File: ProgramScopeConstantAnalysis.cpp

package info (click to toggle)
intel-graphics-compiler 1.0.12504.6-1%2Bdeb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 83,912 kB
  • sloc: cpp: 910,147; lisp: 202,655; ansic: 15,197; python: 4,025; yacc: 2,241; lex: 1,570; pascal: 244; sh: 104; makefile: 25
file content (628 lines) | stat: -rw-r--r-- 27,283 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
/*========================== begin_copyright_notice ============================

Copyright (C) 2017-2021 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

#include "AdaptorCommon/ImplicitArgs.hpp"
#include "AdaptorCommon/AddImplicitArgs.hpp"
#include "Compiler/Optimizer/OpenCLPasses/ProgramScopeConstants/ProgramScopeConstantAnalysis.hpp"
#include "Compiler/IGCPassSupport.h"
#include "common/LLVMWarningsPush.hpp"
#include <llvm/IR/Module.h>
#include <llvm/IR/Function.h>
#include <llvm/Analysis/ValueTracking.h>
#include "common/LLVMWarningsPop.hpp"
#include "Probe/Assertion.h"

using namespace llvm;
using namespace IGC;
using namespace IGC::IGCMD;

// Register pass to igc-opt
#define PASS_FLAG "igc-programscope-constant-analysis"
#define PASS_DESCRIPTION "Creates annotations for OpenCL program-scope structures"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(ProgramScopeConstantAnalysis, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
IGC_INITIALIZE_PASS_END(ProgramScopeConstantAnalysis, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)

char ProgramScopeConstantAnalysis::ID = 0;

ProgramScopeConstantAnalysis::ProgramScopeConstantAnalysis() : ModulePass(ID)
{
    initializeProgramScopeConstantAnalysisPass(*PassRegistry::getPassRegistry());
}

bool ProgramScopeConstantAnalysis::runOnModule(Module& M)
{
    bool hasInlineConstantBuffer = false;
    bool hasInlineGlobalBuffer = false;

    BufferOffsetMap inlineProgramScopeOffsets;

    // maintains pointer information so we can patch in
    // actual pointer addresses in runtime.
    PointerOffsetInfoList pointerOffsetInfoList;

    LLVMContext& C = M.getContext();
    m_DL = &M.getDataLayout();

    auto Ctx = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
    MetaDataUtils* mdUtils = getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils();
    m_pModuleMd = getAnalysis<MetaDataUtilsWrapper>().getModuleMetaData();

    SmallVector<GlobalVariable*, 32> zeroInitializedGlobals;

    for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I)
    {
        GlobalVariable* globalVar = &(*I);

        PointerType* const ptrType = cast<PointerType>(globalVar->getType());
        IGC_ASSERT_MESSAGE(nullptr != ptrType, "The type of a global variable must be a pointer type");

        // Pointer's address space should be either constant or global
        // The ?: is a workaround for clang bug, clang creates string constants with private address sapce!
        // When clang bug is fixed it should become:
        // const unsigned AS = ptrType->getAddressSpace();
        const unsigned AS = ptrType->getAddressSpace() != ADDRESS_SPACE_PRIVATE ? ptrType->getAddressSpace() : ADDRESS_SPACE_CONSTANT;

        if (ptrType->getAddressSpace() == ADDRESS_SPACE_PRIVATE)
        {
            Ctx->m_hasGlobalInPrivateAddressSpace = true;
        }

        // local address space variables are also generated as GlobalVariables.
        // Ignore them here.
        if (AS == ADDRESS_SPACE_LOCAL)
        {
            continue;
        }

        if (AS != ADDRESS_SPACE_CONSTANT &&
            AS != ADDRESS_SPACE_GLOBAL)
        {
            IGC_ASSERT_MESSAGE(0, "program scope variable with unexpected address space");
            continue;
        }

