File: PrivateMemoryResolution.cpp

package info (click to toggle)
intel-graphics-compiler 1.0.12504.6-1%2Bdeb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 83,912 kB
  • sloc: cpp: 910,147; lisp: 202,655; ansic: 15,197; python: 4,025; yacc: 2,241; lex: 1,570; pascal: 244; sh: 104; makefile: 25
file content (1053 lines) | stat: -rw-r--r-- 47,360 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
/*========================== begin_copyright_notice ============================

Copyright (C) 2017-2021 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

#include "AdaptorCommon/ImplicitArgs.hpp"
#include "AdaptorCommon/RayTracing/RTBuilder.h"
#include "Compiler/Optimizer/OpenCLPasses/PrivateMemory/PrivateMemoryResolution.hpp"
#include "Compiler/ModuleAllocaAnalysis.hpp"
#include "Compiler/Optimizer/OpenCLPasses/KernelArgs.hpp"
#include "Compiler/MetaDataUtilsWrapper.h"
#include "Compiler/IGCPassSupport.h"
#include "Compiler/CISACodeGen/GenCodeGenModule.h"
#include "Compiler/CISACodeGen/LowerGEPForPrivMem.hpp"
#include "llvmWrapper/IR/DerivedTypes.h"
#include "common/LLVMWarningsPush.hpp"
#include "llvmWrapper/IR/DerivedTypes.h"
#include "llvmWrapper/IR/IRBuilder.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/Dominators.h"
#include "common/LLVMWarningsPop.hpp"
#include "Probe/Assertion.h"

using namespace llvm;
using namespace IGC;

namespace IGC {

    /// @brief  PrivateMemoryResolution pass used for resolving private memory alloca instructions.
    ///         This is done by resolving the alloca instructions.
    ///         This pass depends on the PrivateMemoryUsageAnalysis and
    ///         AddImplicitArgs passes running before it.

    class PrivateMemoryResolution : public llvm::ModulePass
    {
    public:
        // Pass identification, replacement for typeid
        static char ID;

        /// @brief  Constructor
        PrivateMemoryResolution();

        /// @brief  Destructor
        ~PrivateMemoryResolution() {}

        /// @brief  Provides name of pass
        virtual llvm::StringRef getPassName() const override
        {
            return "PrivateMemoryResolution";
        }

        /// @brief  Adds the analysis required by this pass
        virtual void getAnalysisUsage(llvm::AnalysisUsage& AU) const override;

        /// @brief  Finds all alloca instructions, replaces them with by an llvm sequences.
        ///         and creates for each function a metadata that represents the total
        ///         amount of private memory needed by each work item.
        /// @param  M The Module to process.
        bool runOnModule(llvm::Module& M) override;

        /// @brief  Resolve collected alloca instructions.
        /// @param privateOnStack: whether the private variables are allocated on the stack
        /// @return true if there were resolved alloca, false otherwise.
        bool resolveAllocaInstructions(bool privateOnStack);

    private:
        struct arrayIndex
        {
            llvm::GetElementPtrInst* gep;
            unsigned int operandIndex;
        };

        static bool testTransposedMemory(const Type* pTmpType, const Type* const pTypeOfAccessedObject, uint64_t tmpAllocaSize, const uint64_t bufferSizeLimit);

        /// @brief  The module level alloca information
        ModuleAllocaAnalysis* m_ModAllocaInfo;

        /// @brief - Metadata API
        IGCMD::MetaDataUtils* m_pMdUtils;

        /// @brief - Current processed function
        llvm::Function* m_currFunction;
    };

    ModulePass* CreatePrivateMemoryResolution()
    {
        return new PrivateMemoryResolution();
    }
} // namespace IGC

// Register pass to igc-opt
#define PASS_FLAG "igc-private-mem-resolution"
#define PASS_DESCRIPTION "Resolves private memory allocation"
#define PASS_CFG_ONLY true
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(PrivateMemoryResolution, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(ModuleAllocaAnalysis)
IGC_INITIALIZE_PASS_END(PrivateMemoryResolution, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)

char PrivateMemoryResolution::ID = 0;

PrivateMemoryResolution::PrivateMemoryResolution() : ModulePass(ID)
{
    initializePrivateMemoryResolutionPass(*PassRegistry::getPassRegistry());
}

void PrivateMemoryResolution::getAnalysisUsage(llvm::AnalysisUsage& AU) const
{
    AU.setPreservesCFG();
    AU.addRequired<MetaDataUtilsWrapper>();
    AU.addRequired<CodeGenContextWrapper>();
    AU.addRequired<llvm::CallGraphWrapperPass>();
    AU.addRequired<ModuleAllocaAnalysis>();
}

bool PrivateMemoryResolution::runOnModule(llvm::Module& M)
{
    // Get the analysis
    m_pMdUtils = getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils();
    auto* FGA = getAnalysisIfAvailable<GenXFunctionGroupAnalysis>();
    bool changed = false;

    ModuleMetaData& modMD = *getAnalysis<MetaDataUtilsWrapper>().getModuleMetaData();

    // This is the only place to initialize and define UseScratchSpacePrivateMemory.
    // we do not use scratch-space if any kernel uses stack-call because,
    // in order to use scratch-space, we change data-layout for the module,
    // change pointer-size of AS-private to 32-bit.
    m_ModAllocaInfo = &getAnalysis<ModuleAllocaAnalysis>();
    bool bRet = m_ModAllocaInfo->safeToUseScratchSpace();
    CodeGenContext& Ctx = *getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
    if (Ctx.platform.hasScratchSurface() && !bRet && Ctx.m_DriverInfo.supportsStatelessSpacePrivateMemory())
    {
        //MinNOSPushConstantSize is only increased ONCE
        const uint32_t dwordSizeInBits = 32;
        modMD.MinNOSPushConstantSize += Ctx.getRegisterPointerSizeInBits(ADDRESS_SPACE_GLOBAL) / dwordSizeInBits; 
    }
    modMD.compOpt.UseScratchSpacePrivateMemory = bRet;

