1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "AdaptorCommon/ImplicitArgs.hpp"
#include "Compiler/Optimizer/OpenCLPasses/LocalBuffers/InlineLocalsResolution.hpp"
#include "Compiler/CodeGenPublic.h"
#include "Compiler/IGCPassSupport.h"
#include "Compiler/CISACodeGen/helper.h"
#include "Compiler/DebugInfo/Utils.h"
#include "common/LLVMWarningsPush.hpp"
#include <llvm/IR/Module.h>
#include <llvm/IR/Instructions.h>
#include <llvmWrapper/Support/Alignment.h>
#include "common/LLVMWarningsPop.hpp"
#include "Probe/Assertion.h"
#include <unordered_set>
using namespace llvm;
using namespace IGC;
using namespace IGC::IGCMD;
// Register pass to igc-opt
#define PASS_FLAG "igc-resolve-inline-locals"
#define PASS_DESCRIPTION "Resolve inline local variables/buffers"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(InlineLocalsResolution, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
IGC_INITIALIZE_PASS_END(InlineLocalsResolution, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
char InlineLocalsResolution::ID = 0;
const llvm::StringRef BUILTIN_MEMPOOL = "__builtin_IB_AllocLocalMemPool";
InlineLocalsResolution::InlineLocalsResolution() :
ModulePass(ID), m_pGV(nullptr)
{
initializeInlineLocalsResolutionPass(*PassRegistry::getPassRegistry());
}
const unsigned int InlineLocalsResolution::VALID_LOCAL_HIGH_BITS = 0x10000000;
static bool useAsPointerOnly(Value* V) {
IGC_ASSERT_MESSAGE(V->getType()->isPointerTy(), "Expect the input value is a pointer!");
SmallSet<PHINode*, 8> VisitedPHIs;
SmallVector<Value*, 16> WorkList;
WorkList.push_back(V);
StoreInst* ST = nullptr;
PHINode* PN = nullptr;
while (!WorkList.empty()) {
Value* Val = WorkList.pop_back_val();
for (auto* U : Val->users()) {
Operator* Op = dyn_cast<Operator>(U);
if (!Op)
continue;
switch (Op->getOpcode()) {
default:
// Bail out for unknown operations.
return false;
case Instruction::Store:
ST = cast<StoreInst>(U);
// Bail out if it's used as the value operand.
if (ST->getValueOperand() == Val)
return false;
// FALL THROUGH
case Instruction::Load:
// Safe use in LD/ST as pointer only.
continue;
case Instruction::PHI:
PN = cast<PHINode>(U);
// Skip if it's already visited.
if (!VisitedPHIs.insert(PN).second)
continue;
// FALL THROUGH
case Instruction::BitCast:
case Instruction::Select:
case Instruction::GetElementPtr:
// Need to check their usage further.
break;
}
WorkList.push_back(U);
}
}
return true;
}
bool InlineLocalsResolution::runOnModule(Module& M)
{
MetaDataUtils* pMdUtils = getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils();
ModuleMetaData* modMD = getAnalysis<MetaDataUtilsWrapper>().getModuleMetaData();
if (!modMD->compOpt.OptDisable)
filterGlobals(M);
// Compute the offset of each inline local in the kernel,
// and their total size.
llvm::MapVector<Function*, unsigned int> sizeMap;
collectInfoOnSharedLocalMem(M);
computeOffsetList(M, sizeMap);
LLVMContext& C = M.getContext();
for (Function& F : M)
{
if (F.isDeclaration() || !isEntryFunc(pMdUtils, &F))
{
continue;
}
unsigned int totalSize = 0;
// Get the offset at which local arguments start
auto sizeIter = sizeMap.find(&F);
if (sizeIter != sizeMap.end())
{
totalSize += sizeIter->second;
}
// Set the high 16 bits to a non-0 value.
