1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "AdaptorCommon/ImplicitArgs.hpp"
#include "AdaptorCommon/RayTracing/RTBuilder.h"
#include "Compiler/Optimizer/OpenCLPasses/PrivateMemory/PrivateMemoryResolution.hpp"
#include "Compiler/ModuleAllocaAnalysis.hpp"
#include "Compiler/Optimizer/OpenCLPasses/KernelArgs.hpp"
#include "Compiler/MetaDataUtilsWrapper.h"
#include "Compiler/IGCPassSupport.h"
#include "Compiler/CISACodeGen/GenCodeGenModule.h"
#include "Compiler/CISACodeGen/LowerGEPForPrivMem.hpp"
#include "llvmWrapper/IR/DerivedTypes.h"
#include "common/LLVMWarningsPush.hpp"
#include "llvmWrapper/IR/DerivedTypes.h"
#include "llvmWrapper/IR/IRBuilder.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/Dominators.h"
#include "common/LLVMWarningsPop.hpp"
#include "Probe/Assertion.h"
using namespace llvm;
using namespace IGC;
namespace IGC {
/// @brief PrivateMemoryResolution pass used for resolving private memory alloca instructions.
/// This is done by resolving the alloca instructions.
/// This pass depends on the PrivateMemoryUsageAnalysis and
/// AddImplicitArgs passes running before it.
class PrivateMemoryResolution : public llvm::ModulePass
{
public:
// Pass identification, replacement for typeid
static char ID;
/// @brief Constructor
PrivateMemoryResolution();
/// @brief Destructor
~PrivateMemoryResolution() {}
/// @brief Provides name of pass
virtual llvm::StringRef getPassName() const override
{
return "PrivateMemoryResolution";
}
/// @brief Adds the analysis required by this pass
virtual void getAnalysisUsage(llvm::AnalysisUsage& AU) const override;
/// @brief Finds all alloca instructions, replaces them with by an llvm sequences.
/// and creates for each function a metadata that represents the total
/// amount of private memory needed by each work item.
/// @param M The Module to process.
bool runOnModule(llvm::Module& M) override;
/// @brief Resolve collected alloca instructions.
/// @param privateOnStack: whether the private variables are allocated on the stack
/// @return true if there were resolved alloca, false otherwise.
bool resolveAllocaInstructions(bool privateOnStack);
private:
struct arrayIndex
{
llvm::GetElementPtrInst* gep;
unsigned int operandIndex;
};
static bool testTransposedMemory(const Type* pTmpType, const Type* const pTypeOfAccessedObject, uint64_t tmpAllocaSize, const uint64_t bufferSizeLimit);
/// @brief The module level alloca information
ModuleAllocaAnalysis* m_ModAllocaInfo;
/// @brief - Metadata API
IGCMD::MetaDataUtils* m_pMdUtils;
/// @brief - Current processed function
llvm::Function* m_currFunction;
};
ModulePass* CreatePrivateMemoryResolution()
{
return new PrivateMemoryResolution();
}
} // namespace IGC
// Register pass to igc-opt
#define PASS_FLAG "igc-private-mem-resolution"
#define PASS_DESCRIPTION "Resolves private memory allocation"
#define PASS_CFG_ONLY true
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(PrivateMemoryResolution, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(ModuleAllocaAnalysis)
IGC_INITIALIZE_PASS_END(PrivateMemoryResolution, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
char PrivateMemoryResolution::ID = 0;
PrivateMemoryResolution::PrivateMemoryResolution() : ModulePass(ID)
{
initializePrivateMemoryResolutionPass(*PassRegistry::getPassRegistry());
}
void PrivateMemoryResolution::getAnalysisUsage(llvm::AnalysisUsage& AU) const
{
AU.setPreservesCFG();
AU.addRequired<MetaDataUtilsWrapper>();
AU.addRequired<CodeGenContextWrapper>();
AU.addRequired<llvm::CallGraphWrapperPass>();
AU.addRequired<ModuleAllocaAnalysis>();
}
bool PrivateMemoryResolution::runOnModule(llvm::Module& M)
{
// Get the analysis
m_pMdUtils = getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils();
auto* FGA = getAnalysisIfAvailable<GenXFunctionGroupAnalysis>();
bool changed = false;
ModuleMetaData& modMD = *getAnalysis<MetaDataUtilsWrapper>().getModuleMetaData();
// This is the only place to initialize and define UseScratchSpacePrivateMemory.
// we do not use scratch-space if any kernel uses stack-call because,
// in order to use scratch-space, we change data-layout for the module,
// change pointer-size of AS-private to 32-bit.
m_ModAllocaInfo = &getAnalysis<ModuleAllocaAnalysis>();
bool bRet = m_ModAllocaInfo->safeToUseScratchSpace();
CodeGenContext& Ctx = *getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
if (Ctx.platform.hasScratchSurface() && !bRet && Ctx.m_DriverInfo.supportsStatelessSpacePrivateMemory())
{
//MinNOSPushConstantSize is only increased ONCE
const uint32_t dwordSizeInBits = 32;
modMD.MinNOSPushConstantSize += Ctx.getRegisterPointerSizeInBits(ADDRESS_SPACE_GLOBAL) / dwordSizeInBits;
}
modMD.compOpt.UseScratchSpacePrivateMemory = bRet;
for (Function& F : M)
{
m_currFunction = &F;
if (m_currFunction->isDeclaration())
{
continue;
}
if (m_pMdUtils->findFunctionsInfoItem(m_currFunction) ==
m_pMdUtils->end_FunctionsInfo())
{
continue;
}
bool hasStackCall = (FGA && FGA->getGroup(m_currFunction) && FGA->getGroup(m_currFunction)->hasStackCall()) || m_currFunction->hasFnAttribute("visaStackCall");
bool hasVLA = (FGA && FGA->getGroup(m_currFunction) && FGA->getGroup(m_currFunction)->hasVariableLengthAlloca()) || m_currFunction->hasFnAttribute("hasVLA");
if (Ctx.platform.hasScratchSurface() &&
modMD.compOpt.UseScratchSpacePrivateMemory)
{
// In this case, we could be generating 0-byte offsets for uniform
// allocas which would manifest as null pointers. This is because
// we represent the r0.5 access later on so the pointer appears
// to be null for downstream passes. This attribute says that it's
// okay so those passes wouldn't optimize away null pointer
// dereferences because they would have otherwise been undefined
// behavior.