    for (Function& F : M)
    {
        m_currFunction = &F;
        if (m_currFunction->isDeclaration())
        {
            continue;
        }
        if (m_pMdUtils->findFunctionsInfoItem(m_currFunction) ==
            m_pMdUtils->end_FunctionsInfo())
        {
            continue;
        }
        bool hasStackCall = (FGA && FGA->getGroup(m_currFunction) && FGA->getGroup(m_currFunction)->hasStackCall()) || m_currFunction->hasFnAttribute("visaStackCall");
        bool hasVLA = (FGA && FGA->getGroup(m_currFunction) && FGA->getGroup(m_currFunction)->hasVariableLengthAlloca()) || m_currFunction->hasFnAttribute("hasVLA");
        if (Ctx.platform.hasScratchSurface() &&
            modMD.compOpt.UseScratchSpacePrivateMemory)
        {
            // In this case, we could be generating 0-byte offsets for uniform
            // allocas which would manifest as null pointers.  This is because
            // we represent the r0.5 access later on so the pointer appears
            // to be null for downstream passes.  This attribute says that it's
            // okay so those passes wouldn't optimize away null pointer
            // dereferences because they would have otherwise been undefined
            // behavior.
#if LLVM_VERSION_MAJOR <= 10
            F.addFnAttr("null-pointer-is-valid", "true");
#else
            F.addFnAttr(llvm::Attribute::NullPointerIsValid);
#endif
        }
        // Resolve collected alloca instructions for current function
        changed |= resolveAllocaInstructions(hasStackCall || hasVLA);

        // Initialize the stack mem usage per function group to the kernel's privateMemPerWI
        if (isEntryFunc(m_pMdUtils, m_currFunction))
        {
            auto funcMD = modMD.FuncMD.find(m_currFunction);
            if (funcMD != modMD.FuncMD.end())
                modMD.PrivateMemoryPerFG[m_currFunction] = funcMD->second.privateMemoryPerWI;
        }
    }

    if (FGA)
    {
        auto DL = M.getDataLayout();
        auto& CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();

        // lambda to recursively calculate the max private memory usage for each call path
        std::function<uint32_t(Function*)> AnalyzeCGPrivateMemUsage =
            [&AnalyzeCGPrivateMemUsage, &modMD, &CG, &DL, &Ctx, &M](Function* F)->uint32_t
        {
            // Not a valid function, just return 0
            if (!F || F->isDeclaration())
                return 0;

            // No function metadata found, return 0
            auto funcIt = modMD.FuncMD.find(F);
            if (funcIt == modMD.FuncMD.end())
                return 0;

            uint32_t currFuncPrivateMem = (uint32_t)(funcIt->second.privateMemoryPerWI);
            // Add 1 OWORD for FP stack write
            if IGC_IS_FLAG_ENABLED(EnableWriteOldFPToStack)
                currFuncPrivateMem += SIZE_OWORD;

            CallGraphNode* Node = CG[F];

            // Function has recursion, don't search CG further
            if (F->hasFnAttribute("hasRecursion"))
                return currFuncPrivateMem;

            // Reached a leaf, return the private memory used by the current function
            if (Node->empty())
                return currFuncPrivateMem;

            SmallSet<Function*, 16> childFuncs;
            // Collect the list of all direct callees
            for (auto FI = Node->begin(), FE = Node->end(); FI != FE; ++FI)
            {
                if (Function* childF = FI->second->getFunction())
                {
                    childFuncs.insert(childF);
                }
            }

            // Recursively calculate the max private mem usage of all callees
            uint32_t maxSize = 0;
            for (auto childF : childFuncs)
            {
                IGC_ASSERT(childF);
                // As a conservative measure, assume all stackcall args are stored on private memory
                uint32_t argSize = 0;
                for (auto AI = childF->arg_begin(), AE = childF->arg_end(); AI != AE; ++AI)
                {
                    // Argument offsets are also OWORD aligned
                    argSize += iSTD::Align(static_cast<DWORD>(DL.getTypeAllocSize(AI->getType())), SIZE_OWORD);
                }
                // Also do it for return value
                if (!childF->getReturnType()->isVoidTy())
                {
                    argSize += iSTD::Align(static_cast<DWORD>(DL.getTypeAllocSize(childF->getReturnType())), SIZE_OWORD);
                }

                uint32_t size = argSize + AnalyzeCGPrivateMemUsage(childF);
                maxSize = std::max(maxSize, size);
            }
            return currFuncPrivateMem + maxSize;
        };

        // Calculate the max private mem used by each function group
        // by analyzing the call depth. Store this info in the FunctionGroup container.
        // This info is needed in EmitVISAPass to determine how much private memory to allocate
        // per SIMD per thread.
        for (auto GI = FGA->begin(), GE = FGA->end(); GI != GE; ++GI)
        {
            FunctionGroup* FG = *GI;
            Function* pKernel = FG->getHead();
            uint32_t maxPrivateMem = 0;

            if (FG->hasStackCall())
            {
                // Analyze call depth for stack memory required
                maxPrivateMem = AnalyzeCGPrivateMemUsage(pKernel);
            }
            if (FG->hasIndirectCall() || FG->hasRecursion())
            {
                // If indirect calls or recursions exist, add additional 4KB and hope we don't run out.
                maxPrivateMem += (4 * 1024);
            }
            if (FG->hasVariableLengthAlloca())
            {
                // Add another 1KB if there are VLAs
                maxPrivateMem += 1024;
            }
            maxPrivateMem = std::max(maxPrivateMem, Ctx.getPrivateMemoryMinimalSizePerThread());
            maxPrivateMem = std::max(maxPrivateMem, (uint32_t)(IGC_GET_FLAG_VALUE(ForcePerThreadPrivateMemorySize)));

            if (maxPrivateMem > 0)
            {
                modMD.PrivateMemoryPerFG[pKernel] = (unsigned)maxPrivateMem;
            }
        }
    }

    if (changed)
    {
        m_pMdUtils->save(M.getContext());
    }

    return changed;
}

// Sink allocas into its first dominating use if possible. Alloca instructions
// are placed in the first basic block which dominates all other blocks. During
// alloca resolution, all address computations are done in the first block. And
// the address objects are live from the starting point. E.g.
//
//  int i = x;
//  foo(i);
//  int j = y;
//  bar(j);
//
// Variables i, j do not overlap in the source. When i and j are both in
// memory (optimizations disabled), llvm IR looks like
//
// [0] alloca i
// [1] alloca j
// [2] store x into &i
// [3] load i
// [4] foo(i)
// [5] store y into &j
// [6] load j
// [7] bar(j)
// Notice that address &i and &j overlap, [0-4) and [1-7) resp. Sinking allocas
// i and j to their lifetime start alleviates this issue.
//
// [0] alloca i
// [1] store x into &i
// [2] load i
// [3] foo(i)
// [4] alloca j
// [5] store y into &j
// [6] load j
// [7] bar(j)
//
static void sinkAllocas(SmallVectorImpl<AllocaInst*>& Allocas) {
    IGC_ASSERT(false == Allocas.empty());
    DominatorTree DT;
    llvm::LoopInfoBase<llvm::BasicBlock, llvm::Loop> LI;
    bool Calcuated = false;

