLSCAtomicIntrinsicCallInst(isLocalMem);
    //////////////
    // misc stuff
    } else if (FN.startswith(LSCFuncsResolution::PREFIX_LSC_FENCE)) {
        // LSC fence
        lscCall = CreateLSCFenceIntrinsicCallInst();
    } else {
        // not an LSC message, bail silently
        return;
    }

    // LSC is not supported/enabled
    if (!m_pCtx->platform.isProductChildOf(IGFX_DG2)) {
        IGC_ASSERT_MESSAGE(0, "LSC not supported on this platform");
        reportError("LSC not supported on this platform");
        return;
    }

    if (lscCall != nullptr) {
        lscCall->setDebugLoc(CI.getDebugLoc());
        CI.replaceAllUsesWith(lscCall);
        CI.eraseFromParent();

        m_changed = true;
    }
}


Instruction* LSCFuncsResolution::CreateLSCLoadIntrinsicCallInst(
    GenISAIntrinsic::ID op, bool isLocalMem)
{
    auto typeInfo = decodeTypeInfoFromName();
    if (hasError()) {
        return nullptr;
    }

    Value* args[5] {
        m_pCurrInst->getArgOperand(0),  // base address
        getImmediateElementOffset(1, typeInfo), // imm element offset
        getConstantInt32(typeInfo.dataSize),   // e.g. D32
        getConstantInt32(typeInfo.vectorSize), // e.g. V4
        isLocalMem ?  // cache options (default value for SLM)
            getConstantInt32(LSC_L1DEF_L3DEF) : getCacheControlOpts(2)
    };

    Type* OvldTys[2] {
        m_pCurrInstFunc->getReturnType(),
        args[0]->getType()
    };
    Function* lscFunc = GenISAIntrinsic::getDeclaration(
        m_pCurrInstFunc->getParent(), op, OvldTys);
    Instruction* lscCall = CallInst::Create(lscFunc, args, "", m_pCurrInst);
    return lscCall;
}


Instruction* LSCFuncsResolution::CreateLSCLoadStatusPreftchIntrinsicCallInst(
    GenISAIntrinsic::ID prefetchOp)
{
    auto typeInfo = decodeTypeInfoFromName();
    if (hasError()) {
        return nullptr;
    }

    // warning this is trusting the user's typing to be correct
    // we end up using args[i]->getType()
    Value* args[5] {
        m_pCurrInst->getArgOperand(0),  // base address
        getImmediateElementOffset(1, typeInfo),  // element offset
        getConstantInt32(typeInfo.dataSize),
        getConstantInt32(typeInfo.vectorSize),
        getCacheControlOpts(2) // cache options
    };

    Type* OvldTys[1] {
        args[0]->getType(), // only one overloaded type
    };
    Function* lscFunc = GenISAIntrinsic::getDeclaration(
        m_pCurrInstFunc->getParent(), prefetchOp, OvldTys);
    Instruction* lscCall = CallInst::Create(lscFunc, args, "", m_pCurrInst);
    if (prefetchOp == GenISAIntrinsic::GenISA_LSCLoadStatus) {
        // the intrinic treats bool as i1, but OCL treats bools as i8
        Type* i8 = Type::getInt8Ty(m_pCurrInst->getContext());
        lscCall =
            BitCastInst::CreateZExtOrBitCast(lscCall, i8, "", m_pCurrInst);
    }
    return lscCall;
}

Instruction* LSCFuncsResolution::CreateLSCStoreIntrinsicCallInst(
    GenISAIntrinsic::ID op, bool isLocalMem)
{
    auto typeInfo = decodeTypeInfoFromName();
    if (hasError()) {
        return nullptr;
    }

    Value* args[6] {
        m_pCurrInst->getArgOperand(0),      // memory address where the data is stored to
        getImmediateElementOffset(1, typeInfo),  // LSC immediate offset
        m_pCurrInst->getArgOperand(2),      // data to store
        getConstantInt32(typeInfo.dataSize),
        getConstantInt32(typeInfo.vectorSize),
        isLocalMem ?  // cache options (must be default for local)
            getConstantInt32(LSC_L1DEF_L3DEF) : getCacheControlOpts(3)
    };

    Type* OvldTys[2] {
        args[0]->getType(), // memory addr
        args[2]->getType(), // data to store
    };

    Function* lscFunc = GenISAIntrinsic::getDeclaration(
        m_pCurrInstFunc->getParent(), op, OvldTys);
    Instruction* lscCall = CallInst::Create(lscFunc, args, "", m_pCurrInst);
    return lscCall;
}