#if LLVM_VERSION_MAJOR <= 10
F.addFnAttr("null-pointer-is-valid", "true");
#else
F.addFnAttr(llvm::Attribute::NullPointerIsValid);
#endif
}
// Resolve collected alloca instructions for current function
changed |= resolveAllocaInstructions(hasStackCall || hasVLA);
// Initialize the stack mem usage per function group to the kernel's privateMemPerWI
if (isEntryFunc(m_pMdUtils, m_currFunction))
{
auto funcMD = modMD.FuncMD.find(m_currFunction);
if (funcMD != modMD.FuncMD.end())
modMD.PrivateMemoryPerFG[m_currFunction] = funcMD->second.privateMemoryPerWI;
}
}
if (FGA)
{
auto DL = M.getDataLayout();
auto& CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
// lambda to recursively calculate the max private memory usage for each call path
std::function<uint32_t(Function*)> AnalyzeCGPrivateMemUsage =
[&AnalyzeCGPrivateMemUsage, &modMD, &CG, &DL, &Ctx, &M](Function* F)->uint32_t
{
// Not a valid function, just return 0
if (!F || F->isDeclaration())
return 0;
// No function metadata found, return 0
auto funcIt = modMD.FuncMD.find(F);
if (funcIt == modMD.FuncMD.end())
return 0;
uint32_t currFuncPrivateMem = (uint32_t)(funcIt->second.privateMemoryPerWI);
// Add 1 OWORD for FP stack write
if IGC_IS_FLAG_ENABLED(EnableWriteOldFPToStack)
currFuncPrivateMem += SIZE_OWORD;
CallGraphNode* Node = CG[F];
// Function has recursion, don't search CG further
if (F->hasFnAttribute("hasRecursion"))
return currFuncPrivateMem;
// Reached a leaf, return the private memory used by the current function
if (Node->empty())
return currFuncPrivateMem;
SmallSet<Function*, 16> childFuncs;
// Collect the list of all direct callees
for (auto FI = Node->begin(), FE = Node->end(); FI != FE; ++FI)
{
if (Function* childF = FI->second->getFunction())
{
childFuncs.insert(childF);
}
}
// Recursively calculate the max private mem usage of all callees
uint32_t maxSize = 0;
for (auto childF : childFuncs)
{
IGC_ASSERT(childF);
// As a conservative measure, assume all stackcall args are stored on private memory
uint32_t argSize = 0;
for (auto AI = childF->arg_begin(), AE = childF->arg_end(); AI != AE; ++AI)
{
// Argument offsets are also OWORD aligned
argSize += iSTD::Align(static_cast<DWORD>(DL.getTypeAllocSize(AI->getType())), SIZE_OWORD);
}
// Also do it for return value
if (!childF->getReturnType()->isVoidTy())
{
argSize += iSTD::Align(static_cast<DWORD>(DL.getTypeAllocSize(childF->getReturnType())), SIZE_OWORD);
}
uint32_t size = argSize + AnalyzeCGPrivateMemUsage(childF);
maxSize = std::max(maxSize, size);
}
return currFuncPrivateMem + maxSize;
};
// Calculate the max private mem used by each function group
// by analyzing the call depth. Store this info in the FunctionGroup container.
// This info is needed in EmitVISAPass to determine how much private memory to allocate
// per SIMD per thread.
for (auto GI = FGA->begin(), GE = FGA->end(); GI != GE; ++GI)
{
FunctionGroup* FG = *GI;
Function* pKernel = FG->getHead();
uint32_t maxPrivateMem = 0;
if (FG->hasStackCall())
{
// Analyze call depth for stack memory required
maxPrivateMem = AnalyzeCGPrivateMemUsage(pKernel);
}
if (FG->hasIndirectCall() || FG->hasRecursion())
{
// If indirect calls or recursions exist, add additional 4KB and hope we don't run out.
maxPrivateMem += (4 * 1024);
}
if (FG->hasVariableLengthAlloca())
{
// Add another 1KB if there are VLAs
maxPrivateMem += 1024;
}
maxPrivateMem = std::max(maxPrivateMem, Ctx.getPrivateMemoryMinimalSizePerThread());
maxPrivateMem = std::max(maxPrivateMem, (uint32_t)(IGC_GET_FLAG_VALUE(ForcePerThreadPrivateMemorySize)));
if (maxPrivateMem > 0)
{
modMD.PrivateMemoryPerFG[pKernel] = (unsigned)maxPrivateMem;
}
}
}
if (changed)
{
m_pMdUtils->save(M.getContext());
}
return changed;
}
// Sink allocas into its first dominating use if possible. Alloca instructions
// are placed in the first basic block which dominates all other blocks. During
// alloca resolution, all address computations are done in the first block. And
// the address objects are live from the starting point. E.g.
//
// int i = x;
// foo(i);
// int j = y;
// bar(j);
//
// Variables i, j do not overlap in the source. When i and j are both in
// memory (optimizations disabled), llvm IR looks like
//
// [0] alloca i
// [1] alloca j
// [2] store x into &i
// [3] load i
// [4] foo(i)
// [5] store y into &j
// [6] load j
// [7] bar(j)
// Notice that address &i and &j overlap, [0-4) and [1-7) resp. Sinking allocas
// i and j to their lifetime start alleviates this issue.
