1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2018-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "RectListOptimizationPass.hpp"
#include "IGCPassSupport.h"
#include "GenISAIntrinsics/GenIntrinsicInst.h"
#include "Compiler/CodeGenPublic.h"
#include "Compiler/MetaDataUtilsWrapper.h"
#include "ShaderTypesEnum.h"
#include "common/LLVMWarningsPush.hpp"
#include "llvm/IR/Function.h"
#include <llvm/IR/InstVisitor.h>
#include <llvm/IR/IRBuilder.h>
#include <llvm/Transforms/Utils/BasicBlockUtils.h>
#include <llvm/Support/Casting.h>
#include "common/LLVMWarningsPop.hpp"
#include "common/IGCIRBuilder.h"
#include "common/igc_regkeys.hpp"
#include <vector>
#include <unordered_map>
#include <set>
#include "Probe/Assertion.h"
using namespace llvm;
using namespace IGC;
/************************************************************************
This transformation is not safe in general. It can be applied only in those case:
-We know that the resouce is MCS compressed
-We need to know that we don't access out of bound sample index
************************************************************************/
class RectListOptimizationPass : public FunctionPass
{
static const unsigned int m_NUM_OUTPUT_VERT_FOR_RECTLIST = 4;
typedef unsigned int attribute_idx;
typedef unsigned int vertex_idx;
typedef unsigned int channel_idx;
//Data structure related to Each attribute mapping to rectangle values
typedef std::unordered_map<Value*, std::set<vertex_idx>> coordToVertMap;
typedef std::unordered_map<channel_idx, std::set<Value*>> channelToCoordMap;
typedef struct _ATTRIB_SOURCELIST_STRUCT {
ShaderOutputType outType;
coordToVertMap rectCoordToVertM;
channelToCoordMap channelToCoordM;
} ATTRIB_SOURCELIST_ST;
typedef std::unordered_map<attribute_idx, ATTRIB_SOURCELIST_ST> atrribRectListMap;
atrribRectListMap m_rectListPerAttrib; //rectlist info per attribute
//GS ouput instructions grouped together by all attributes
//Map => Vertex Idx ---> <attribute_idx, output_gs instruction>
typedef std::unordered_map<attribute_idx, Instruction*> attributeInstMap;
typedef std::vector<attributeInstMap> vetexAttribVec;
vetexAttribVec m_gsouputM;
// GenIS_OUTPUTGS intrinsics argument indexes. These are constants
// If the API signature changes, these indices will have to change
static const unsigned int m_OUTPUTGS_shaderTypeArgIdx = 4;
static const unsigned int m_OUTPUTGS_shaderAttrArgIdx = 5;
static const unsigned int m_OUTPUTGS_EmitCountArgIdx = 6;
//Helper Methods
bool isGSTriStripPrimTopology(Function& F);
bool isGSOutputVertValid(Function& F);
bool scanAndInserOutputGSList(Function& F);
void analyzeForRectList(Function& F, IGC::GeometryShaderContext* pgsctx);
bool isRectCoords(std::set<Value*>& X, std::set<Value*>& Y, coordToVertMap& rectCoordToVertM);
bool isConstantCoords(std::set<Value*>& ChannelValues, coordToVertMap& rectCoordToVertM);
public:
static char ID;
RectListOptimizationPass() :
FunctionPass(ID)
{
m_gsouputM.clear();
m_gsouputM.resize(m_NUM_OUTPUT_VERT_FOR_RECTLIST);
}
virtual bool runOnFunction(llvm::Function& F) override;
void getAnalysisUsage(llvm::AnalysisUsage& AU) const override
{
AU.addRequired<MetaDataUtilsWrapper>();
AU.addRequired<CodeGenContextWrapper>();
}
virtual llvm::StringRef getPassName() const override { return "RectListOptimization"; }
void visitCallInst(llvm::CallInst& I);
};
char RectListOptimizationPass::ID = 0;
//helper methods
bool RectListOptimizationPass::isGSTriStripPrimTopology(Function& F)
{
auto pPrimTopology = F.getParent()->getGlobalVariable("GsOutputPrimitiveTopology");
const unsigned int primitiveTopology = static_cast<unsigned int>(
(llvm::cast<llvm::ConstantInt>(pPrimTopology->getInitializer())->getZExtValue()));
return (primitiveTopology == USC::GFX3DPRIM_TRISTRIP);
}
bool RectListOptimizationPass::isGSOutputVertValid(Function& F)
{
auto pMaxOutputVertices = F.getParent()->getGlobalVariable("GsMaxOutputVertices");
IGC_ASSERT_MESSAGE(pMaxOutputVertices != nullptr, "GsMaxOutputVertices must be defined");
const unsigned int maxOutputVertices = static_cast<unsigned int>(
(llvm::cast<llvm::ConstantInt>(pMaxOutputVertices->getInitializer())->getZExtValue()));
return (maxOutputVertices == m_NUM_OUTPUT_VERT_FOR_RECTLIST);
}
//We are looking for all GenISA.OUTPUTGS instructions. These instructions are clubbed together for each output
//vertex. This function is trying to create that map for further analysis
//Map we are creating below is
// Vertex ID [0-4]--->
// Attribute 0 ---> OutputGS Inst 0
// Attribute 1 ---> OutputGS Inst 1
// .........