Instruction* LSCFuncsResolution::CreateLSCFenceIntrinsicCallInst() {
    LSC_SFID memPort = decodeSfidFromName();

    auto context = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();

    if (hasError()) {
        return nullptr;
    }

    Value* args[3] {
        getConstantInt32(memPort), // immediate sfid
        memPort == LSC_SLM ?
            getConstantInt32(LSC_SCOPE_GROUP) : // force SLM to use thread-group scope
            getImmediateEnum(0, LSC_SCOPE_GROUP, LSC_SCOPE_SYSACQ),  // immediate scope of the fence
        memPort == LSC_SLM ||
        (memPort == LSC_TGM &&
         context->platform.getPlatformInfo().eRenderCoreFamily == IGFX_XE_HPC_CORE) ?
            getConstantInt32(LSC_FENCE_OP_NONE) :
            getImmediateEnum(1, LSC_FENCE_OP_NONE, LSC_FENCE_OP_FLUSHL3)   // immediate flush type
    };

    auto scope = dyn_cast<ConstantInt>(args[1]);

    if (scope && (scope->getZExtValue() == LSC_SCOPE_SYSACQ || scope->getZExtValue() == LSC_SCOPE_SYSREL))
    {
        if (!context->platform.supportSystemFence())
        {
            reportError("platform does not support system fence");
        }
    }

    Function *lscFunc = GenISAIntrinsic::getDeclaration(
        m_pCurrInstFunc->getParent(), GenISAIntrinsic::GenISA_LSCFence, None);
    Instruction* lscCall = CallInst::Create(lscFunc, args, "", m_pCurrInst);
    return lscCall;
}

Instruction* LSCFuncsResolution::CreateLSCAtomicIntrinsicCallInst(
    bool isLocalMem)
{
    AtomicOp atomicOp = decodeAtomicOpFromName();
    if (hasError()) {
        return nullptr;
    }

    bool isFP64Atomic =
        atomicOp == EATOMIC_FADD64 || atomicOp == EATOMIC_FSUB64;
    bool isFP32Atomic =
        atomicOp == EATOMIC_FCMPWR ||
        atomicOp == EATOMIC_FADD || atomicOp == EATOMIC_FSUB ||
        atomicOp == EATOMIC_FMIN || atomicOp == EATOMIC_FMAX;
    bool hasSrc1 =
        atomicOp != EATOMIC_INC && atomicOp != EATOMIC_DEC &&
        atomicOp != EATOMIC_LOAD;
    bool hasSrc2 =
        atomicOp == EATOMIC_FCMPWR || atomicOp == EATOMIC_CMPXCHG;

    Type* retTy = m_pCurrInstFunc->getReturnType();

    //
    // For unary and binary atomics some the extra atomic operands need to
    // be set to some default value (we use zero); but we have to carefully
    // pick a value with a type that matches the function overload
    auto getZeroArg =
        [&]() -> Constant * {
            int bitSize = retTy->getScalarSizeInBits();
            if (isFP32Atomic) {
                return ConstantFP::get(
                    Type::getFloatTy(m_pCurrInst->getContext()), 0.0);
            } else if (isFP64Atomic) {
                return ConstantFP::get(
                    Type::getDoubleTy(m_pCurrInst->getContext()), 0.0);
            } else if (bitSize == 64) {
                return ConstantInt::get(
                    Type::getInt64Ty(m_pCurrInst->getContext()), 0, true);
            } else {
                return getConstantInt32(0);
            }
        };
    //
    Value *atomArg1 =
        hasSrc1 ? m_pCurrInst->getArgOperand(2) : getZeroArg();
    //
    Value *atomArg2 =
        hasSrc2 ? m_pCurrInst->getArgOperand(3) : getZeroArg();
    //
    const int ccOpndIx = hasSrc2 ? 4 : hasSrc1 ? 3 : 2;
    Value* args[6] {
        m_pCurrInst->getArgOperand(0), // memory ptr
        m_pCurrInst->getArgOperand(1), // immediate element offset
        atomArg1,                      // value or cmp [cmpxchg] or zero if unused
        atomArg2,                      // value [cmpxchg] or zero if unused
        getConstantInt32(atomicOp),    // atomic op
        isLocalMem ?                   // cache options (default for local)
            getConstantInt32(LSC_L1DEF_L3DEF) : getCacheControlOpts(ccOpndIx)
    };