//
// [0] alloca i
// [1] store x into &i
// [2] load i
// [3] foo(i)
// [4] alloca j
// [5] store y into &j
// [6] load j
// [7] bar(j)
//
static void sinkAllocas(SmallVectorImpl<AllocaInst*>& Allocas) {
IGC_ASSERT(false == Allocas.empty());
DominatorTree DT;
llvm::LoopInfoBase<llvm::BasicBlock, llvm::Loop> LI;
bool Calcuated = false;
// For each alloca, sink it if it has a use that dominates all other uses.
// This use is called the dominating use.
for (auto AI : Allocas) {
if (AI->user_empty())
continue;
// If an alloca is used other than in an instruction, skip it.
bool Skip = false;
SmallVector<Instruction*, 8> UInsts;
for (auto U : AI->users()) {
auto UI = dyn_cast<Instruction>(U);
//can't sink the alloca in the same BB where a PHI node exists
//As it will violate the basic block structure, since phi nodes
//will always be at the beginging of a BB
if (!UI || isa<PHINode>(UI)) {
Skip = true;
break;
}
UInsts.push_back(UI);
}
if (Skip)
continue;
// Compute dominator tree lazily.
if (!Calcuated) {
Function* F = AI->getParent()->getParent();
DT.recalculate(*F);
LI.releaseMemory();
LI.analyze(DT);
Calcuated = true;
}
// Find the Nearest Common Denominator for all the uses
Instruction* DomUse = UInsts[0];
BasicBlock* DomBB = DomUse->getParent();
for (unsigned i = 1; i < UInsts.size(); ++i) {
Instruction* Use = UInsts[i];
BasicBlock* UseBB = Use->getParent();
DomBB = DT.findNearestCommonDominator(DomBB, UseBB);
if (!DomBB) {
break;
}
}
// Find the nearest Denominator outside loops to prevent multiple allocations
BasicBlock* CurBB = AI->getParent();
while (DomBB && DomBB != CurBB && LI.getLoopFor(DomBB) != nullptr)
{
DomBB = DT.getNode(DomBB)->getIDom()->getBlock();
}
if (DomBB) {
// If DomBB has a use in it, insert it just before the first use.
// Otherwise, append it to the end of the block, to reduce register pressure.
Instruction* InsertPt = DomBB->getTerminator();
for (Instruction* Use : UInsts) {
if (DomBB == Use->getParent() && DT.dominates(Use, InsertPt)) {
InsertPt = Use;
}
}
AI->moveBefore(InsertPt);
}
}
}
static void sinkAllocaSingleUse(SmallVectorImpl<AllocaInst*>& Allocas) {
IGC_ASSERT(false == Allocas.empty());
DominatorTree DT;
bool Calcuated = false;
// For each alloca's use, sink it if it has a use that dominates all other uses.
// This use is called the dominating use.
for (auto AI : Allocas) {
if (AI->user_empty())
continue;
for (auto A : AI->users())
{
bool Skip = false;
SmallVector<Instruction*, 8> UInsts;
auto UI = dyn_cast<Instruction>(A);
// can't sink phi nodes to other BBs
// can't sink loads since we don't check for stores on the way
if (isa<PHINode>(UI) || UI->mayReadFromMemory())
continue;
for (auto U : UI->users()) {
auto UUI = dyn_cast<Instruction>(U);
//can't sink the use in the same BB where a PHI node exists
//As it will violate the basic block structure, since phi nodes
//will always be at the beginging of a BB
if (!UUI || isa<PHINode>(UUI)) {
Skip = true;
break;
}
UInsts.push_back(UUI);
}
if (Skip || UInsts.size() == 0)
continue;
// Compute dominator tree lazily.
if (!Calcuated) {
Function* F = AI->getParent()->getParent();
DT.recalculate(*F);
Calcuated = true;
}
// Find the Nearest Common Denominator for all the uses
Instruction* DomUse = UInsts[0];
BasicBlock* DomBB = DomUse->getParent();
for (unsigned i = 1; i < UInsts.size(); ++i) {
Instruction* Use = UInsts[i];
BasicBlock* UseBB = Use->getParent();
DomBB = DT.findNearestCommonDominator(DomBB, UseBB);
if (!DomBB) {
break;
}
}
if (DomBB) {
// If DomBB has a use in it, insert it just before the first use.
// Otherwise, append it to the end of the block, to reduce register pressure.
Instruction* InsertPt = DomBB->getTerminator();
for (Instruction* Use : UInsts) {
if (DomBB == Use->getParent() && DT.dominates(Use, InsertPt)) {
InsertPt = Use;
}
}
UI->moveBefore(InsertPt);
}
}
}
}
class TransposeHelperPrivateMem : public TransposeHelper
{
public:
Value* simdSize;
Value* base;
unsigned int elementSize;
bool vectorIO;
TransposeHelperPrivateMem(Value* b, Value* size, unsigned int eltSize, bool vectorType) : TransposeHelper(vectorType) {
simdSize = size;
base = b;
elementSize = eltSize;
vectorIO = vectorType;
}
void handleLoadInst(LoadInst* pLoad, Value* pScalarizedIdx)
{
IGC_ASSERT(nullptr != pLoad);
IGC_ASSERT(pLoad->isSimple());
IGCLLVM::IRBuilder<> IRB(pLoad);
if (isa<Instruction>(pLoad->getPointerOperand()))
{
IRB.SetInsertPoint(cast<Instruction>(pLoad->getPointerOperand()));
}
Value* eltSize = IRB.getInt32(elementSize);
Value* stride = IRB.CreateMul(simdSize, eltSize);
Value* address = IRB.CreateMul(pScalarizedIdx, stride);
address = IRB.CreateAdd(base, address);
IRB.SetInsertPoint(pLoad);
if (!vectorIO && pLoad->getType()->isVectorTy())
{