totalSize = (totalSize & 0xFFFF);
bool IsFirstSLMArgument = true;
for (Function::arg_iterator A = F.arg_begin(), AE = F.arg_end(); A != AE; ++A)
{
Argument* arg = &(*A);
PointerType* ptrType = dyn_cast<PointerType>(arg->getType());
// Check that this is a pointer
if (!ptrType)
{
continue;
}
// To the local address space
if (ptrType->getAddressSpace() != ADDRESS_SPACE_LOCAL)
{
continue;
}
// Which is used
if (arg->use_empty())
{
continue;
}
bool UseAsPointerOnly = useAsPointerOnly(arg);
unsigned Offset = totalSize;
if (!UseAsPointerOnly)
Offset |= VALID_LOCAL_HIGH_BITS;
if (IsFirstSLMArgument) {
auto BufType = ArrayType::get(Type::getInt8Ty(M.getContext()), 0);
auto ExtSLM = new GlobalVariable(M, BufType, false, GlobalVariable::ExternalLinkage, nullptr,
F.getName() + "-ExtSLM", nullptr, GlobalVariable::ThreadLocalMode::NotThreadLocal,
ADDRESS_SPACE_LOCAL);
auto NewPtr = ConstantExpr::getBitCast(ExtSLM, arg->getType());
arg->replaceAllUsesWith(NewPtr);
// Update MD.
LocalOffsetMD localOffset;
localOffset.m_Var = ExtSLM;
localOffset.m_Offset = Offset;
modMD->FuncMD[&F].localOffsets.push_back(localOffset);
IGC::appendToUsed(M, ExtSLM);
IsFirstSLMArgument = false;
}
else {
// FIXME: The following code should be removed as well by
// populating similar adjustment in prolog during code
// emission.
// Ok, now we need to add an offset, in bytes, which is equal to totalSize.
// Bitcast to i8*, GEP, bitcast back to original type.
Value* sizeConstant = ConstantInt::get(Type::getInt32Ty(C), Offset);
SmallVector<Value*, 1> idx(1, sizeConstant);
Instruction* pInsertBefore = &(*F.begin()->getFirstInsertionPt());
Type* pCharType = Type::getInt8Ty(C);
Type* pLocalCharPtrType = pCharType->getPointerTo(ADDRESS_SPACE_LOCAL);
Instruction* pCharPtr = BitCastInst::CreatePointerCast(arg, pLocalCharPtrType, "localToChar", pInsertBefore);
Value* pMovedCharPtr = GetElementPtrInst::Create(pCharType, pCharPtr, idx, "movedLocal", pInsertBefore);
Value* pMovedPtr = CastInst::CreatePointerCast(pMovedCharPtr, ptrType, "charToLocal", pInsertBefore);
// Running over arg users and use replaceUsesOfWith to fix them is not enough,
// because it does not cover the usage of arg in metadata (e.g. for debug info intrinsic).
// Thus, replaceAllUsesWith should be used in order to fix also debug info.
arg->replaceAllUsesWith(pMovedPtr);
// The above operation changed also the "arg" operand in "charPtr" to "movedPtr"
// Thus, we need to fix it back (otherwise the LLVM IR will be invalid)
pCharPtr->replaceUsesOfWith(pMovedPtr, arg);
}
}
}
return true;
}
void InlineLocalsResolution::filterGlobals(Module& M)
{
// This data structure saves all the unused nodes,
// including the global variable definition itself, as well as all successive recursive user nodes,
// in all the def-use trees corresponding to all the global variables in the entire Module.
std::unordered_set<Value*> unusedNodes_forModule;
// let's loop all global variables
for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I)
{
// We only care about global variables, not other globals.
GlobalVariable* globalVar = dyn_cast<GlobalVariable>(&*I);
if (!globalVar)
{
continue;
}
PointerType* ptrType = cast<PointerType>(globalVar->getType());
// We only care about local address space here.
if (ptrType->getAddressSpace() != ADDRESS_SPACE_LOCAL)
{
continue;
}
// If the globalVar is determined to be unused,
// this data structure saves the globalVar,
// as well as all successive recursive user nodes in that def-use tree.
std::unordered_set<Value*> unusedNodes_forOne;
if (unusedGlobal(globalVar, unusedNodes_forOne))
unusedNodes_forModule.insert(unusedNodes_forOne.begin(), unusedNodes_forOne.end());
}
// We only remove all the unused nodes for this Module,
// after we are done processing all the global variables for the entire Module,
// to prevent iterators becoming invalidated when elements get removed from the ilist.
for (auto& element : unusedNodes_forModule) {
// for all unused Values,
// replace all uses with undefs
// delete the values
if (Instruction* node = dyn_cast<Instruction>(element)) {
Type* Ty = node->getType();
if (!Ty->isVoidTy())
node->replaceAllUsesWith(UndefValue::get(Ty));
node->eraseFromParent();
}
else if (GlobalVariable* node = dyn_cast<GlobalVariable>(element)) {
Type* Ty = node->getType();
if (!Ty->isVoidTy())
node->replaceAllUsesWith(UndefValue::get(Ty));
node->eraseFromParent();
}
// All other types of nodes are ignored.