    GenISAIntrinsic::ID id =
        isFP64Atomic ? GenISAIntrinsic::GenISA_LSCAtomicFP64 :
        isFP32Atomic ? GenISAIntrinsic::GenISA_LSCAtomicFP32 :
        GenISAIntrinsic::GenISA_LSCAtomicInts;

    Function *lscFunc = nullptr;
    if (!isFP32Atomic && !isFP64Atomic) {
        Type* IntTysOvld [4] {
            retTy,              // anyint (return type)
            args[0]->getType(), // anyptr
            retTy,              // [src1] anyint
            retTy,              // [src2] anyint
        };
        lscFunc = GenISAIntrinsic::getDeclaration(
            m_pCurrInstFunc->getParent(), id, IntTysOvld);
    } else {
        Type* FltTysOvld [1] {
            args[0]->getType(), // anyptr
        };
        lscFunc = GenISAIntrinsic::getDeclaration(
            m_pCurrInstFunc->getParent(), id, FltTysOvld);
    }

    Instruction* lscCall = CallInst::Create(lscFunc, args, "", m_pCurrInst);
    return lscCall;
}

LscTypeInfo LSCFuncsResolution::decodeTypeInfoFromName()
{
    StringRef FN = m_pCurrInstFunc->getName();
    LscTypeInfo ti{LSC_DATA_SIZE_8b, LSC_DATA_ELEMS_1, 1};

    // first match:
    //   ..load_{global,local,block_global}_uchar_to_uint(...)
    //   ..store_{global,local,block_global}_uchar_from_uint(...)
    // bail early if we get a hit:
    //  prefetch/load_status will show up as non-conversion types since
    //  they don't return data
    // everything else is suffixed by the type and maybe a vector integer

    if ((FN.endswith("uchar_to_uint")) ||
        (FN.endswith("uchar_from_uint")))
    {
        ti.dataSize = LSC_DATA_SIZE_8c32b;
        ti.sizeOfType = 1;
        return ti;
    }
    else if (
        FN.endswith("ushort_to_uint") ||
        FN.endswith("ushort_from_uint"))
    {
        ti.dataSize = LSC_DATA_SIZE_16c32b;
        ti.sizeOfType = 2;
        return ti;
    }

    // otherwise fall through and try the regular (non-conversion) types
    // returns true if we matched the string (even if error)
    //         false if mismatched
    auto matchTypeAndVector = [&] (
        const char *name,
        LSC_DATA_SIZE dsz,
        int sizeofType)
    {
        // error already reported
        if (hasError())
            return false;

        // Given "__builtin_IB_lsc_load_global_uint2", find "uint2"
        auto typePos = FN.find(name);
        if (typePos == StringRef::npos) {
            return false;
        }

        // data type matches
        ti.dataSize = dsz;
        ti.sizeOfType = sizeofType;

        // "...uchar16" -> "16"
        size_t vecOff = typePos + strlen(name);

        // if the function name suffix exactly matches (no string allocation)
        auto vectorSuffixMatches = [&](const char *pat) {
            if (vecOff + strlen(pat) != FN.size())
                return false; // suffix is not equal length
                              // equal length and prefix ==> exact match
            return FN.find(pat, vecOff) == vecOff;
        };

        // match the suffix exactly, reject garbage like
        // "uint27" (has prefix "uint2")
        if (vectorSuffixMatches("")) {
            ti.vectorSize = LSC_DATA_ELEMS_1;
        } else if (vectorSuffixMatches("2")) {
            ti.vectorSize = LSC_DATA_ELEMS_2;
            ti.sizeOfType *= 2;
        } else if (vectorSuffixMatches("3") || vectorSuffixMatches("4")) {
            if (vectorSuffixMatches("3")) {
                ti.vectorSize = LSC_DATA_ELEMS_3;
                ti.sizeOfType *= 3;
            } else {
                ti.vectorSize = LSC_DATA_ELEMS_4;
                ti.sizeOfType *= 4;
            }
        } else if (vectorSuffixMatches("8")) {
            ti.vectorSize = LSC_DATA_ELEMS_8;
            ti.sizeOfType *= 8;
        } else if (vectorSuffixMatches("16")) {
            ti.vectorSize = LSC_DATA_ELEMS_16;
            ti.sizeOfType *= 16;
            // we only support up to OpenCL vector length 8
            reportError("invalid vector size for data type");
            return true; // bail to avoid later confusing errors
        } else if (vectorSuffixMatches("32")) {
            ti.vectorSize = LSC_DATA_ELEMS_32;
            ti.sizeOfType *= 32;
            //
            // we only support up to OpenCL vector length 8
            reportError("invalid vector size for data type");
            return true; // bail to avoid later confusing errors
        } else if (vectorSuffixMatches("64")) {
            ti.vectorSize = LSC_DATA_ELEMS_64;
            ti.sizeOfType *= 64;
            //
            // we only support up to OpenCL vector length 8
            reportError("invalid vector size for data type");
            return true; // bail to avoid later confusing errors
        } else {
            // totally bogus vector size
            reportError("invalid vector size");
            return true; // bail to avoid later confusing errors
        }