Type* scalarType = pLoad->getPointerOperand()->getType()->getPointerElementType()->getScalarType();
IGC_ASSERT(nullptr != scalarType);
Type* scalarptrTy = PointerType::get(scalarType, pLoad->getPointerAddressSpace());
IGC_ASSERT(scalarType->getPrimitiveSizeInBits() / 8 == elementSize);
Value* vec = UndefValue::get(pLoad->getType());
auto pLoadVT = cast<IGCLLVM::FixedVectorType>(pLoad->getType());
for (unsigned i = 0, e = (unsigned)pLoadVT->getNumElements(); i < e; ++i)
{
Value* ptr = IRB.CreateIntToPtr(address, scalarptrTy);
Value* v = IRB.CreateLoad(ptr);
vec = IRB.CreateInsertElement(vec, v, IRB.getInt32(i));
address = IRB.CreateAdd(address, stride);
}
pLoad->replaceAllUsesWith(vec);
pLoad->eraseFromParent();
}
else
{
Value* ptr = IRB.CreateIntToPtr(address, pLoad->getPointerOperand()->getType());
pLoad->setOperand(0, ptr);
}
}
void handleStoreInst(StoreInst* pStore, Value* pScalarizedIdx)
{
IGC_ASSERT(nullptr != pStore);
IGC_ASSERT(pStore->isSimple());
IGCLLVM::IRBuilder<> IRB(pStore);
if (isa<Instruction>(pStore->getPointerOperand()))
{
IRB.SetInsertPoint(cast<Instruction>(pStore->getPointerOperand()));
}
Value* eltSize = IRB.getInt32(elementSize);
Value* stride = IRB.CreateMul(simdSize, eltSize);
Value* address = IRB.CreateMul(pScalarizedIdx, stride);
address = IRB.CreateAdd(base, address);
IRB.SetInsertPoint(pStore);
if (!vectorIO && pStore->getValueOperand()->getType()->isVectorTy())
{
Type* scalarType = pStore->getPointerOperand()->getType()->getPointerElementType()->getScalarType();
IGC_ASSERT(nullptr != scalarType);
Type* scalarptrTy = PointerType::get(scalarType, pStore->getPointerAddressSpace());
IGC_ASSERT(scalarType->getPrimitiveSizeInBits() / 8 == elementSize);
Value* vec = pStore->getValueOperand();
unsigned vecNumElts = (unsigned)cast<IGCLLVM::FixedVectorType>(vec->getType())->getNumElements();
for (unsigned i = 0; i < vecNumElts; ++i)
{
Value* ptr = IRB.CreateIntToPtr(address, scalarptrTy);
IRB.CreateStore(IRB.CreateExtractElement(vec, IRB.getInt32(i)), ptr);
address = IRB.CreateAdd(address, stride);
}
pStore->eraseFromParent();
}
else
{
Value* ptr = IRB.CreateIntToPtr(address, pStore->getPointerOperand()->getType());
pStore->setOperand(1, ptr);
}
}
void handleLifetimeMark(IntrinsicInst* inst)
{
IGC_ASSERT(nullptr != inst);
IGC_ASSERT((inst->getIntrinsicID() == llvm::Intrinsic::lifetime_start) ||
(inst->getIntrinsicID() == llvm::Intrinsic::lifetime_end));
inst->eraseFromParent();
}
};
bool PrivateMemoryResolution::testTransposedMemory(const Type* pTmpType, const Type* const pTypeOfAccessedObject, uint64_t tmpAllocaSize, const uint64_t bufferSizeLimit)
{
// verify that the size of transposed memory fits into the allocated scratch region
bool ok = true;
if(ok)
{
ok = (nullptr != pTmpType);
IGC_ASSERT(ok);
}
if(ok)
{
ok = (nullptr != pTypeOfAccessedObject);
IGC_ASSERT(ok);
}
if(ok)
{
ok = (0 < tmpAllocaSize);
IGC_ASSERT(ok);
}
if(ok)
{
ok = (tmpAllocaSize <= bufferSizeLimit);
IGC_ASSERT(ok);
}
while(ok && (pTypeOfAccessedObject != pTmpType))
{
if(pTmpType->isStructTy() && (pTmpType->getStructNumElements() == 1))
{
pTmpType = pTmpType->getStructElementType(0);
ok = (nullptr != pTmpType);
IGC_ASSERT(ok);
}
else if(pTmpType->isArrayTy())
{
tmpAllocaSize *= pTmpType->getArrayNumElements();
pTmpType = pTmpType->getContainedType(0);
ok = (nullptr != pTmpType);
IGC_ASSERT(ok);
}
else if(pTmpType->isVectorTy())
{
auto pTmpVType = cast<IGCLLVM::FixedVectorType>(pTmpType);
tmpAllocaSize *= pTmpVType->getNumElements();
pTmpType = pTmpType->getContainedType(0);
ok = (nullptr != pTmpType);
IGC_ASSERT(ok);
}
else
{
// unsupported type for memory transposition
ok = false;
IGC_ASSERT(ok);
}
}
if(ok)
{
ok = (0 < tmpAllocaSize);
IGC_ASSERT(ok);
}
if(ok)
{
ok = (tmpAllocaSize <= bufferSizeLimit);
IGC_ASSERT(ok);
}
return ok;
}
bool PrivateMemoryResolution::resolveAllocaInstructions(bool privateOnStack)
{
CodeGenContext& Ctx = *getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
// It is possible that there is no alloca instruction in the caller but there
// is alloca in the callee. Save the total private memory to the metadata.
unsigned int totalPrivateMemPerWI = m_ModAllocaInfo->getTotalPrivateMemPerWI(m_currFunction);
// This change is only till the FuncMD is ported to new MD framework
ModuleMetaData* const modMD = getAnalysis<MetaDataUtilsWrapper>().getModuleMetaData();
IGC_ASSERT(nullptr != modMD);
if (modMD->compOpt.UseScratchSpacePrivateMemory == false &&
Ctx.m_DriverInfo.supportsStatelessSpacePrivateMemory() &&
Ctx.m_DriverInfo.requiresPowerOfTwoStatelessSpacePrivateMemorySize())
{
totalPrivateMemPerWI = iSTD::RoundPower2(static_cast<DWORD>(totalPrivateMemPerWI));
}
modMD->FuncMD[m_currFunction].privateMemoryPerWI = totalPrivateMemPerWI;
modMD->privateMemoryPerWI = totalPrivateMemPerWI;//redundant ?