}
}
bool InlineLocalsResolution::unusedGlobal(Value* V, std::unordered_set<Value*>& unusedNodes)
{
for (Value::user_iterator U = V->user_begin(), UE = V->user_end(); U != UE; ++U)
{
if (GlobalVariable* globalVar = dyn_cast<GlobalVariable>(*U)) {
if (!unusedGlobal(*U, unusedNodes))
return false;
}
else if (GetElementPtrInst* gep = dyn_cast<GetElementPtrInst>(*U)) {
if (!unusedGlobal(*U, unusedNodes))
return false;
}
else if (BitCastInst* bitcast = dyn_cast<BitCastInst>(*U)) {
if (!unusedGlobal(*U, unusedNodes))
return false;
}
else if (StoreInst* store = dyn_cast<StoreInst>(*U)) {
if (store->isUnordered()) {
if (store->getPointerOperand() == V) {
if (!unusedGlobal(*U, unusedNodes))
return false;
}
else if (store->getValueOperand() == V) {
return false;
}
}
else {
return false;
}
}
else { // some other instruction
return false;
}
}
// add an unused node to the data structure
unusedNodes.insert(V);
return true;
}
void InlineLocalsResolution::collectInfoOnSharedLocalMem(Module& M)
{
const auto pCtx = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
// first we collect SLM usage on GET_MEMPOOL_PTR
if (M.getFunction(BUILTIN_MEMPOOL) != nullptr)
{
const GT_SYSTEM_INFO platform = pCtx->platform.GetGTSystemInfo();
SmallVector<CallInst*, 8> callsToReplace;
unsigned maxBytesOnModule = 0;
unsigned maxAlignOnModule = 0;
unsigned int maxWorkGroupSize = 448;
maxWorkGroupSize = pCtx->platform.getOfflineCompilerMaxWorkGroupSize();
if (pCtx->platform.enableMaxWorkGroupSizeCalculation() &&
platform.EUCount != 0 && platform.SubSliceCount != 0)
{
unsigned int maxNumEUsPerSubSlice = platform.EuCountPerPoolMin;
if (platform.EuCountPerPoolMin == 0 || pCtx->platform.supportPooledEU())
{
maxNumEUsPerSubSlice = platform.EUCount / platform.SubSliceCount;
}
const unsigned int numThreadsPerEU = platform.ThreadCount / platform.EUCount;
unsigned int simdSizeUsed = 8;
unsigned int maxWS = maxNumEUsPerSubSlice * numThreadsPerEU * simdSizeUsed;
if (!iSTD::IsPowerOfTwo(maxWS))
{
maxWS = iSTD::RoundPower2((DWORD)maxWS) >> 1;
}
maxWorkGroupSize = std::min(maxWS, 1024u);
}
// scan inst to collect all call instructions
for (Function& F : M)
{
if (F.isDeclaration())
{
continue;
}
unsigned maxBytesOnFunc = 0;
for (auto I = inst_begin(&F), IE = inst_end(&F); I != IE; ++I)
{
Instruction* inst = &(*I);
if (CallInst * CI = dyn_cast<CallInst>(inst))
{
Function* pFunc = CI->getCalledFunction();
if (pFunc && pFunc->getName().equals(BUILTIN_MEMPOOL))
{
// should always be called with constant operands
IGC_ASSERT(isa<ConstantInt>(CI->getArgOperand(0)));
IGC_ASSERT(isa<ConstantInt>(CI->getArgOperand(1)));
IGC_ASSERT(isa<ConstantInt>(CI->getArgOperand(2)));
const unsigned int allocAllWorkgroups = unsigned(cast<ConstantInt>(CI->getArgOperand(0))->getZExtValue());
const unsigned int numAdditionalElements = unsigned(cast<ConstantInt>(CI->getArgOperand(1))->getZExtValue());
const unsigned int elementSize = unsigned(cast<ConstantInt>(CI->getArgOperand(2))->getZExtValue());
unsigned int numElements = numAdditionalElements;
if (allocAllWorkgroups)
{
numElements += maxWorkGroupSize;
}
const unsigned int size = numElements * elementSize;
const unsigned int align = elementSize;
maxBytesOnFunc = std::max(maxBytesOnFunc, size);
maxBytesOnModule = std::max(maxBytesOnModule, size);
maxAlignOnModule = std::max(maxAlignOnModule, align);
callsToReplace.push_back(CI);
}
}
}
if (maxBytesOnFunc != 0)
{