        // Some sanity checking.
        // The legal prototypes provided in the builtin file constrain
        // most mischief, but remember anyone can write a prototype.
        if (ti.dataSize == LSC_DATA_SIZE_8b || ti.dataSize == LSC_DATA_SIZE_16b) {
            bool isPrefetchOrLoadStatus =
                FN.startswith(LSCFuncsResolution::PREFIX_LSC_LOAD_status) ||
                FN.startswith(LSCFuncsResolution::PREFIX_LSC_PREFETCH);
            if (!isPrefetchOrLoadStatus) {
                // D8 and D16 aren't supported yet in normal (non-prefetch)
                // loads and stores
                reportError("8b and 16b not supported");
                return true;
            } else {
                if (ti.vectorSize != LSC_DATA_ELEMS_1) {
                    // because we use widening types to make this work
                    reportError("8b and 16b with vector not supported");
                    return true;
                }
                // use widening message
                // no data will be returned for prefetch and status will
                // broadcast bits of a single DW
                ti.dataSize = ti.dataSize == LSC_DATA_SIZE_8b ?
                    LSC_DATA_SIZE_8c32b : LSC_DATA_SIZE_16c32b;
                ti.sizeOfType = 4;
            }
        }

        // even if errors were reported above, if we get here, it's a match
        // and we'll stop trying other types
        return true;
    };

    // N.b. certain data size and vector type may or may not exist on given
    // platforms, but we rely on the builtin proto-types to police that.
    // (We parse it successfully.)
    if (!matchTypeAndVector("uchar",  LSC_DATA_SIZE_8b, 1) &&
        !matchTypeAndVector("ushort", LSC_DATA_SIZE_16b, 2) &&
        !matchTypeAndVector("uint",   LSC_DATA_SIZE_32b, 4) &&
        !matchTypeAndVector("ulong",  LSC_DATA_SIZE_64b, 8))
    {
        reportError("invalid type for lsc operation");
    }
    return ti;
}

AtomicOp LSCFuncsResolution::decodeAtomicOpFromName()
{
    static const SymbolMapping symbols[42] {
        // FP 64 (local not suported)
        {"_add_global_double", EATOMIC_FADD64},
        {"_sub_global_double", EATOMIC_FSUB64},
        // FP 32
        {"_add_global_float", EATOMIC_FADD},
        {"_add_local_float", EATOMIC_FADD},
        {"_sub_global_float", EATOMIC_FSUB},
        {"_sub_local_float", EATOMIC_FSUB},
        {"_min_global_float", EATOMIC_FMIN},
        {"_min_local_float", EATOMIC_FMIN},
        {"_max_global_float", EATOMIC_FMAX},
        {"_max_local_float", EATOMIC_FMAX},
        {"_cmpxchg_global_float", EATOMIC_FCMPWR},
        {"_cmpxchg_local_float", EATOMIC_FCMPWR},
        /////////////////////////////////////////////////////
        // I16,I32,I64
        {"_add_", EATOMIC_IADD},
        {"_sub_", EATOMIC_SUB},
        // signed min/max
        {"_min_global_short", EATOMIC_MIN},
        {"_min_local_short", EATOMIC_MIN},
        {"_min_global_int", EATOMIC_MIN},
        {"_min_local_int", EATOMIC_MIN},
        {"_min_global_long", EATOMIC_MIN},
        // {"min_local_long", EATOMIC_MIN}, (global only)
        {"_max_global_short", EATOMIC_MAX},
        {"_max_local_short", EATOMIC_MAX},
        {"_max_global_int", EATOMIC_MAX},
        {"_max_local_int", EATOMIC_MAX},
        {"_max_global_long", EATOMIC_MAX},
        // {"max_local_long", EATOMIC_MAX}, (global only)