SmallVector<AllocaInst*, 8> & allocaInsts = m_ModAllocaInfo->getAllocaInsts(m_currFunction);
if (allocaInsts.empty())
{
// No alloca instructions to process.
return false;
}
if (Ctx.m_instrTypes.numAllocaInsts > IGC_GET_FLAG_VALUE(AllocaRAPressureThreshold))
{
sinkAllocaSingleUse(allocaInsts);
}
sinkAllocas(allocaInsts);
// If there are N+1 private buffers, and M+1 threads,
// the layout representing the private memory will look like this:
// [buffer0 thread0][buffer1 thread0]...[bufferN thread0]
// [buffer0 thread1][buffer1 thread1]...[bufferN thread1]
// ...
// [buffer0 threadM][buffer1 threadM]...[bufferN threadM]
// Note that for each thread, all SIMD lanes of the same buffers are
// laid out sequentially to preserve locality.
// So, in fact, [buffer0 thread0] represents
// [buffer0 lane0][buffer0 lane1]...[buffer0 laneK]
// where the SIMD width is K-1.
// Each row represent total private memory per thread
// To get buffer i of thread j we need to calculate:
// {buffer i ptr} = privateBase +
// threadId * {total private mem per thread} +
// {buffer offset} +
// {per lane offset}
// Where:
// privateBase = implicit argument, points to [buffer0 thread0]
// {total private mem per thread} = simdSize * {total private mem per WI}
// {buffer offset} = simdSize * {buffer i offset per WI}
// {per lane offset} = simdLaneId * sizeof(buffer i)
// simdSize and simdOffsetBase are calculated using intrinsics that are planted in this pass
// and resolved in the code gen
LLVMContext& C = m_currFunction->getContext();
IntegerType* typeInt32 = Type::getInt32Ty(C);
// Creates intrinsics that will be lowered in the CodeGen and will handle the simd lane id
Function* simdLaneIdFunc = GenISAIntrinsic::getDeclaration(m_currFunction->getParent(), GenISAIntrinsic::GenISA_simdLaneId);
// Creates intrinsics that will be lowered in the CodeGen and will handle the simd size
Function* simdSizeFunc = GenISAIntrinsic::getDeclaration(m_currFunction->getParent(), GenISAIntrinsic::GenISA_simdSize);
IGCLLVM::IRBuilder<> entryBuilder(&*m_currFunction->getEntryBlock().getFirstInsertionPt());
ImplicitArgs implicitArgs(*m_currFunction, m_pMdUtils);
// Construct an empty DebugLoc.
DebugLoc entryDebugLoc;
entryBuilder.SetCurrentDebugLocation(entryDebugLoc);
if (privateOnStack)
{
// Creates intrinsics that will be lowered in the CodeGen and will handle the stack-pointer
Instruction* simdLaneId16 = entryBuilder.CreateCall(simdLaneIdFunc, llvm::None, VALUE_NAME("simdLaneId16"));
Value* simdLaneId = entryBuilder.CreateIntCast(simdLaneId16, typeInt32, false, VALUE_NAME("simdLaneId"));
Instruction* simdSize = entryBuilder.CreateCall(simdSizeFunc, llvm::None, VALUE_NAME("simdSize"));
for (auto pAI : allocaInsts)
{
bool isUniform = pAI->getMetadata("uniform") != nullptr;
IGCLLVM::IRBuilder<> builder(pAI);
builder.SetCurrentDebugLocation(entryDebugLoc);
// buffer of this private var
Value* privateBuffer = nullptr;
if (!isa<ConstantInt>(pAI->getArraySize()))
{
// vla array must be AOS layout on stack
Value* increment = isUniform ? builder.getInt32(0) : simdLaneId;
// truncate alloca size to i32
Value* arraySize = builder.CreateTrunc(pAI->getArraySize(), increment->getType(), VALUE_NAME("TruncVLASize"));
Value* sizeWithType = builder.CreateMul(arraySize,
builder.getInt32(static_cast<uint32_t>(m_currFunction->getParent()->getDataLayout().getTypeAllocSize(pAI->getAllocatedType()))),
VALUE_NAME("VLASizeWithType"));
Value* perLaneOffset = builder.CreateMul(increment, sizeWithType, VALUE_NAME("VLAPerLaneOffset"));
// Create VLAStackAlloca intrinsic which will set private buffer offset to "SP + laneOffset",
// and set SP to "SP + buffer_size" in visa emitPass
Value* intrinArgs[] = { perLaneOffset, sizeWithType };
Function* stackAllocaFunc = GenISAIntrinsic::getDeclaration(m_currFunction->getParent(), GenISAIntrinsic::GenISA_VLAStackAlloca);
Value* stackAlloca = builder.CreateCall(stackAllocaFunc, intrinArgs , VALUE_NAME("VLAStackAlloca"));
privateBuffer = builder.CreatePointerCast(stackAlloca, pAI->getType(), VALUE_NAME(pAI->getName() + ".privateBuffer"));
}
else
{
int scalarBufferOffset = m_ModAllocaInfo->getConstBufferOffset(pAI);
unsigned int bufferSize = m_ModAllocaInfo->getConstBufferSize(pAI);
Value* bufferOffset = builder.CreateMul(simdSize, ConstantInt::get(typeInt32, scalarBufferOffset), VALUE_NAME(pAI->getName() + ".SIMDBufferOffset"));
Value* increment = isUniform ? builder.getInt32(0) : simdLaneId;
Value* perLaneOffset = builder.CreateMul(increment, ConstantInt::get(typeInt32, bufferSize), VALUE_NAME("perLaneOffset"));
Value* totalOffset = builder.CreateAdd(bufferOffset, perLaneOffset, VALUE_NAME(pAI->getName() + ".totalOffset"));
Function* stackAllocaFunc = GenISAIntrinsic::getDeclaration(m_currFunction->getParent(), GenISAIntrinsic::GenISA_StackAlloca);
Value* stackAlloca = builder.CreateCall(stackAllocaFunc, totalOffset, VALUE_NAME("stackAlloca"));
privateBuffer = builder.CreatePointerCast(stackAlloca, pAI->getType(), VALUE_NAME(pAI->getName() + ".privateBuffer"));
auto DbgUses = llvm::FindDbgAddrUses(pAI);
for (auto Use : DbgUses)
{
if (auto DbgDcl = dyn_cast_or_null<DbgDeclareInst>(Use))
{
// Attach metadata to instruction containing offset of storage
auto OffsetMD = MDNode::get(builder.getContext(), ConstantAsMetadata::get(builder.getInt32(scalarBufferOffset)));
DbgDcl->setMetadata("StorageOffset", OffsetMD);
if (IGC_IS_FLAG_ENABLED(UseOffsetInLocation))
{
auto SizeMD = MDNode::get(builder.getContext(), ConstantAsMetadata::get(builder.getInt32(bufferSize)));
DbgDcl->setMetadata("StorageSize", SizeMD);
}
}
}
}
Ctx.metrics.UpdateVariable(pAI, privateBuffer);
// Replace all uses of original alloca with the bitcast
pAI->replaceAllUsesWith(privateBuffer);
pAI->eraseFromParent();
}
return true;
}
// What is the size limit of this scratch memory? If we use >= 128 KB for private data, then we have
// no space left for later spilling.