        // Handle external symbols without initializers.
        if (!globalVar->hasInitializer())
        {
            // Ignore const samplers, in case of const samplers offset is used
            // to encode sampler ID.
            if (globalVar->getMetadata("ConstSampler"))
            {
                continue;
            }
            // Include the variable in 'inlineProgramScopeOffsets', otherwise
            // code gen will not emit relocation. In case of S_UNDEF/extenal
            // variable offset is not expected to be used. Using -1 as a
            // placeholder so the unexpected usage will fail visibly when
            // trying to emit variable with 0xffffffff offset
            inlineProgramScopeOffsets[globalVar] = -1;
            continue;
        }

        // The only way to get a null initializer is via an external variable.
        // Linking has already occurred; everything should be resolved or
        // handled before this point.
        Constant* initializer = globalVar->getInitializer();
        if (!initializer)
        {
            continue;
        }

        // If this variable isn't used, don't add it to the buffer.
        if (globalVar->use_empty())
        {
            // If compiler requests global symbol for external/common linkage, add it reguardless if it is used
            bool requireGlobalSymbol = Ctx->enableTakeGlobalAddress() &&
                (globalVar->hasCommonLinkage() || globalVar->hasExternalLinkage());

            if (!requireGlobalSymbol)
                continue;
        }

        DataVector* inlineProgramScopeBuffer = nullptr;
        if (AS == ADDRESS_SPACE_GLOBAL)
        {
            if (!hasInlineGlobalBuffer)
            {
                InlineProgramScopeBuffer ilpsb;
                ilpsb.alignment = 0;
                ilpsb.allocSize = 0;
                m_pModuleMd->inlineGlobalBuffers.push_back(ilpsb);
                hasInlineGlobalBuffer = true;
            }
            inlineProgramScopeBuffer = &m_pModuleMd->inlineGlobalBuffers.back().Buffer;

        }
        else
        {
            if (!hasInlineConstantBuffer)
            {
                // General constants
                InlineProgramScopeBuffer ilpsb;
                ilpsb.alignment = 0;
                ilpsb.allocSize = 0;
                m_pModuleMd->inlineConstantBuffers.push_back(ilpsb);

                // String literals
                InlineProgramScopeBuffer ilpsbString;
                ilpsbString.alignment = 0;
                ilpsbString.allocSize = 0;
                m_pModuleMd->inlineConstantBuffers.push_back(ilpsbString);
                hasInlineConstantBuffer = true;
            }

            // When ZeBin is enabled, constant variables that are string literals
            // will be stored in the second const buffer
            ConstantDataSequential* cds = dyn_cast<ConstantDataSequential>(initializer);
            bool isStringConst = cds && (cds->isCString() || cds->isString());
            if (IGC_IS_FLAG_ENABLED(EnableZEBinary) && isStringConst)
            {
                inlineProgramScopeBuffer = &m_pModuleMd->inlineConstantBuffers[1].Buffer;
            }
            else
            {
                inlineProgramScopeBuffer = &m_pModuleMd->inlineConstantBuffers[0].Buffer;
            }
        }

        if (initializer->isZeroValue())
        {
            // For zero initialized values, we dont need to copy the data, just tell driver how much to allocate
            // However, if it's used as a pointer value, we need to do patching and therefore cannot defer the offset calculation
            bool hasPointerUser = false;
            for (auto UI : globalVar->users())
            {
                if (isa<Constant>(UI) && UI->getType()->isPointerTy())
                {
                    hasPointerUser = true;
                    break;
                }
            }
            if (!hasPointerUser)
            {
                zeroInitializedGlobals.push_back(globalVar);
                continue;
            }
        }

        // Align the buffer.
        if (inlineProgramScopeBuffer->size() != 0)
        {
#if LLVM_VERSION_MAJOR < 11
            alignBuffer(*inlineProgramScopeBuffer, m_DL->getPreferredAlignment(globalVar));
#else
            alignBuffer(*inlineProgramScopeBuffer, (unsigned int)m_DL->getPreferredAlign(globalVar).value());
#endif
        }

        // Ok, buffer is aligned, remember where this inline variable starts.
        inlineProgramScopeOffsets[globalVar] = inlineProgramScopeBuffer->size();