        // unsigned min/max
        {"_min_global_ushort", EATOMIC_UMIN},
        {"_min_local_ushort", EATOMIC_UMIN},
        {"_min_global_uint", EATOMIC_UMIN},
        {"_min_local_uint", EATOMIC_UMIN},
        {"_min_global_ulong", EATOMIC_UMIN},
        // {"min_local_ulong", EATOMIC_UMIN}, (global only)
        {"_max_global_ushort", EATOMIC_UMAX},
        {"_max_local_ushort", EATOMIC_UMAX},
        {"_max_global_uint", EATOMIC_UMAX},
        {"_max_local_uint", EATOMIC_UMAX},
        {"_max_global_ulong", EATOMIC_UMAX},
        // {"max_local_ulong", EATOMIC_UMAX}, (global only)
        //
        // integer compare and exchange
        {"_cmpxchg_", EATOMIC_CMPXCHG},
        // inc/dec
        {"_inc_", EATOMIC_INC},
        {"_dec_", EATOMIC_DEC},
        //  and/xor/or
        {"_and_", EATOMIC_AND},
        {"_xor_", EATOMIC_XOR},
        {"_or_", EATOMIC_OR},
        // load/store
        {"_load_", EATOMIC_LOAD},
        {"_store_", EATOMIC_STORE},
    };

    // maybe a better way to do this, but the compiler seems to need an
    // explicit size for inference below.
    static_assert(sizeof(symbols)/sizeof(symbols[0]) == 42);

    AtomicOp atomicOp = EATOMIC_IADD;
    StringRef FN = m_pCurrInstFunc->getName();
    if (!findFirstInfixMapping<AtomicOp,42>(FN, symbols, atomicOp)) {
        reportError("invalid lsc atomic operation");
    }
    return atomicOp;
}

LSC_SFID LSCFuncsResolution::decodeSfidFromName()
{
    static const SymbolMapping symbols[4] {
        {"_global_untyped_cross_tile", LSC_UGML},
        {"_global_untyped", LSC_UGM},
        {"_global_typed", LSC_TGM},
        {"_local", LSC_SLM},
    };

    // c.f. reasoning in decodeAtomicOpFromName
    static_assert(sizeof(symbols)/sizeof(symbols[0]) == 4);

    StringRef FN = m_pCurrInstFunc->getName();
    LSC_SFID memPort = LSC_UGM;
    if (!findFirstInfixMapping<LSC_SFID,4>(FN, symbols, memPort)) {
        reportError("invalid lsc SFID");
    }
    return memPort;
}

Constant *LSCFuncsResolution::getImmediateEnum(int i, int lo, int hi)
{
    Value *v = m_pCurrInst->getOperand(i);
    if (ConstantInt *ci = dyn_cast<ConstantInt>(v)) {
        return ci;
    } else {
        std::stringstream ss;
        ss << "operand " << i << " must be immediate";
        reportError(ss.str().c_str());
        return getConstantInt32(lo); // use lo for the error value
    }
}

Constant *LSCFuncsResolution::getImmediateElementOffset(
    int i, LscTypeInfo ti)
{
    Value *v = m_pCurrInst->getOperand(i);
    if (ConstantInt *ci = dyn_cast<ConstantInt>(v)) {
        int64_t scaledValue = ci->getSExtValue() * ti.sizeOfType;
        if (scaledValue < std::numeric_limits<int32_t>::min() ||
            scaledValue > std::numeric_limits<int32_t>::max())
        {
            // The vISA LSC API will emulate large offsets,
            // but is only int width
            reportError("scaled element offset too large");
            return getConstantInt32(0);
        }
        return getConstantInt32((int32_t)scaledValue);
    } else {
        reportError("element offset operand must be immediate");
        return getConstantInt32(0);
    }
}

Constant *LSCFuncsResolution::getCacheControlOpts(int i, bool)
{
    // TODO: error if atomic uses any sort of caching on L1
    return getImmediateEnum(i, LSC_L1DEF_L3DEF, LSC_L1IAR_WB_L3C_WB);
}

void LSCFuncsResolution::reportError(const char *what) {
    if (hasError())
        m_ErrorMsg << "\n";
    const DebugLoc &loc = m_pCurrInst->getDebugLoc();
    if (loc)
        m_ErrorMsg << "line " << loc.getLine() << ": ";
    m_ErrorMsg << m_pCurrInstFunc->getName().str() << ": " << what;
}

FunctionPass* IGC::createLSCFuncsResolutionPass()
{
    return new LSCFuncsResolution();
}