bool RectListOptimizationPass::scanAndInserOutputGSList(Function& F) {
bool foundValidMapping = true;
typedef std::unordered_map<Value*, vertex_idx > emitCntToVidMap;
emitCntToVidMap emitCntToVidM;
int vertexIdx = 0;
for (auto I = F.begin(), E = F.end(); I != E && foundValidMapping; ++I) {
llvm::BasicBlock::InstListType& instList = I->getInstList();
for (auto instIter = instList.begin(), instIterEnd = instList.end();
instIter != instIterEnd && foundValidMapping;
++instIter)
{
llvm::Instruction* inst = &(*instIter);
if (GenIntrinsicInst * CI = dyn_cast<GenIntrinsicInst>(inst)) {
if (CI->getIntrinsicID() == llvm::GenISAIntrinsic::GenISA_OUTPUTGS) {
ShaderOutputType outType = static_cast<ShaderOutputType>(
llvm::cast<llvm::ConstantInt>(inst->getOperand(m_OUTPUTGS_shaderTypeArgIdx))->getZExtValue());
unsigned int attrIdx =
static_cast<unsigned int>(llvm::cast<llvm::ConstantInt>(inst->getOperand(m_OUTPUTGS_shaderAttrArgIdx))->getZExtValue());
Value* emitCntV = inst->getOperand(m_OUTPUTGS_EmitCountArgIdx);
ConstantInt* CI = dyn_cast<ConstantInt>(emitCntV);
// We are taking a conservative estimate here to handle a simple case
// We expect the emits to be of constant count ranging from 0-3
if (!CI ||
(unsigned int)CI->getZExtValue() >= m_NUM_OUTPUT_VERT_FOR_RECTLIST) {
foundValidMapping = false;
break;
}
emitCntToVidMap::iterator emitToVidit = emitCntToVidM.find(emitCntV);
if (emitToVidit == emitCntToVidM.end()) {
emitCntToVidM.insert(std::make_pair(emitCntV, vertexIdx));
vertexIdx++;
}
attributeInstMap::iterator attrInstMit = m_gsouputM[emitCntToVidM[emitCntV]].find(attrIdx);
if (attrInstMit != m_gsouputM[emitCntToVidM[emitCntV]].end()) {
if (outType != SHADER_OUTPUT_TYPE_DEFAULT) {
//generally for each SGV we have two OUTPUTGS instructions.