        // Add the data to the buffer
        addData(initializer, *inlineProgramScopeBuffer, pointerOffsetInfoList, inlineProgramScopeOffsets, AS);
    }

    // Set the needed allocation size to the actual buffer size
    if (hasInlineGlobalBuffer)
        m_pModuleMd->inlineGlobalBuffers.back().allocSize = m_pModuleMd->inlineGlobalBuffers.back().Buffer.size();
    if (hasInlineConstantBuffer)
    {
        m_pModuleMd->inlineConstantBuffers[0].allocSize = m_pModuleMd->inlineConstantBuffers[0].Buffer.size();
        m_pModuleMd->inlineConstantBuffers[1].allocSize = m_pModuleMd->inlineConstantBuffers[1].Buffer.size();
    }
    // Calculate the correct offsets for zero-initialized globals/constants
    // Total allocation size in runtime needs to include zero-init values, but data copied to compiler output can ignore them
    for (auto globalVar : zeroInitializedGlobals)
    {
        unsigned AS = cast<PointerType>(globalVar->getType())->getAddressSpace();
        unsigned &offset = (AS == ADDRESS_SPACE_GLOBAL) ? m_pModuleMd->inlineGlobalBuffers.back().allocSize : m_pModuleMd->inlineConstantBuffers[0].allocSize;
#if LLVM_VERSION_MAJOR < 11
        offset = iSTD::Align(offset, m_DL->getPreferredAlignment(globalVar));
#else
        offset = iSTD::Align(offset, (unsigned)m_DL->getPreferredAlign(globalVar).value());
#endif
        inlineProgramScopeOffsets[globalVar] = offset;
        offset += (unsigned)(m_DL->getTypeAllocSize(globalVar->getType()->getPointerElementType()));
    }

    if (inlineProgramScopeOffsets.size())
    {
        // Add globals tracked in metadata to the "llvm.used" list so they won't be deleted by optimizations
        llvm::SmallVector<GlobalValue*, 4> gvec;
        for (auto Node : inlineProgramScopeOffsets)
        {
            gvec.push_back(Node.first);
        }
        ArrayRef<GlobalValue*> globalArray(gvec);
        IGC::appendToUsed(M, globalArray);
    }

    // Check if zebin is enabled
    bool zebinEnable = IGC_IS_FLAG_ENABLED(EnableZEBinary);

    // patch-token-path:
    //     Just add the implicit argument to each function if a constant
    //     buffer has been created.  This will technically burn a patch
    //     token on kernels that don't actually use the buffer but it saves
    //     us having to walk the def-use chain (we can't just check if a
    //     constant is used in the kernel; for example, a global buffer
    //     may contain pointers that in turn point into the constant
    //     address space).
    // zebinary path:
    //     Don't add the implicit arguments and rely solely on relocations
    //     for global variable reference since the implicit arguments were
    //     removed from zebinary.
    if (!zebinEnable && hasInlineConstantBuffer)
    {
        for (auto& pFunc : M)
        {
            if (pFunc.isDeclaration()) continue;
            // Skip functions called from function marked with stackcall attribute
            if (AddImplicitArgs::hasStackCallInCG(&pFunc, *Ctx)) continue;

            // Always add for kernels and subroutines
            SmallVector<ImplicitArg::ArgType, 1> implicitArgs;
            implicitArgs.push_back(ImplicitArg::CONSTANT_BASE);
            ImplicitArgs::addImplicitArgs(pFunc, implicitArgs, mdUtils);
        }
    }

    if (!zebinEnable && hasInlineGlobalBuffer)
    {
        for (auto& pFunc : M)
        {
            if (pFunc.isDeclaration()) continue;
            // Skip functions called from function marked with stackcall attribute
            if (AddImplicitArgs::hasStackCallInCG(&pFunc, *Ctx)) continue;