bool useStateless = false;
if (Ctx.type != ShaderType::OPENCL_SHADER && Ctx.platform.hasScratchSurface()) {
useStateless = Ctx.m_DriverInfo.supportsStatelessSpacePrivateMemory();
}
//NOTE: Below if block logic is used either for SSS RW or non-OCL stateless RW
if (modMD && (modMD->compOpt.UseScratchSpacePrivateMemory || useStateless)) {
// We want to use this pass to lower alloca instruction
// to remove some redundant instruction caused by alloca. For original approach,
// different threads use the same private base. While for this approach, each
// thread has its own private base, so we don't have to calculate the
// private base from threadid as we did previously. In this case, we only need
// PrivateMemoryUsageAnalysis pass, no need to run AddImplicitArgs pass.
Instruction* simdLaneId16 = entryBuilder.CreateCall(simdLaneIdFunc, llvm::None, VALUE_NAME("simdLaneId16"));
Value* simdLaneId = entryBuilder.CreateIntCast(simdLaneId16, typeInt32, false, VALUE_NAME("simdLaneId"));
Instruction* simdSize = entryBuilder.CreateCall(simdSizeFunc, llvm::None, VALUE_NAME("simdSize"));
Value* privateBase = nullptr;
ADDRESS_SPACE scratchMemoryAddressSpace = ADDRESS_SPACE_PRIVATE;
if (modMD->compOpt.UseScratchSpacePrivateMemory)
{
if (Ctx.platform.hasScratchSurface())
{
// when we use per-thread scratch-surface with SSH bindless
// R0_5[32:10] is the offset of the surface-state for scratch
// surface slot#0, NOT the offset into the surface.
privateBase = entryBuilder.getInt32(0);
}
else
{ // the old mechanism
Value* r0Val = implicitArgs.getImplicitArgValue(*m_currFunction, ImplicitArg::R0, m_pMdUtils);
Value* r0_5 = entryBuilder.CreateExtractElement(r0Val, ConstantInt::get(typeInt32, 5), VALUE_NAME("r0.5"));
privateBase = entryBuilder.CreateAnd(r0_5, ConstantInt::get(typeInt32, 0xFFFFFC00), VALUE_NAME("privateBase"));
}
}
else
{
scratchMemoryAddressSpace = ADDRESS_SPACE_GLOBAL;
modMD->compOpt.UseStatelessforPrivateMemory = true;
const uint32_t dwordSizeInBits = 32;
const uint32_t pointerSizeInDwords = Ctx.getRegisterPointerSizeInBits(scratchMemoryAddressSpace) / dwordSizeInBits;
IGC_ASSERT(pointerSizeInDwords <= 2);
llvm::Type* resultType = entryBuilder.getInt32Ty();
if (pointerSizeInDwords > 1)
{
resultType = IGCLLVM::FixedVectorType::get(resultType, 2);
}
if (Ctx.type == ShaderType::RAYTRACING_SHADER)
{
RTBuilder rtBuilder(m_currFunction->getContext(), Ctx);
rtBuilder.SetInsertPoint(entryBuilder.GetInsertBlock(), entryBuilder.GetInsertPoint());
privateBase = rtBuilder.getStatelessScratchPtr();
entryBuilder.SetInsertPoint(rtBuilder.GetInsertBlock(), rtBuilder.GetInsertPoint());
}
else
{
Function* pFunc = GenISAIntrinsic::getDeclaration(
m_currFunction->getParent(),
GenISAIntrinsic::GenISA_RuntimeValue,
resultType);
privateBase = entryBuilder.CreateCall(pFunc, entryBuilder.getInt32(modMD->MinNOSPushConstantSize - pointerSizeInDwords));
}
if (privateBase->getType()->isVectorTy())
{
privateBase = entryBuilder.CreateBitCast(privateBase, entryBuilder.getInt64Ty());
}
ConstantInt* totalPrivateMemPerWIValue = ConstantInt::get(typeInt32, totalPrivateMemPerWI);
Value* totalPrivateMemPerThread = entryBuilder.CreateMul(simdSize, totalPrivateMemPerWIValue, VALUE_NAME("totalPrivateMemPerThread"));
Function* pHWTIDFunc = GenISAIntrinsic::getDeclaration(m_currFunction->getParent(), GenISAIntrinsic::GenISA_hw_thread_id_alloca, Type::getInt32Ty(C));
llvm::Value* threadId = entryBuilder.CreateCall(pHWTIDFunc);
llvm::Value* perThreadOffset = entryBuilder.CreateMul(threadId, totalPrivateMemPerThread, VALUE_NAME("perThreadOffset"));
perThreadOffset = entryBuilder.CreateZExt(perThreadOffset, privateBase->getType());
privateBase = entryBuilder.CreateAdd(privateBase, perThreadOffset);
}
for (auto pAI : allocaInsts)
{
bool isUniform = pAI->getMetadata("uniform") != nullptr;
IGCLLVM::IRBuilder<> builder(pAI);
// Post upgrade to LLVM 3.5.1, it was found that inliner propagates debug info of callee
// in to the alloca. Further, those allocas are somehow hoisted to the top of program.