//always try to pick the one that has the outType indicating what SGV it is
attrInstMit->second = inst;
}
}
else {
m_gsouputM[emitCntToVidM[emitCntV]].insert(std::make_pair(attrIdx, inst));
}
}
}
}
}
//Although max possible out vertices is 4, but may emit less then 4
//Verify that we have 1:1 mapping with 4 vertices, that means we have same number of attribtues
//If we have possibility of emitting less then 4, we must return false
unsigned numattributes = m_gsouputM[0].size();
for (unsigned int i = 1; i < m_NUM_OUTPUT_VERT_FOR_RECTLIST && foundValidMapping; i++) {
if ((m_gsouputM[i].size() != numattributes) || m_gsouputM[i].size() == 0) {
foundValidMapping = false;
break;
}
}
return foundValidMapping;
}
// Method to detect Rectangle Coordinates
bool RectListOptimizationPass::isRectCoords(
std::set<Value*>& XChannel,
std::set<Value*>& YChannel,
coordToVertMap& rectCoordToVertM
)
{
bool isRectCoords = true;
// V1=(X1,Y1) V2=(X2,Y1)
// ------------------------
// | |
// | |
// | |
// | |
// ------------------------
// V3=(X1,Y2) V4=(X2,Y2)
//
//Condition 1: As you can see there must be 2 unique X's (X1 and X2) for Channel X
// and (Y1, Y2) for channel Y
//Condition 2:Similay each X and Y Value must be associated wiht 2 unique vertices
// In this case X1 -> (V1 and V3), X2 -> (V2, V4)
// Y1 -> (V1 and V2) and Y2 -> (V3 and V4)
// These two conditions are sufficient to declare if this is rectangle.
// Because there are only 4 vertices and each are unique.
do {
//Validation of Condition 1 for both X and Y Channels
if (XChannel.size() != 2 || YChannel.size() != 2) {
//Doesnt satisfy condition 1
isRectCoords = false;
break;
}
//Validation of condition 2 for both Y and X Channel
std::vector<std::set<Value*>*> tempArr = { &XChannel, &YChannel };
for (unsigned i = 0; i < tempArr.size() && isRectCoords; i++) {
for (std::set<Value*>::iterator it = tempArr[i]->begin(); it != tempArr[i]->end(); it++) {
Value* V = *it;
coordToVertMap::iterator coordToVertIt = rectCoordToVertM.find(V);
if (coordToVertIt == rectCoordToVertM.end()) {
IGC_ASSERT_MESSAGE(0, "Not able to find one of the XChannel Values");
isRectCoords = false;
break;
}
if (coordToVertIt->second.size() != 2) {
//Violates condition 2 to for V
isRectCoords = false;
break;
}
}
}
} while (false);
return isRectCoords;
}
//Check if for given Channel all values are same
//Condition 1: Each Channel should have 1 associated value
//Condition 2: That Value should have 4 vertices mapped to it from rectCoordToVertM
//This means for this channel all vertices use the same value.
bool RectListOptimizationPass::isConstantCoords(
std::set<Value*>& ChannelValues,
coordToVertMap& rectCoordToVertM)
{
bool isConstantCoord = false;
do {
if (ChannelValues.size() != 1) {
//fails condition 1
break;
}
Value* uniqueValue = *ChannelValues.begin();
coordToVertMap::iterator it = rectCoordToVertM.find(uniqueValue);
if (it == rectCoordToVertM.end()) {
IGC_ASSERT_MESSAGE(0, "Not able to find the value in the unique value in Vale to vertex List map");
break;
}
if (it->second.size() != m_NUM_OUTPUT_VERT_FOR_RECTLIST) {
//fails condition 2
break;
}
isConstantCoord = true;
} while (false);
return isConstantCoord;
}
void RectListOptimizationPass::analyzeForRectList(Function& F, GeometryShaderContext* pgsctx)
{
//Now we expand each attribute to Map
//1. each Value to correspoding list of vertices (0-4)
//2. Each channel (X,Y,Z,W) to list of Values
for (vertex_idx vid = 0; vid < m_NUM_OUTPUT_VERT_FOR_RECTLIST; vid++) {
for (attributeInstMap::iterator it = m_gsouputM[vid].begin(); it != m_gsouputM[vid].end(); it++) {
//For each attribute we see corresponding instruction
Instruction* inst = it->second;