m_FuncToMemPoolSizeMap[&F] = maxBytesOnFunc;
}
}
if (!callsToReplace.empty())
{
Type* bufType = ArrayType::get(Type::getInt8Ty(M.getContext()), uint64_t(maxBytesOnModule));
m_pGV = new GlobalVariable(M, bufType, false,
GlobalVariable::ExternalLinkage, ConstantAggregateZero::get(bufType),
"GenSLM.LocalMemPoolOnGetMemPoolPtr",
nullptr,
GlobalVariable::ThreadLocalMode::NotThreadLocal,
ADDRESS_SPACE_LOCAL);
m_pGV->setAlignment(IGCLLVM::getCorrectAlign(maxAlignOnModule));
for (auto call : callsToReplace)
{
CastInst* cast =
new BitCastInst(
m_pGV,
call->getCalledFunction()->getReturnType(),
"mempoolcast",
call);
cast->setDebugLoc(call->getDebugLoc());
call->replaceAllUsesWith(cast);
call->eraseFromParent();
}
}
}
// let's loop all global variables
for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I)
{
// We only care about global variables, not other globals.
GlobalVariable* globalVar = dyn_cast<GlobalVariable>(&*I);
if (!globalVar)
{
continue;
}
PointerType* ptrType = dyn_cast<PointerType>(globalVar->getType());
IGC_ASSERT_MESSAGE(ptrType, "The type of a global variable must be a pointer type");
if (!ptrType)
{
continue;
}
// We only care about local address space here.
if (ptrType->getAddressSpace() != ADDRESS_SPACE_LOCAL)
{
continue;
}
// For each SLM buffer, set section to avoid alignment changing by llvm.
// Add external linkage and DSO scope information.
globalVar->setLinkage(GlobalValue::ExternalLinkage);
globalVar->setDSOLocal(false);
globalVar->setSection("localSLM");
// Find the functions which this globalVar belongs to....
for (Value::user_iterator U = globalVar->user_begin(), UE = globalVar->user_end(); U != UE; ++U)
{
Instruction* user = dyn_cast<Instruction>(*U);
if (!user)
{
continue;
}
Function* parentF = user->getParent()->getParent();
bool emitError = false;
if (pCtx->type == ShaderType::OPENCL_SHADER)
{
// If this option is passed, emit error when extern functions use local SLM
auto ClContext = static_cast<OpenCLProgramContext*>(pCtx);
emitError = ClContext->m_Options.EmitErrorsForLibCompilation;
}
if (parentF->hasFnAttribute("referenced-indirectly") && emitError)
{
IGC_ASSERT_MESSAGE(0, "Cannot reference localSLM in indirectly-called functions");
getAnalysis<CodeGenContextWrapper>().getCodeGenContext()->EmitError("Cannot reference localSLM in indirectly-called functions", globalVar);
return;
}
m_FuncToVarsMap[parentF].insert(globalVar);
}
}
// set debugging info, and insert mov inst.
for (const auto& I : m_FuncToVarsMap)
{
Function* userFunc = I.first;
for (auto* G : I.second)
{
Instruction * pInsertBefore = &(*userFunc->begin()->getFirstInsertionPt());
TODO("Should inline local buffer points to origin offset 'globalVar' or to fixed offset 'pMovedPtr'?");
Utils::UpdateGlobalVarDebugInfo(G, G, pInsertBefore, true);
}
}
}
void InlineLocalsResolution::computeOffsetList(Module& M, llvm::MapVector<Function*, unsigned int>& sizeMap)
{
llvm::MapVector<Function*, llvm::MapVector<GlobalVariable*, unsigned int>> offsetMap;
MetaDataUtils* pMdUtils = getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils();
ModuleMetaData* modMD = getAnalysis<MetaDataUtilsWrapper>().getModuleMetaData();
DataLayout DL = M.getDataLayout();
CallGraph& CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
if (m_FuncToVarsMap.empty())
{
return;
}
// let's traverse the CallGraph to calculate the local
// variables of kernel from all user functions.