            // Always add for kernels and subroutines
            SmallVector<ImplicitArg::ArgType, 1> implicitArgs;
            implicitArgs.push_back(ImplicitArg::GLOBAL_BASE);
            ImplicitArgs::addImplicitArgs(pFunc, implicitArgs, mdUtils);
        }
    }

    // Setup the metadata for pointer patch info to be utilized during
    // OCL codegen.

    if (pointerOffsetInfoList.size() > 0)
    {
        for (auto& info : pointerOffsetInfoList)
        {
            // We currently just use a single buffer at index 0; hardcode
            // the patch to reference it.

            if (info.AddressSpaceWherePointerResides == ADDRESS_SPACE_GLOBAL)
            {
                PointerProgramBinaryInfo ppbi;
                ppbi.PointerBufferIndex = 0;
                ppbi.PointerOffset = int_cast<int32_t>(info.PointerOffsetFromBufferBase);
                ppbi.PointeeBufferIndex = 0;
                ppbi.PointeeAddressSpace = info.AddressSpacePointedTo;
                m_pModuleMd->GlobalPointerProgramBinaryInfos.push_back(ppbi);
            }
            else if (info.AddressSpaceWherePointerResides == ADDRESS_SPACE_CONSTANT)
            {
                PointerProgramBinaryInfo ppbi;
                ppbi.PointerBufferIndex = 0;
                ppbi.PointerOffset = int_cast<int32_t>(info.PointerOffsetFromBufferBase);
                ppbi.PointeeBufferIndex = 0;
                ppbi.PointeeAddressSpace = info.AddressSpacePointedTo;
                m_pModuleMd->ConstantPointerProgramBinaryInfos.push_back(ppbi);
            }
            else
            {
                IGC_ASSERT_MESSAGE(0, "trying to patch unsupported address space");
            }
        }
    }

    const bool changed = !inlineProgramScopeOffsets.empty();
    for (auto offset : inlineProgramScopeOffsets)
    {
        m_pModuleMd->inlineProgramScopeOffsets[offset.first] = offset.second;
    }

    // Update LLVM metadata based on IGC MetadataUtils
    if (changed)
    {
        mdUtils->save(C);
    }

    return changed;
}

void ProgramScopeConstantAnalysis::alignBuffer(DataVector& buffer, alignment_t alignment)
{
    int bufferLen = buffer.size();
    int alignedLen = iSTD::Align(bufferLen, (size_t)alignment);
    if (alignedLen > bufferLen)
    {
        buffer.insert(buffer.end(), alignedLen - bufferLen, 0);
    }
}

/////////////////////////////////////////////////////////////////
//
// WalkCastsToFindNamedAddrSpace()
//
// If a generic address space pointer is discovered, we attmept
// to walk back to find the named address space if we can.
//
static unsigned WalkCastsToFindNamedAddrSpace(const Value* val)
{
    IGC_ASSERT(isa<PointerType>(val->getType()));

    const unsigned currAddrSpace = cast<PointerType>(val->getType())->getAddressSpace();

    if (currAddrSpace != ADDRESS_SPACE_GENERIC)
    {
        return currAddrSpace;
    }

    if (const Operator * op = dyn_cast<Operator>(val))
    {
        // look through the bitcast (to be addrspacecast in 3.4).
        if (op->getOpcode() == Instruction::BitCast ||
            op->getOpcode() == Instruction::AddrSpaceCast)
        {
            return WalkCastsToFindNamedAddrSpace(op->getOperand(0));
        }
        // look through the (inttoptr (ptrtoint @a)) combo.
        else if (op->getOpcode() == Instruction::IntToPtr)
        {
            if (const Operator * opop = dyn_cast<Operator>(op->getOperand(0)))
            {
                if (opop->getOpcode() == Instruction::PtrToInt)
                {
                    return WalkCastsToFindNamedAddrSpace(opop->getOperand(0));
                }
            }
        }
        // Just look through the gep if it does no offset arithmetic.
        else if (const GEPOperator * GEP = dyn_cast<GEPOperator>(op))
        {
            if (GEP->hasAllZeroIndices())
            {
                return WalkCastsToFindNamedAddrSpace(GEP->getPointerOperand());
            }
        }
    }