    // For each alloca, sink it if it has a use that dominates all other uses.
    // This use is called the dominating use.
    for (auto AI : Allocas) {
        if (AI->user_empty())
            continue;

        // If an alloca is used other than in an instruction, skip it.
        bool Skip = false;
        SmallVector<Instruction*, 8> UInsts;
        for (auto U : AI->users()) {
            auto UI = dyn_cast<Instruction>(U);
            //can't sink the alloca in the same BB where a PHI node exists
            //As it will violate the basic block structure, since phi nodes
            //will always be at the beginging of a BB
            if (!UI || isa<PHINode>(UI)) {
                Skip = true;
                break;
            }
            UInsts.push_back(UI);
        }

        if (Skip)
            continue;

        // Compute dominator tree lazily.
        if (!Calcuated) {
            Function* F = AI->getParent()->getParent();
            DT.recalculate(*F);
            LI.releaseMemory();
            LI.analyze(DT);
            Calcuated = true;
        }

        // Find the Nearest Common Denominator for all the uses
        Instruction* DomUse = UInsts[0];
        BasicBlock* DomBB = DomUse->getParent();
        for (unsigned i = 1; i < UInsts.size(); ++i) {
            Instruction* Use = UInsts[i];
            BasicBlock* UseBB = Use->getParent();
            DomBB = DT.findNearestCommonDominator(DomBB, UseBB);
            if (!DomBB) {
                break;
            }
        }

        // Find the nearest Denominator outside loops to prevent multiple allocations
        BasicBlock* CurBB = AI->getParent();
        while (DomBB && DomBB != CurBB && LI.getLoopFor(DomBB) != nullptr)
        {
            DomBB = DT.getNode(DomBB)->getIDom()->getBlock();
        }

        if (DomBB) {
            // If DomBB has a use in it, insert it just before the first use.
            // Otherwise, append it to the end of the block, to reduce register pressure.
            Instruction* InsertPt = DomBB->getTerminator();
            for (Instruction* Use : UInsts) {
                if (DomBB == Use->getParent() && DT.dominates(Use, InsertPt)) {
                    InsertPt = Use;
                }
            }
            AI->moveBefore(InsertPt);
        }
    }
}

static void sinkAllocaSingleUse(SmallVectorImpl<AllocaInst*>& Allocas) {
    IGC_ASSERT(false == Allocas.empty());
    DominatorTree DT;
    bool Calcuated = false;

    // For each alloca's use, sink it if it has a use that dominates all other uses.
    // This use is called the dominating use.
    for (auto AI : Allocas) {
        if (AI->user_empty())
            continue;

        for (auto A : AI->users())
        {
            bool Skip = false;
            SmallVector<Instruction*, 8> UInsts;
            auto UI = dyn_cast<Instruction>(A);
            // can't sink phi nodes to other BBs
            // can't sink loads since we don't check for stores on the way
            if (isa<PHINode>(UI) || UI->mayReadFromMemory())
                continue;

            for (auto U : UI->users()) {
                auto UUI = dyn_cast<Instruction>(U);
                //can't sink the use in the same BB where a PHI node exists
                //As it will violate the basic block structure, since phi nodes
                //will always be at the beginging of a BB
                if (!UUI || isa<PHINode>(UUI)) {
                    Skip = true;
                    break;
                }
                UInsts.push_back(UUI);
            }
            if (Skip || UInsts.size() == 0)
                continue;
            // Compute dominator tree lazily.
            if (!Calcuated) {
                Function* F = AI->getParent()->getParent();
                DT.recalculate(*F);
                Calcuated = true;
            }

            // Find the Nearest Common Denominator for all the uses
            Instruction* DomUse = UInsts[0];
            BasicBlock* DomBB = DomUse->getParent();
            for (unsigned i = 1; i < UInsts.size(); ++i) {
                Instruction* Use = UInsts[i];
                BasicBlock* UseBB = Use->getParent();
                DomBB = DT.findNearestCommonDominator(DomBB, UseBB);
                if (!DomBB) {
                    break;
                }
            }

            if (DomBB) {
                // If DomBB has a use in it, insert it just before the first use.
                // Otherwise, append it to the end of the block, to reduce register pressure.
                Instruction* InsertPt = DomBB->getTerminator();
                for (Instruction* Use : UInsts) {
                    if (DomBB == Use->getParent() && DT.dominates(Use, InsertPt)) {
                        InsertPt = Use;
                    }
                }
                UI->moveBefore(InsertPt);
            }
        }
    }
}