// When those allocas are lowered to below sequence, they result in prologue instructions
// pointing to a much later line of code. This causes a single src line to now have
// multiple VISA offset mappings and prevents debugger from setting breakpoints
// correctly. So instead, we set DebugLoc for the instructions generated by lowering
// alloca to mark that they are part of the prologue.
// Note: As per Amjad, later LLVM version has a fix for this in llvm/lib/Transforms/Utils/InlineFunction.cpp.
builder.SetCurrentDebugLocation(pAI->getDebugLoc());
// Get buffer information from the analysis
unsigned int scalarBufferOffset = m_ModAllocaInfo->getConstBufferOffset(pAI);
// If we can use SOA layout transpose the memory
Type* pTypeOfAccessedObject = nullptr;
// TransposeMemLayout is not prepared to work on 64-bit pointers (originally, the private address space is expressed by 32-bit pointers).
// Address space casting
bool TransposeMemLayout =
ADDRESS_SPACE_PRIVATE == scratchMemoryAddressSpace &&
CanUseSOALayout(pAI, pTypeOfAccessedObject);
unsigned int bufferSize = 0;
if (TransposeMemLayout)
{
auto DL = &m_currFunction->getParent()->getDataLayout();
bufferSize = (unsigned)DL->getTypeAllocSize(pTypeOfAccessedObject);
IGC_ASSERT(testTransposedMemory((pAI->getType()->getPointerElementType()), pTypeOfAccessedObject, bufferSize, (m_ModAllocaInfo->getConstBufferSize(pAI))));
}
else
{
bufferSize = m_ModAllocaInfo->getConstBufferSize(pAI);
}
Value* bufferOffset = builder.CreateMul(simdSize, ConstantInt::get(typeInt32, scalarBufferOffset), VALUE_NAME(pAI->getName() + ".SIMDBufferOffset"));
Value* perLaneOffset = isUniform ? builder.getInt32(0) : simdLaneId;
perLaneOffset = builder.CreateMul(perLaneOffset, ConstantInt::get(typeInt32, bufferSize), VALUE_NAME("perLaneOffset"));
Value* totalOffset = builder.CreateAdd(bufferOffset, perLaneOffset, VALUE_NAME(pAI->getName() + ".totalOffset"));
totalOffset = builder.CreateZExt(totalOffset, privateBase->getType());
Value* threadOffset = builder.CreateAdd(privateBase, totalOffset, VALUE_NAME(pAI->getName() + ".threadOffset"));
Value* privateBufferPTR = builder.CreateIntToPtr(threadOffset, pAI->getAllocatedType()->getPointerTo(scratchMemoryAddressSpace), VALUE_NAME(pAI->getName() + ".privateBufferPTR"));
Value* privateBuffer = builder.CreatePointerCast(privateBufferPTR, pAI->getType(), VALUE_NAME(pAI->getName() + ".privateBuffer"));
if (TransposeMemLayout)
{
TransposeHelperPrivateMem helper(threadOffset, simdSize, bufferSize, pTypeOfAccessedObject->isVectorTy());
Value* Idx = builder.getInt32(0);
helper.HandleAllocaSources(pAI, Idx);
helper.EraseDeadCode();
}
// Replace all uses of original alloca with the bitcast
Ctx.metrics.UpdateVariable(pAI, privateBuffer);
pAI->replaceAllUsesWith(privateBuffer);
pAI->eraseFromParent();
if (scratchMemoryAddressSpace == ADDRESS_SPACE_GLOBAL)
{
// Fix address space in uses of privateBufferPTR, ADDRESS_SPACE_PRIVATE => ADDRESS_SPACE_GLOBAL
FixAddressSpaceInAllUses(privateBufferPTR, ADDRESS_SPACE_GLOBAL, ADDRESS_SPACE_PRIVATE);
Ctx.metrics.UpdateVariable(privateBuffer, privateBufferPTR);
privateBuffer->replaceAllUsesWith(privateBufferPTR);
if (Instruction* inst = dyn_cast<Instruction>(privateBuffer))
{
inst->eraseFromParent();
}
}
}
return true;
}
// Only OCL is supposed to reach here.
IGC_ASSERT_EXIT(ShaderType::OPENCL_SHADER == Ctx.type);
// Find the implicit argument representing r0 and the private memory base.
Value* r0Val = implicitArgs.getImplicitArgValue(*m_currFunction, ImplicitArg::R0, m_pMdUtils);
Value* privateMemPtr = implicitArgs.getImplicitArgValue(*m_currFunction, ImplicitArg::PRIVATE_BASE, m_pMdUtils);
// Note: for debugging purposes privateMemPtr will be marked as Output to keep its liveness all time
// Resolve the call
// Receives:
// %privateMem = alloca ...