    return currAddrSpace;
}

void ProgramScopeConstantAnalysis::addData(Constant* initializer,
    DataVector& inlineProgramScopeBuffer,
    PointerOffsetInfoList& pointerOffsetInfoList,
    BufferOffsetMap& inlineProgramScopeOffsets,
    unsigned addressSpace)
{
    // Initial alignment padding before insert the current constant into the buffer.
    alignBuffer(inlineProgramScopeBuffer, m_DL->getABITypeAlignment(initializer->getType()));

    // We need to do extra work with pointers here: we don't know their actual addresses
    // at compile time so we find the offset from the base of the buffer they point to
    // so we can patch in the absolute address later.
    if (PointerType * ptrType = dyn_cast<PointerType>(initializer->getType()))
    {
        int64_t offset = 0;
        const unsigned int pointerSize = int_cast<unsigned int>(m_DL->getTypeAllocSize(ptrType));
        // This case is the most common: here, we look for a pointer that can be decomposed into
        // a base + offset with the base itself being another global variable previously defined.
        if (GlobalVariable * ptrBase = dyn_cast<GlobalVariable>(GetPointerBaseWithConstantOffset(initializer, offset, *m_DL)))
        {
            const unsigned pointedToAddrSpace = WalkCastsToFindNamedAddrSpace(initializer);

            IGC_ASSERT(addressSpace == ADDRESS_SPACE_GLOBAL || addressSpace == ADDRESS_SPACE_CONSTANT);

            // We can only patch global and constant pointers.
            if (pointedToAddrSpace == ADDRESS_SPACE_GLOBAL || pointedToAddrSpace == ADDRESS_SPACE_CONSTANT)
            {
                if (IGC_IS_FLAG_ENABLED(EnableZEBinary))
                {
                    // For zebin, instead of relying on the old patching logic, we can let RT directly patch the
                    // physical address of the previously defined global into the current buffer that uses it.
                    // TODO: Remove old patch logic when zebin is enabled
                    auto relocInfo = (addressSpace == ADDRESS_SPACE_GLOBAL) ?
                        &m_pModuleMd->GlobalBufferAddressRelocInfo :
                        &m_pModuleMd->ConstantBufferAddressRelocInfo;

                    PointerAddressRelocInfo ginfo;
                    ginfo.BufferOffset = inlineProgramScopeBuffer.size();
                    ginfo.PointerSize = pointerSize;
                    ginfo.Symbol = ptrBase->getName().str();
                    relocInfo->push_back(ginfo);

                    // Here, we write the offset relative to the start of the base global var.
                    // Runtime will add the base global's absolute address to the offset.
                    inlineProgramScopeBuffer.insert(inlineProgramScopeBuffer.end(), (char*)&offset, ((char*)&offset) + pointerSize);
                }
                else
                {
                    auto iter = inlineProgramScopeOffsets.find(ptrBase);
                    IGC_ASSERT(iter != inlineProgramScopeOffsets.end());

                    const uint64_t pointeeOffset = iter->second + offset;

                    pointerOffsetInfoList.push_back(
                        PointerOffsetInfo(
                            addressSpace,
                            inlineProgramScopeBuffer.size(),
                            pointedToAddrSpace));