class TransposeHelperPrivateMem : public TransposeHelper
{
public:
    Value* simdSize;
    Value* base;
    unsigned int elementSize;
    bool vectorIO;
    TransposeHelperPrivateMem(Value* b, Value* size, unsigned int eltSize, bool vectorType) : TransposeHelper(vectorType) {
        simdSize = size;
        base = b;
        elementSize = eltSize;
        vectorIO = vectorType;
    }
    void handleLoadInst(LoadInst* pLoad, Value* pScalarizedIdx)
    {
        IGC_ASSERT(nullptr != pLoad);
        IGC_ASSERT(pLoad->isSimple());
        IGCLLVM::IRBuilder<> IRB(pLoad);
        if (isa<Instruction>(pLoad->getPointerOperand()))
        {
            IRB.SetInsertPoint(cast<Instruction>(pLoad->getPointerOperand()));
        }
        Value* eltSize = IRB.getInt32(elementSize);
        Value* stride = IRB.CreateMul(simdSize, eltSize);
        Value* address = IRB.CreateMul(pScalarizedIdx, stride);
        address = IRB.CreateAdd(base, address);
        IRB.SetInsertPoint(pLoad);
        if (!vectorIO && pLoad->getType()->isVectorTy())
        {
            Type* scalarType = pLoad->getPointerOperand()->getType()->getPointerElementType()->getScalarType();
            IGC_ASSERT(nullptr != scalarType);
            Type* scalarptrTy = PointerType::get(scalarType, pLoad->getPointerAddressSpace());
            IGC_ASSERT(scalarType->getPrimitiveSizeInBits() / 8 == elementSize);
            Value* vec = UndefValue::get(pLoad->getType());
            auto pLoadVT = cast<IGCLLVM::FixedVectorType>(pLoad->getType());
            for (unsigned i = 0, e = (unsigned)pLoadVT->getNumElements(); i < e; ++i)
            {
                Value* ptr = IRB.CreateIntToPtr(address, scalarptrTy);
                Value* v = IRB.CreateLoad(ptr);
                vec = IRB.CreateInsertElement(vec, v, IRB.getInt32(i));
                address = IRB.CreateAdd(address, stride);
            }
            pLoad->replaceAllUsesWith(vec);
            pLoad->eraseFromParent();
        }
        else
        {
            Value* ptr = IRB.CreateIntToPtr(address, pLoad->getPointerOperand()->getType());
            pLoad->setOperand(0, ptr);
        }
    }
    void handleStoreInst(StoreInst* pStore, Value* pScalarizedIdx)
    {
        IGC_ASSERT(nullptr != pStore);
        IGC_ASSERT(pStore->isSimple());
        IGCLLVM::IRBuilder<> IRB(pStore);
        if (isa<Instruction>(pStore->getPointerOperand()))
        {
            IRB.SetInsertPoint(cast<Instruction>(pStore->getPointerOperand()));
        }
        Value* eltSize = IRB.getInt32(elementSize);
        Value* stride = IRB.CreateMul(simdSize, eltSize);
        Value* address = IRB.CreateMul(pScalarizedIdx, stride);
        address = IRB.CreateAdd(base, address);
        IRB.SetInsertPoint(pStore);
        if (!vectorIO && pStore->getValueOperand()->getType()->isVectorTy())
        {
            Type* scalarType = pStore->getPointerOperand()->getType()->getPointerElementType()->getScalarType();
            IGC_ASSERT(nullptr != scalarType);
            Type* scalarptrTy = PointerType::get(scalarType, pStore->getPointerAddressSpace());
            IGC_ASSERT(scalarType->getPrimitiveSizeInBits() / 8 == elementSize);
            Value* vec = pStore->getValueOperand();

            unsigned vecNumElts = (unsigned)cast<IGCLLVM::FixedVectorType>(vec->getType())->getNumElements();
            for (unsigned i = 0; i < vecNumElts; ++i)
            {
                Value* ptr = IRB.CreateIntToPtr(address, scalarptrTy);
                IRB.CreateStore(IRB.CreateExtractElement(vec, IRB.getInt32(i)), ptr);
                address = IRB.CreateAdd(address, stride);
            }
            pStore->eraseFromParent();
        }
        else
        {
            Value* ptr = IRB.CreateIntToPtr(address, pStore->getPointerOperand()->getType());
            pStore->setOperand(1, ptr);
        }
    }
    void handleLifetimeMark(IntrinsicInst* inst)
    {
        IGC_ASSERT(nullptr != inst);
        IGC_ASSERT((inst->getIntrinsicID() == llvm::Intrinsic::lifetime_start) ||
            (inst->getIntrinsicID() == llvm::Intrinsic::lifetime_end));
        inst->eraseFromParent();
    }
};

bool PrivateMemoryResolution::testTransposedMemory(const Type* pTmpType, const Type* const pTypeOfAccessedObject, uint64_t tmpAllocaSize, const uint64_t bufferSizeLimit)
{
    // verify that the size of transposed memory fits into the allocated scratch region

    bool ok = true;

    if(ok)
    {
        ok = (nullptr != pTmpType);
        IGC_ASSERT(ok);
    }

    if(ok)
    {
        ok = (nullptr != pTypeOfAccessedObject);
        IGC_ASSERT(ok);
    }

    if(ok)
    {
        ok = (0 < tmpAllocaSize);
        IGC_ASSERT(ok);
    }

    if(ok)
    {
        ok = (tmpAllocaSize <= bufferSizeLimit);
        IGC_ASSERT(ok);
    }

    while(ok && (pTypeOfAccessedObject != pTmpType))
    {
        if(pTmpType->isStructTy() && (pTmpType->getStructNumElements() == 1))
        {
            pTmpType = pTmpType->getStructElementType(0);
            ok = (nullptr != pTmpType);
            IGC_ASSERT(ok);
        }
        else if(pTmpType->isArrayTy())
        {
            tmpAllocaSize *= pTmpType->getArrayNumElements();
            pTmpType = pTmpType->getContainedType(0);
            ok = (nullptr != pTmpType);
            IGC_ASSERT(ok);
        }
        else if(pTmpType->isVectorTy())
        {
            auto pTmpVType = cast<IGCLLVM::FixedVectorType>(pTmpType);
            tmpAllocaSize *= pTmpVType->getNumElements();
            pTmpType = pTmpType->getContainedType(0);
            ok = (nullptr != pTmpType);
            IGC_ASSERT(ok);
        }
        else
        {
            // unsupported type for memory transposition
            ok = false;
            IGC_ASSERT(ok);
        }
    }

    if(ok)
    {
        ok = (0 < tmpAllocaSize);
        IGC_ASSERT(ok);
    }

    if(ok)
    {
        ok = (tmpAllocaSize <= bufferSizeLimit);
        IGC_ASSERT(ok);
    }

    return ok;
}

bool PrivateMemoryResolution::resolveAllocaInstructions(bool privateOnStack)
{
    CodeGenContext& Ctx = *getAnalysis<CodeGenContextWrapper>().getCodeGenContext();

    // It is possible that there is no alloca instruction in the caller but there
    // is alloca in the callee. Save the total private memory to the metadata.
    unsigned int totalPrivateMemPerWI = m_ModAllocaInfo->getTotalPrivateMemPerWI(m_currFunction);

    // This change is only till the FuncMD is ported to new MD framework
    ModuleMetaData* const modMD = getAnalysis<MetaDataUtilsWrapper>().getModuleMetaData();
    IGC_ASSERT(nullptr != modMD);
    if (modMD->compOpt.UseScratchSpacePrivateMemory == false &&
        Ctx.m_DriverInfo.supportsStatelessSpacePrivateMemory() &&
        Ctx.m_DriverInfo.requiresPowerOfTwoStatelessSpacePrivateMemorySize())
    {
        totalPrivateMemPerWI = iSTD::RoundPower2(static_cast<DWORD>(totalPrivateMemPerWI));
    }
    modMD->FuncMD[m_currFunction].privateMemoryPerWI = totalPrivateMemPerWI;
    modMD->privateMemoryPerWI = totalPrivateMemPerWI;//redundant ?