m_chkSet.clear();
for (auto& N : CG)
{
Function* f = N.second->getFunction();
if (!f || f->isDeclaration() || m_chkSet.find(f) != m_chkSet.end()) continue;
traverseCGN(*N.second);
}
// set up the offsetMap;
for (const auto& I : m_FuncToVarsMap)
{
Function* F = I.first;
// loop through all global variables
for (auto G : I.second)
{
auto itr = sizeMap.find(F);
unsigned int offset = itr == sizeMap.end() ? 0 : itr->second;
#if LLVM_VERSION_MAJOR < 11
offset = iSTD::Align(offset, DL.getPreferredAlignment(G));
#else
offset = iSTD::Align(offset, (unsigned)DL.getPreferredAlign(G).value());
#endif
// Save the offset of the current local
// (set the high bits to be non-0 here too)
offsetMap[F][G] = (offset & 0xFFFF);
// And the total size after this local is added
PointerType* ptrType = dyn_cast<PointerType>(G->getType());
Type* varType = ptrType->getPointerElementType();
if (G == m_pGV)
{
// it is GetMemPoolPtr usage
offset += m_FuncToMemPoolSizeMap[F];
}
else
{
offset += (unsigned int)DL.getTypeAllocSize(varType);
}
sizeMap[F] = offset;
}
}
// Ok, we've collected the information, now write it into the MD.
for (auto& iter : sizeMap)
{
// ignore non-entry functions.
if (!isEntryFunc(pMdUtils, iter.first))
{
continue;
}
// If this function doesn't have any locals, no need for MD.
if (iter.second == 0)
{
continue;
}
// We need the total size to have at least 32-byte alignment.
// This is because right after the space allocated to the inline locals,
// we are going to have inline parameters. So, we need to make sure the
// first local parameter is appropriately aligned, which, at worst,
// can be 256 bits.
iter.second = iSTD::Align(iter.second, 32);
// Add the size information of this function
modMD->FuncMD[iter.first].localSize = iter.second;
// And now the offsets.
for (const auto& offsetIter : offsetMap[iter.first])
{
unsigned Offset = offsetIter.second;
if (!useAsPointerOnly(offsetIter.first))
Offset |= VALID_LOCAL_HIGH_BITS;
LocalOffsetMD localOffset;
localOffset.m_Var = offsetIter.first;
localOffset.m_Offset = Offset;
modMD->FuncMD[iter.first].localOffsets.push_back(localOffset);
}
}
pMdUtils->save(M.getContext());
}
void InlineLocalsResolution::traverseCGN(const llvm::CallGraphNode& CGN)
{
Function* f = CGN.getFunction();
// mark this function
m_chkSet.insert(f);
for (const auto& N : CGN)
{
Function* sub = N.second->getFunction();
if (!sub || sub->isDeclaration()) continue;
// we reach here, because there is sub-function inside the node
if (m_chkSet.find(sub) == m_chkSet.end())
{
// this sub-routine is not visited before.
// visit it first
traverseCGN(*N.second);
}
// the sub-routine was visited before, collect information
// count each global on this sub-routine
GlobalVariableSet& GS_f = m_FuncToVarsMap[f];
const GlobalVariableSet& GS_sub = m_FuncToVarsMap[sub];
GS_f.insert(GS_sub.begin(), GS_sub.end());
// automatic storages
if (m_FuncToMemPoolSizeMap.find(sub) != m_FuncToMemPoolSizeMap.end())
{
// this sub-function has automatic storage
if (m_FuncToMemPoolSizeMap.find(f) != m_FuncToMemPoolSizeMap.end())
{
// caller has its own memory pool size, choose the max
m_FuncToMemPoolSizeMap[f] = std::max(m_FuncToMemPoolSizeMap[f], m_FuncToMemPoolSizeMap[sub]);
}
else
{
m_FuncToMemPoolSizeMap[f] = m_FuncToMemPoolSizeMap[sub];
}
}
}
}
|