                    // For old patching logic, write the offset relative to the entire global/constant buffer where the base global resides.
                    // The base address of the buffer will be added to it at runtime.
                    inlineProgramScopeBuffer.insert(inlineProgramScopeBuffer.end(), (char*)&pointeeOffset, ((char*)&pointeeOffset) + pointerSize);
                }
            }
            else
            {
                // Just insert zero here.  This may be some pointer to private that will be set sometime later
                // inside a kernel.  We can't patch it in so we just set it to zero here.
                inlineProgramScopeBuffer.insert(inlineProgramScopeBuffer.end(), pointerSize, 0);
            }
        }
        else if (dyn_cast<ConstantPointerNull>(initializer))
        {
            inlineProgramScopeBuffer.insert(inlineProgramScopeBuffer.end(), pointerSize, 0);
        }
        else if (isa<FunctionType>(ptrType->getPointerElementType()))
        {
            // Save patch info for function pointer to be patched later by runtime
            // The initializer value must be a function pointer and has the "referenced-indirectly" attribute
            Function* F = dyn_cast<Function>(initializer);
            if (F && F->hasFnAttribute("referenced-indirectly"))
            {
                IGC_ASSERT(addressSpace == ADDRESS_SPACE_GLOBAL || addressSpace == ADDRESS_SPACE_CONSTANT);
                IGC_ASSERT(pointerSize == 8 || pointerSize == 4);
                auto relocInfo = (addressSpace == ADDRESS_SPACE_GLOBAL) ?
                    &m_pModuleMd->GlobalBufferAddressRelocInfo :
                    &m_pModuleMd->ConstantBufferAddressRelocInfo;