    SmallVector<AllocaInst*, 8> & allocaInsts = m_ModAllocaInfo->getAllocaInsts(m_currFunction);
    if (allocaInsts.empty())
    {
        // No alloca instructions to process.
        return false;
    }

    if (Ctx.m_instrTypes.numAllocaInsts > IGC_GET_FLAG_VALUE(AllocaRAPressureThreshold))
    {
        sinkAllocaSingleUse(allocaInsts);
    }
    sinkAllocas(allocaInsts);

    // If there are N+1 private buffers, and M+1 threads,
    // the layout representing the private memory will look like this:

    // [buffer0 thread0][buffer1 thread0]...[bufferN thread0]
    // [buffer0 thread1][buffer1 thread1]...[bufferN thread1]
    // ...
    // [buffer0 threadM][buffer1 threadM]...[bufferN threadM]
    // Note that for each thread, all SIMD lanes of the same buffers are
    // laid out sequentially to preserve locality.
    // So, in fact, [buffer0 thread0] represents
    // [buffer0 lane0][buffer0 lane1]...[buffer0 laneK]
    // where the SIMD width is K-1.

    // Each row represent total private memory per thread

    // To get buffer i of thread j we need to calculate:
    // {buffer i ptr} = privateBase +
    //                  threadId * {total private mem per thread} +
    //                  {buffer offset} +
    //                  {per lane offset}

    // Where:
    // privateBase                      = implicit argument, points to [buffer0 thread0]
    // {total private mem per thread}   = simdSize * {total private mem per WI}
    // {buffer offset}                  = simdSize * {buffer i offset per WI}
    // {per lane offset}                = simdLaneId * sizeof(buffer i)

    // simdSize and simdOffsetBase are calculated using intrinsics that are planted in this pass
    // and resolved in the code gen

    LLVMContext& C = m_currFunction->getContext();

    IntegerType* typeInt32 = Type::getInt32Ty(C);
    // Creates intrinsics that will be lowered in the CodeGen and will handle the simd lane id
    Function* simdLaneIdFunc = GenISAIntrinsic::getDeclaration(m_currFunction->getParent(), GenISAIntrinsic::GenISA_simdLaneId);
    // Creates intrinsics that will be lowered in the CodeGen and will handle the simd size
    Function* simdSizeFunc = GenISAIntrinsic::getDeclaration(m_currFunction->getParent(), GenISAIntrinsic::GenISA_simdSize);

    IGCLLVM::IRBuilder<> entryBuilder(&*m_currFunction->getEntryBlock().getFirstInsertionPt());
    ImplicitArgs implicitArgs(*m_currFunction, m_pMdUtils);

    // Construct an empty DebugLoc.
    DebugLoc entryDebugLoc;
    entryBuilder.SetCurrentDebugLocation(entryDebugLoc);

    if (privateOnStack)
    {
        // Creates intrinsics that will be lowered in the CodeGen and will handle the stack-pointer
        Instruction* simdLaneId16 = entryBuilder.CreateCall(simdLaneIdFunc, llvm::None, VALUE_NAME("simdLaneId16"));
        Value* simdLaneId = entryBuilder.CreateIntCast(simdLaneId16, typeInt32, false, VALUE_NAME("simdLaneId"));
        Instruction* simdSize = entryBuilder.CreateCall(simdSizeFunc, llvm::None, VALUE_NAME("simdSize"));
        for (auto pAI : allocaInsts)
        {
            bool isUniform = pAI->getMetadata("uniform") != nullptr;
            IGCLLVM::IRBuilder<> builder(pAI);
            builder.SetCurrentDebugLocation(entryDebugLoc);

            // buffer of this private var
            Value* privateBuffer = nullptr;
            if (!isa<ConstantInt>(pAI->getArraySize()))
            {
                // vla array must be AOS layout on stack
                Value* increment = isUniform ? builder.getInt32(0) : simdLaneId;
                // truncate alloca size to i32
                Value* arraySize = builder.CreateTrunc(pAI->getArraySize(), increment->getType(), VALUE_NAME("TruncVLASize"));
                Value* sizeWithType = builder.CreateMul(arraySize,
                    builder.getInt32(static_cast<uint32_t>(m_currFunction->getParent()->getDataLayout().getTypeAllocSize(pAI->getAllocatedType()))),
                    VALUE_NAME("VLASizeWithType"));
                Value* perLaneOffset = builder.CreateMul(increment, sizeWithType, VALUE_NAME("VLAPerLaneOffset"));
                // Create VLAStackAlloca intrinsic which will set private buffer offset to "SP + laneOffset",
                // and set SP to "SP + buffer_size" in visa emitPass
                Value* intrinArgs[] = { perLaneOffset, sizeWithType };
                Function* stackAllocaFunc = GenISAIntrinsic::getDeclaration(m_currFunction->getParent(), GenISAIntrinsic::GenISA_VLAStackAlloca);
                Value* stackAlloca = builder.CreateCall(stackAllocaFunc, intrinArgs , VALUE_NAME("VLAStackAlloca"));
                privateBuffer = builder.CreatePointerCast(stackAlloca, pAI->getType(), VALUE_NAME(pAI->getName() + ".privateBuffer"));
            }
            else
            {
                int scalarBufferOffset = m_ModAllocaInfo->getConstBufferOffset(pAI);
                unsigned int bufferSize = m_ModAllocaInfo->getConstBufferSize(pAI);