// Create a GEP to get to the right offset from the private memory base implicit arg:
// %simdLaneId16 = call i16 @llvm.gen.simdLaneId()
// %simdLaneId = zext i16 simdLaneId16 to i32
// %simdSize = call i32 @llvm.gen.simdSize()
// %totalPrivateMemPerThread = mul i32 %simdSize, <totalPrivateMemPerWI>
// %r0.5 = extractelement <8 x i32> %r0, i32 5
// %threadId = and i32 %r0.5, 0x1FF|0x3FF (Thread ID is in the lower 9 bits or 10 bit(KBL & CNL+) of r0.5)
// %perThreadOffset = mul i32 %threadId, %totalPrivateMemPerThread
ConstantInt* totalPrivateMemPerWIValue = ConstantInt::get(typeInt32, totalPrivateMemPerWI);
Instruction* simdLaneId16 = entryBuilder.CreateCall(simdLaneIdFunc, llvm::None, VALUE_NAME("simdLaneId16"));
Value* simdLaneId = entryBuilder.CreateIntCast(simdLaneId16, typeInt32, false, VALUE_NAME("simdLaneId"));
Instruction* simdSize = entryBuilder.CreateCall(simdSizeFunc, llvm::None, VALUE_NAME("simdSize"));
Value* totalPrivateMemPerThread = entryBuilder.CreateMul(simdSize, totalPrivateMemPerWIValue, VALUE_NAME("totalPrivateMemPerThread"));
Function* pHWTIDFunc = GenISAIntrinsic::getDeclaration(m_currFunction->getParent(), GenISAIntrinsic::GenISA_hw_thread_id_alloca, Type::getInt32Ty(C));
Value* threadId = entryBuilder.CreateCall(pHWTIDFunc);
if (Ctx.platform.supportTwoStackTSG() && IGC_IS_FLAG_ENABLED(EnableGen11TwoStackTSG))
{
// Gen11 , 2 - stack configuration : (FFTID[9:0] << 1) | FFSID[0]) * scratch_size
Value* shlThreadID = entryBuilder.CreateShl(threadId, ConstantInt::get(typeInt32, 1), VALUE_NAME("shlThreadID"));
// FFSID - r0.0 bit 16
Value* r0_0 = entryBuilder.CreateExtractElement(r0Val, ConstantInt::get(typeInt32, 0), VALUE_NAME("r0.0"));
Value* FFSIDbit = entryBuilder.CreateLShr(r0_0, ConstantInt::get(typeInt32, 16), VALUE_NAME("FFSIDbit"));
Value* FFSID = entryBuilder.CreateAnd(FFSIDbit, ConstantInt::get(typeInt32, 1), VALUE_NAME("FFSID"));
threadId = entryBuilder.CreateOr(FFSID, shlThreadID, VALUE_NAME("threadId"));
}
Value* perThreadOffset = entryBuilder.CreateMul(threadId, totalPrivateMemPerThread, VALUE_NAME("perThreadOffset"));
auto perThreadOffsetInst = dyn_cast_or_null<Instruction>(perThreadOffset);
if (IGC_IS_FLAG_ENABLED(UseOffsetInLocation) &&
(privateOnStack == false) &&
(IGC::ForceAlwaysInline(&Ctx)))
{
IGC_ASSERT_MESSAGE(perThreadOffsetInst, "perThreadOffset will not be marked as Output");
if (perThreadOffsetInst)
{
// Note: for debugging purposes privateMemArg, as well as privateMemArg (aka ImplicitArg::PRIVATE_BASE)
// will be marked as Output to keep its liveness all time
auto perThreadOffsetMD = MDNode::get(entryBuilder.getContext(), nullptr); // ConstantAsMetadata::get(entryBuilder.getInt32(1)));
perThreadOffsetInst->setMetadata("perThreadOffset", perThreadOffsetMD);
}
}
for (auto pAI : allocaInsts)
{
// %bufferOffset = mul i32 %simdSize, <scalarBufferOffset>
// %bufferOffsetForThread = add i32 %perThreadOffset, %bufferOffset
// %perLaneOffset = mul i32 %simdLaneId, <bufferSize>
// %totalOffset = add i32 %bufferOffsetForThread, %perLaneOffset
// %privateBufferGEP = getelementptr i8* %privateBase, i32 %totalOffset
// %privateBuffer = bitcast i8* %offsettmp1 to <buffer type>
IGCLLVM::IRBuilder<> builder(pAI);
builder.SetCurrentDebugLocation(entryDebugLoc);
bool isUniform = pAI->getMetadata("uniform") != nullptr;
// Get buffer information from the analysis
unsigned int scalarBufferOffset = m_ModAllocaInfo->getConstBufferOffset(pAI);
unsigned int bufferSize = m_ModAllocaInfo->getConstBufferSize(pAI);
Value* bufferOffset = builder.CreateMul(simdSize, ConstantInt::get(typeInt32, scalarBufferOffset), VALUE_NAME(pAI->getName() + ".SIMDBufferOffset"));
Value* bufferOffsetForThread = builder.CreateAdd(perThreadOffset, bufferOffset, VALUE_NAME(pAI->getName() + ".bufferOffsetForThread"));
Value* perLaneOffset = isUniform ? builder.getInt32(0) : simdLaneId;
perLaneOffset = builder.CreateMul(perLaneOffset, ConstantInt::get(typeInt32, bufferSize), VALUE_NAME("perLaneOffset"));
Value* totalOffset = builder.CreateAdd(bufferOffsetForThread, perLaneOffset, VALUE_NAME(pAI->getName() + ".totalOffset"));
Value* privateBufferGEP = builder.CreateGEP(privateMemPtr, totalOffset, VALUE_NAME(pAI->getName() + ".privateBufferGEP"));
Value* privateBuffer = builder.CreatePointerCast(privateBufferGEP, pAI->getType(), VALUE_NAME(pAI->getName() + ".privateBuffer"));
auto DbgUses = llvm::FindDbgAddrUses(pAI);
for (auto Use : DbgUses)
{
if (auto DbgDcl = dyn_cast_or_null<DbgDeclareInst>(Use))
{
// Attach metadata to instruction containing offset of storage
auto OffsetMD = MDNode::get(builder.getContext(), ConstantAsMetadata::get(builder.getInt32(scalarBufferOffset)));
DbgDcl->setMetadata("StorageOffset", OffsetMD);
}
}
// Replace all uses of original alloca with the bitcast
Ctx.metrics.UpdateVariable(pAI, privateBuffer);
pAI->replaceAllUsesWith(privateBuffer);
pAI->eraseFromParent();
}
return true;
}
|