                PointerAddressRelocInfo finfo;
                finfo.BufferOffset = inlineProgramScopeBuffer.size();
                finfo.PointerSize = pointerSize;
                finfo.Symbol = F->getName().str();
                relocInfo->push_back(finfo);
            }
            inlineProgramScopeBuffer.insert(inlineProgramScopeBuffer.end(), pointerSize, 0);
        }
        else if (ConstantExpr * ce = dyn_cast<ConstantExpr>(initializer))
        {
            if (ce->getOpcode() == Instruction::IntToPtr)
            {
                // intoptr can technically convert vectors of ints into vectors of pointers
                // in an LLVM sense but OpenCL has no vector of pointers type.
                if (isa<ConstantInt>(ce->getOperand(0))) {
                    uint64_t val = *cast<ConstantInt>(ce->getOperand(0))->getValue().getRawData();
                    inlineProgramScopeBuffer.insert(inlineProgramScopeBuffer.end(), (char*)& val, ((char*)& val) + pointerSize);
                }
                else {
                    addData(ce->getOperand(0), inlineProgramScopeBuffer, pointerOffsetInfoList, inlineProgramScopeOffsets, addressSpace);
                }
            }
            else if (GEPOperator * GEP = dyn_cast<GEPOperator>(ce))
            {
                for (auto& Op : GEP->operands())
                    if (Constant * C = dyn_cast<Constant>(&Op))
                        addData(C, inlineProgramScopeBuffer, pointerOffsetInfoList, inlineProgramScopeOffsets, addressSpace);
            }
            else if (ce->getOpcode() == Instruction::AddrSpaceCast ||
                ce->getOpcode() == Instruction::BitCast)
            {
                if (Constant * C = dyn_cast<Constant>(ce->getOperand(0)))
                    addData(C, inlineProgramScopeBuffer, pointerOffsetInfoList, inlineProgramScopeOffsets, addressSpace);
            }
            else
            {
                IGC_ASSERT_MESSAGE(0, "unknown constant expression");
            }
        }
        else
        {
            // What other shapes can pointers take at the program scope?
            IGC_ASSERT_MESSAGE(0, "unknown pointer shape encountered");
        }
    }
    else if (const UndefValue * UV = dyn_cast<UndefValue>(initializer))
    {
        // It's undef, just throw in zeros.
        const unsigned int zeroSize = int_cast<unsigned int>(m_DL->getTypeAllocSize(UV->getType()));
        inlineProgramScopeBuffer.insert(inlineProgramScopeBuffer.end(), zeroSize, 0);
    }
    // Must check for constant expressions before we start doing type-based checks
    else if (ConstantExpr * ce = dyn_cast<ConstantExpr>(initializer))
    {
        // Constant expressions are evil. We only handle a subset that we expect.
        // Right now, this means a bitcast, or a ptrtoint/inttoptr pair.
        // Handle it by adding the source of the cast.
        if (ce->getOpcode() == Instruction::BitCast ||
            ce->getOpcode() == Instruction::AddrSpaceCast)
        {
            addData(ce->getOperand(0), inlineProgramScopeBuffer, pointerOffsetInfoList, inlineProgramScopeOffsets, addressSpace);
        }
        else if (ce->getOpcode() == Instruction::IntToPtr)
        {
            ConstantExpr* const opExpr = dyn_cast<ConstantExpr>(ce->getOperand(0));
            IGC_ASSERT_MESSAGE(nullptr != opExpr, "Unexpected operand of IntToPtr");
            IGC_ASSERT_MESSAGE(opExpr->getOpcode() == Instruction::PtrToInt, "Unexpected operand of IntToPtr");
            addData(opExpr->getOperand(0), inlineProgramScopeBuffer, pointerOffsetInfoList, inlineProgramScopeOffsets, addressSpace);
        }
        else if (ce->getOpcode() == Instruction::PtrToInt)
        {
            addData(ce->getOperand(0), inlineProgramScopeBuffer, pointerOffsetInfoList, inlineProgramScopeOffsets, addressSpace);
        }
        else
        {
            IGC_ASSERT_MESSAGE(0, "Unexpected constant expression type");
        }
    }
    else if (ConstantDataSequential * cds = dyn_cast<ConstantDataSequential>(initializer))
    {
        for (unsigned i = 0; i < cds->getNumElements(); i++) {
            addData(cds->getElementAsConstant(i), inlineProgramScopeBuffer, pointerOffsetInfoList, inlineProgramScopeOffsets, addressSpace);
        }
    }
    else if (ConstantAggregateZero * cag = dyn_cast<ConstantAggregateZero>(initializer))
    {
        // Zero aggregates are filled with, well, zeroes.
        const unsigned int zeroSize = int_cast<unsigned int>(m_DL->getTypeAllocSize(cag->getType()));
        inlineProgramScopeBuffer.insert(inlineProgramScopeBuffer.end(), zeroSize, 0);
    }
    // If this is an sequential type which is not a CDS or zero, have to collect the values
    // element by element. Note that this is not exclusive with the two cases above, so the
    // order of ifs is meaningful.
    else if (
        initializer->getType()->isArrayTy() ||
        initializer->getType()->isStructTy() ||
        initializer->getType()->isVectorTy()
    )
    {
        const int numElts = initializer->getNumOperands();
        for (int i = 0; i < numElts; ++i)
        {
            Constant* C = initializer->getAggregateElement(i);
            IGC_ASSERT_MESSAGE(C, "getAggregateElement returned null, unsupported constant");
            // Since the type may not be primitive, extra alignment is required.
            addData(C, inlineProgramScopeBuffer, pointerOffsetInfoList, inlineProgramScopeOffsets, addressSpace);
        }
    }
    // And, finally, we have to handle base types - ints and floats.
    else
    {
        APInt intVal(32, 0, false);
        if (ConstantInt * ci = dyn_cast<ConstantInt>(initializer))
        {
            intVal = ci->getValue();
        }
        else if (ConstantFP * cfp = dyn_cast<ConstantFP>(initializer))
        {
            intVal = cfp->getValueAPF().bitcastToAPInt();
        }
        else
        {
            IGC_ASSERT_MESSAGE(0, "Unsupported constant type");
        }

        const int bitWidth = intVal.getBitWidth();
        IGC_ASSERT_MESSAGE((bitWidth % 8 == 0), "Unsupported bitwidth");
        IGC_ASSERT_MESSAGE((bitWidth <= 64), "Unsupported bitwidth");

        const uint64_t* const val = intVal.getRawData();
        inlineProgramScopeBuffer.insert(inlineProgramScopeBuffer.end(), (char*)val, ((char*)val) + (bitWidth / 8));
    }


    // final padding.  This gets used by the vec3 types that will insert zero padding at the
    // end after inserting the actual vector contents (this is due to sizeof(vec3) == 4 * sizeof(scalarType)).
    alignBuffer(inlineProgramScopeBuffer, m_DL->getABITypeAlignment(initializer->getType()));
}