                Value* bufferOffset = builder.CreateMul(simdSize, ConstantInt::get(typeInt32, scalarBufferOffset), VALUE_NAME(pAI->getName() + ".SIMDBufferOffset"));
                Value* increment = isUniform ? builder.getInt32(0) : simdLaneId;
                Value* perLaneOffset = builder.CreateMul(increment, ConstantInt::get(typeInt32, bufferSize), VALUE_NAME("perLaneOffset"));
                Value* totalOffset = builder.CreateAdd(bufferOffset, perLaneOffset, VALUE_NAME(pAI->getName() + ".totalOffset"));
                Function* stackAllocaFunc = GenISAIntrinsic::getDeclaration(m_currFunction->getParent(), GenISAIntrinsic::GenISA_StackAlloca);
                Value* stackAlloca = builder.CreateCall(stackAllocaFunc, totalOffset, VALUE_NAME("stackAlloca"));
                privateBuffer = builder.CreatePointerCast(stackAlloca, pAI->getType(), VALUE_NAME(pAI->getName() + ".privateBuffer"));
                auto DbgUses = llvm::FindDbgAddrUses(pAI);
                for (auto Use : DbgUses)
                {
                    if (auto DbgDcl = dyn_cast_or_null<DbgDeclareInst>(Use))
                    {
                        // Attach metadata to instruction containing offset of storage
                        auto OffsetMD = MDNode::get(builder.getContext(), ConstantAsMetadata::get(builder.getInt32(scalarBufferOffset)));
                        DbgDcl->setMetadata("StorageOffset", OffsetMD);
                        if (IGC_IS_FLAG_ENABLED(UseOffsetInLocation))
                        {
                            auto SizeMD = MDNode::get(builder.getContext(), ConstantAsMetadata::get(builder.getInt32(bufferSize)));
                            DbgDcl->setMetadata("StorageSize", SizeMD);
                        }
                    }
                }
            }
            Ctx.metrics.UpdateVariable(pAI, privateBuffer);
            // Replace all uses of original alloca with the bitcast
            pAI->replaceAllUsesWith(privateBuffer);
            pAI->eraseFromParent();
        }
        return true;
    }

    // What is the size limit of this scratch memory? If we use >= 128 KB for private data, then we have
    // no space left for later spilling.
    bool useStateless = false;

    if (Ctx.type != ShaderType::OPENCL_SHADER && Ctx.platform.hasScratchSurface()) {
        useStateless = Ctx.m_DriverInfo.supportsStatelessSpacePrivateMemory();
    }

    //NOTE: Below if block logic is used either for SSS RW or non-OCL stateless RW
    if (modMD && (modMD->compOpt.UseScratchSpacePrivateMemory || useStateless)) {
        // We want to use this pass to lower alloca instruction
        // to remove some redundant instruction caused by alloca. For original approach,
        // different threads use the same private base. While for this approach, each
        // thread has its own private base, so we don't have to calculate the
        // private base from threadid as we did previously.  In this case, we only need
        // PrivateMemoryUsageAnalysis pass, no need to run AddImplicitArgs pass.

        Instruction* simdLaneId16 = entryBuilder.CreateCall(simdLaneIdFunc, llvm::None, VALUE_NAME("simdLaneId16"));
        Value* simdLaneId = entryBuilder.CreateIntCast(simdLaneId16, typeInt32, false, VALUE_NAME("simdLaneId"));
        Instruction* simdSize = entryBuilder.CreateCall(simdSizeFunc, llvm::None, VALUE_NAME("simdSize"));

        Value* privateBase = nullptr;
        ADDRESS_SPACE scratchMemoryAddressSpace = ADDRESS_SPACE_PRIVATE;
        if (modMD->compOpt.UseScratchSpacePrivateMemory)
        {
            if (Ctx.platform.hasScratchSurface())
            {
                // when we use per-thread scratch-surface with SSH bindless
                // R0_5[32:10] is the offset of the surface-state for scratch
                // surface slot#0, NOT the offset into the surface.
                privateBase = entryBuilder.getInt32(0);
            }
            else
            {   // the old mechanism
                Value* r0Val = implicitArgs.getImplicitArgValue(*m_currFunction, ImplicitArg::R0, m_pMdUtils);
                Value* r0_5 = entryBuilder.CreateExtractElement(r0Val, ConstantInt::get(typeInt32, 5), VALUE_NAME("r0.5"));
                privateBase = entryBuilder.CreateAnd(r0_5, ConstantInt::get(typeInt32, 0xFFFFFC00), VALUE_NAME("privateBase"));
            }
        }
        else
        {
            scratchMemoryAddressSpace = ADDRESS_SPACE_GLOBAL;
            modMD->compOpt.UseStatelessforPrivateMemory = true;

            const uint32_t dwordSizeInBits = 32;
            const uint32_t pointerSizeInDwords = Ctx.getRegisterPointerSizeInBits(scratchMemoryAddressSpace) / dwordSizeInBits;
            IGC_ASSERT(pointerSizeInDwords <= 2);
            llvm::Type* resultType = entryBuilder.getInt32Ty();
            if (pointerSizeInDwords > 1)
            {
                resultType = IGCLLVM::FixedVectorType::get(resultType, 2);
            }
            if (Ctx.type == ShaderType::RAYTRACING_SHADER)
            {
                RTBuilder rtBuilder(m_currFunction->getContext(), Ctx);
                rtBuilder.SetInsertPoint(entryBuilder.GetInsertBlock(), entryBuilder.GetInsertPoint());
                privateBase = rtBuilder.getStatelessScratchPtr();
                entryBuilder.SetInsertPoint(rtBuilder.GetInsertBlock(), rtBuilder.GetInsertPoint());
            }
            else
            {
                Function* pFunc = GenISAIntrinsic::getDeclaration(
                    m_currFunction->getParent(),
                    GenISAIntrinsic::GenISA_RuntimeValue,
                    resultType);
                privateBase = entryBuilder.CreateCall(pFunc, entryBuilder.getInt32(modMD->MinNOSPushConstantSize - pointerSizeInDwords));
            }
            if (privateBase->getType()->isVectorTy())
            {
                privateBase = entryBuilder.CreateBitCast(privateBase, entryBuilder.getInt64Ty());
            }

            ConstantInt* totalPrivateMemPerWIValue = ConstantInt::get(typeInt32, totalPrivateMemPerWI);
            Value* totalPrivateMemPerThread = entryBuilder.CreateMul(simdSize, totalPrivateMemPerWIValue, VALUE_NAME("totalPrivateMemPerThread"));

            Function* pHWTIDFunc = GenISAIntrinsic::getDeclaration(m_currFunction->getParent(), GenISAIntrinsic::GenISA_hw_thread_id_alloca, Type::getInt32Ty(C));
            llvm::Value* threadId = entryBuilder.CreateCall(pHWTIDFunc);
            llvm::Value* perThreadOffset = entryBuilder.CreateMul(threadId, totalPrivateMemPerThread, VALUE_NAME("perThreadOffset"));
            perThreadOffset = entryBuilder.CreateZExt(perThreadOffset, privateBase->getType());
            privateBase = entryBuilder.CreateAdd(privateBase, perThreadOffset);
        }

        for (auto pAI : allocaInsts)
        {
            bool isUniform = pAI->getMetadata("uniform") != nullptr;
            IGCLLVM::IRBuilder<> builder(pAI);
            // Post upgrade to LLVM 3.5.1, it was found that inliner propagates debug info of callee
            // in to the alloca. Further, those allocas are somehow hoisted to the top of program.
            // When those allocas are lowered to below sequence, they result in prologue instructions
            // pointing to a much later line of code. This causes a single src line to now have
            // multiple VISA offset mappings and prevents debugger from setting breakpoints
            // correctly. So instead, we set DebugLoc for the instructions generated by lowering
            // alloca to mark that they are part of the prologue.
            // Note: As per Amjad, later LLVM version has a fix for this in llvm/lib/Transforms/Utils/InlineFunction.cpp.
            builder.SetCurrentDebugLocation(pAI->getDebugLoc());

            // Get buffer information from the analysis
            unsigned int scalarBufferOffset = m_ModAllocaInfo->getConstBufferOffset(pAI);
            // If we can use SOA layout transpose the memory
            Type* pTypeOfAccessedObject = nullptr;

            // TransposeMemLayout is not prepared to work on 64-bit pointers (originally, the private address space is expressed by 32-bit pointers).
            // Address space casting
            bool TransposeMemLayout =
                ADDRESS_SPACE_PRIVATE == scratchMemoryAddressSpace &&
                CanUseSOALayout(pAI, pTypeOfAccessedObject);

            unsigned int bufferSize = 0;
            if (TransposeMemLayout)
            {
                auto DL = &m_currFunction->getParent()->getDataLayout();
                bufferSize = (unsigned)DL->getTypeAllocSize(pTypeOfAccessedObject);
                IGC_ASSERT(testTransposedMemory((pAI->getType()->getPointerElementType()), pTypeOfAccessedObject, bufferSize, (m_ModAllocaInfo->getConstBufferSize(pAI))));
            }
            else
            {
                bufferSize = m_ModAllocaInfo->getConstBufferSize(pAI);
            }

            Value* bufferOffset = builder.CreateMul(simdSize, ConstantInt::get(typeInt32, scalarBufferOffset), VALUE_NAME(pAI->getName() + ".SIMDBufferOffset"));
            Value* perLaneOffset = isUniform ? builder.getInt32(0) : simdLaneId;
            perLaneOffset = builder.CreateMul(perLaneOffset, ConstantInt::get(typeInt32, bufferSize), VALUE_NAME("perLaneOffset"));
            Value* totalOffset = builder.CreateAdd(bufferOffset, perLaneOffset, VALUE_NAME(pAI->getName() + ".totalOffset"));
            totalOffset = builder.CreateZExt(totalOffset, privateBase->getType());
            Value* threadOffset = builder.CreateAdd(privateBase, totalOffset, VALUE_NAME(pAI->getName() + ".threadOffset"));
            Value* privateBufferPTR = builder.CreateIntToPtr(threadOffset, pAI->getAllocatedType()->getPointerTo(scratchMemoryAddressSpace), VALUE_NAME(pAI->getName() + ".privateBufferPTR"));
            Value* privateBuffer = builder.CreatePointerCast(privateBufferPTR, pAI->getType(), VALUE_NAME(pAI->getName() + ".privateBuffer"));

            if (TransposeMemLayout)
            {
                TransposeHelperPrivateMem helper(threadOffset, simdSize, bufferSize, pTypeOfAccessedObject->isVectorTy());
                Value* Idx = builder.getInt32(0);
                helper.HandleAllocaSources(pAI, Idx);
                helper.EraseDeadCode();
            }

            // Replace all uses of original alloca with the bitcast
            Ctx.metrics.UpdateVariable(pAI, privateBuffer);
            pAI->replaceAllUsesWith(privateBuffer);
            pAI->eraseFromParent();

            if (scratchMemoryAddressSpace == ADDRESS_SPACE_GLOBAL)
            {
                // Fix address space in uses of privateBufferPTR, ADDRESS_SPACE_PRIVATE => ADDRESS_SPACE_GLOBAL
                FixAddressSpaceInAllUses(privateBufferPTR, ADDRESS_SPACE_GLOBAL, ADDRESS_SPACE_PRIVATE);
                Ctx.metrics.UpdateVariable(privateBuffer, privateBufferPTR);
                privateBuffer->replaceAllUsesWith(privateBufferPTR);
                if (Instruction* inst = dyn_cast<Instruction>(privateBuffer))
                {
                    inst->eraseFromParent();
                }
            }
        }

        return true;
    }

    // Only OCL is supposed to reach here.
    IGC_ASSERT_EXIT(ShaderType::OPENCL_SHADER == Ctx.type);

    // Find the implicit argument representing r0 and the private memory base.
    Value* r0Val = implicitArgs.getImplicitArgValue(*m_currFunction, ImplicitArg::R0, m_pMdUtils);
    Value* privateMemPtr = implicitArgs.getImplicitArgValue(*m_currFunction, ImplicitArg::PRIVATE_BASE, m_pMdUtils);
    // Note: for debugging purposes privateMemPtr will be marked as Output to keep its liveness all time

    // Resolve the call

    // Receives:
    // %privateMem = alloca ...

    // Create a GEP to get to the right offset from the private memory base implicit arg:

    // %simdLaneId16                = call i16 @llvm.gen.simdLaneId()
    // %simdLaneId                  = zext i16 simdLaneId16 to i32
    // %simdSize                    = call i32 @llvm.gen.simdSize()
    // %totalPrivateMemPerThread    = mul i32 %simdSize, <totalPrivateMemPerWI>

    // %r0.5                        = extractelement <8 x i32> %r0, i32 5
    // %threadId                    = and i32 %r0.5, 0x1FF|0x3FF   (Thread ID is in the lower 9 bits or 10 bit(KBL & CNL+) of r0.5)
    // %perThreadOffset             = mul i32 %threadId, %totalPrivateMemPerThread

    ConstantInt* totalPrivateMemPerWIValue = ConstantInt::get(typeInt32, totalPrivateMemPerWI);

    Instruction* simdLaneId16 = entryBuilder.CreateCall(simdLaneIdFunc, llvm::None, VALUE_NAME("simdLaneId16"));
    Value* simdLaneId = entryBuilder.CreateIntCast(simdLaneId16, typeInt32, false, VALUE_NAME("simdLaneId"));
    Instruction* simdSize = entryBuilder.CreateCall(simdSizeFunc, llvm::None, VALUE_NAME("simdSize"));
    Value* totalPrivateMemPerThread = entryBuilder.CreateMul(simdSize, totalPrivateMemPerWIValue, VALUE_NAME("totalPrivateMemPerThread"));

    Function* pHWTIDFunc = GenISAIntrinsic::getDeclaration(m_currFunction->getParent(), GenISAIntrinsic::GenISA_hw_thread_id_alloca, Type::getInt32Ty(C));
    Value* threadId = entryBuilder.CreateCall(pHWTIDFunc);

    if (Ctx.platform.supportTwoStackTSG() && IGC_IS_FLAG_ENABLED(EnableGen11TwoStackTSG))
    {
        // Gen11 , 2 - stack configuration : (FFTID[9:0] << 1) | FFSID[0]) * scratch_size
        Value* shlThreadID = entryBuilder.CreateShl(threadId, ConstantInt::get(typeInt32, 1), VALUE_NAME("shlThreadID"));

        // FFSID - r0.0 bit 16
        Value* r0_0 = entryBuilder.CreateExtractElement(r0Val, ConstantInt::get(typeInt32, 0), VALUE_NAME("r0.0"));
        Value* FFSIDbit = entryBuilder.CreateLShr(r0_0, ConstantInt::get(typeInt32, 16), VALUE_NAME("FFSIDbit"));
        Value* FFSID = entryBuilder.CreateAnd(FFSIDbit, ConstantInt::get(typeInt32, 1), VALUE_NAME("FFSID"));

        threadId = entryBuilder.CreateOr(FFSID, shlThreadID, VALUE_NAME("threadId"));
    }

    Value* perThreadOffset = entryBuilder.CreateMul(threadId, totalPrivateMemPerThread, VALUE_NAME("perThreadOffset"));
    auto perThreadOffsetInst = dyn_cast_or_null<Instruction>(perThreadOffset);

    if (IGC_IS_FLAG_ENABLED(UseOffsetInLocation) &&
        (privateOnStack == false) &&
        (IGC::ForceAlwaysInline(&Ctx)))
    {
        IGC_ASSERT_MESSAGE(perThreadOffsetInst, "perThreadOffset will not be marked as Output");
        if (perThreadOffsetInst)
        {
            // Note: for debugging purposes privateMemArg, as well as privateMemArg (aka ImplicitArg::PRIVATE_BASE)
            // will be marked as Output to keep its liveness all time
            auto perThreadOffsetMD = MDNode::get(entryBuilder.getContext(), nullptr); // ConstantAsMetadata::get(entryBuilder.getInt32(1)));
            perThreadOffsetInst->setMetadata("perThreadOffset", perThreadOffsetMD);
        }
    }

    for (auto pAI : allocaInsts)
    {
        // %bufferOffset                = mul i32 %simdSize, <scalarBufferOffset>
        // %bufferOffsetForThread       = add i32 %perThreadOffset, %bufferOffset
        // %perLaneOffset               = mul i32 %simdLaneId, <bufferSize>
        // %totalOffset                 = add i32 %bufferOffsetForThread, %perLaneOffset
        // %privateBufferGEP            = getelementptr i8* %privateBase, i32 %totalOffset
        // %privateBuffer               = bitcast i8* %offsettmp1 to <buffer type>

        IGCLLVM::IRBuilder<> builder(pAI);
        builder.SetCurrentDebugLocation(entryDebugLoc);
        bool isUniform = pAI->getMetadata("uniform") != nullptr;
        // Get buffer information from the analysis
        unsigned int scalarBufferOffset = m_ModAllocaInfo->getConstBufferOffset(pAI);
        unsigned int bufferSize = m_ModAllocaInfo->getConstBufferSize(pAI);

        Value* bufferOffset = builder.CreateMul(simdSize, ConstantInt::get(typeInt32, scalarBufferOffset), VALUE_NAME(pAI->getName() + ".SIMDBufferOffset"));
        Value* bufferOffsetForThread = builder.CreateAdd(perThreadOffset, bufferOffset, VALUE_NAME(pAI->getName() + ".bufferOffsetForThread"));
        Value* perLaneOffset = isUniform ? builder.getInt32(0) : simdLaneId;
        perLaneOffset = builder.CreateMul(perLaneOffset, ConstantInt::get(typeInt32, bufferSize), VALUE_NAME("perLaneOffset"));
        Value* totalOffset = builder.CreateAdd(bufferOffsetForThread, perLaneOffset, VALUE_NAME(pAI->getName() + ".totalOffset"));
        Value* privateBufferGEP = builder.CreateGEP(privateMemPtr, totalOffset, VALUE_NAME(pAI->getName() + ".privateBufferGEP"));
        Value* privateBuffer = builder.CreatePointerCast(privateBufferGEP, pAI->getType(), VALUE_NAME(pAI->getName() + ".privateBuffer"));

        auto DbgUses = llvm::FindDbgAddrUses(pAI);
        for (auto Use : DbgUses)
        {
            if (auto DbgDcl = dyn_cast_or_null<DbgDeclareInst>(Use))
            {
                // Attach metadata to instruction containing offset of storage
                auto OffsetMD = MDNode::get(builder.getContext(), ConstantAsMetadata::get(builder.getInt32(scalarBufferOffset)));
                DbgDcl->setMetadata("StorageOffset", OffsetMD);
            }
        }

        // Replace all uses of original alloca with the bitcast
        Ctx.metrics.UpdateVariable(pAI, privateBuffer);
        pAI->replaceAllUsesWith(privateBuffer);
        pAI->eraseFromParent();
    }

    return true;
}