atrribRectListMap::iterator arit = m_rectListPerAttrib.find(it->first);
if (arit == m_rectListPerAttrib.end()) {
ATTRIB_SOURCELIST_ST rectList;
rectList.outType = static_cast<ShaderOutputType>(
llvm::cast<llvm::ConstantInt>(inst->getOperand(m_OUTPUTGS_shaderTypeArgIdx))->getZExtValue());
m_rectListPerAttrib.insert(std::make_pair(it->first, rectList));
arit = m_rectListPerAttrib.find(it->first);
}
for (unsigned int ch_id = 0; ch_id < IGC::NUM_SHADER_CHANNELS; ch_id++) {
Value* channelV = inst->getOperand(ch_id);
channelToCoordMap::iterator chtocoordit = arit->second.channelToCoordM.find(ch_id);
if (chtocoordit != arit->second.channelToCoordM.end()) {
chtocoordit->second.insert(channelV);
}
else {
std::set<Value*> tempChV;
tempChV.insert(channelV);
arit->second.channelToCoordM.insert(std::make_pair(ch_id, tempChV));
}
coordToVertMap::iterator coordToVit = arit->second.rectCoordToVertM.find(channelV);
if (coordToVit != arit->second.rectCoordToVertM.end()) {
coordToVit->second.insert(vid);
}
else {
std::set<vertex_idx> tempVidList;
tempVidList.insert(vid);
arit->second.rectCoordToVertM.insert(std::make_pair(channelV, tempVidList));
}
}
}
}
//Now there can be only two possibilities for this to be a rectlist
//a. For SV_POSITION it must be a rectangle for XY Channel and constant for ZY channel
//b. For any other attribute it must be either be a rectangle or constant for XY Channel
// And ZY channel must be constant
bool bPositionFound = false;
bool isRectList = false;
IGC_ASSERT_MESSAGE(m_rectListPerAttrib.size() != 0, "Empty attribute list, should not happen\n");
for (atrribRectListMap::iterator it = m_rectListPerAttrib.begin(); it != m_rectListPerAttrib.end(); it++) {
ATTRIB_SOURCELIST_ST* pAttrSrcList = &it->second;
channelToCoordMap::iterator ctCitXit = pAttrSrcList->channelToCoordM.find(IGC::SHADER_CHANNEL_X);
channelToCoordMap::iterator ctCitYit = pAttrSrcList->channelToCoordM.find(IGC::SHADER_CHANNEL_Y);
channelToCoordMap::iterator ctCitZit = pAttrSrcList->channelToCoordM.find(IGC::SHADER_CHANNEL_Z);
channelToCoordMap::iterator ctCitWit = pAttrSrcList->channelToCoordM.find(IGC::SHADER_CHANNEL_W);
//reset the rectList to false for each iteration
isRectList = false;
if (ctCitXit == pAttrSrcList->channelToCoordM.end() ||
ctCitYit == pAttrSrcList->channelToCoordM.end() ||
ctCitZit == pAttrSrcList->channelToCoordM.end() ||
ctCitWit == pAttrSrcList->channelToCoordM.end())
{
IGC_ASSERT_MESSAGE(0, "Not able to find one of the Channel X/Y/Z/W!!!");
break;
}
//Need to handle POSITION specially, because RECTLIST relies on that
if (pAttrSrcList->outType == SHADER_OUTPUT_TYPE_POSITION) {
bPositionFound = true;
}
// Check for each attribute if it is RECT_LIST
bool bisRectCoords = isRectCoords(ctCitXit->second, ctCitYit->second, pAttrSrcList->rectCoordToVertM);
if (!bisRectCoords)
{
if (pAttrSrcList->outType == SHADER_OUTPUT_TYPE_POSITION)
{
//for POSITION its a must have to be a rect
break;
}
//if constant must be constant for both X and Y
if (isConstantCoords(ctCitXit->second, pAttrSrcList->rectCoordToVertM) == false)
{
break;
}
if (isConstantCoords(ctCitYit->second, pAttrSrcList->rectCoordToVertM) == false)
{
break;
}
}
//For all attributes both Z and W must always be constant
if (isConstantCoords(ctCitZit->second, pAttrSrcList->rectCoordToVertM) == false)
{
break;
}
if (isConstantCoords(ctCitWit->second, pAttrSrcList->rectCoordToVertM) == false)
{
//violates condition 2
break;
}
//Set rectList to true if passed all cases
isRectList = true;
}
//Right now just setup the hint for driver to turn this ON whenever needed
//TBD : Need to check if this needs to be filled instead in CGeometryShader::FillProgram
pgsctx->programOutput.m_bCanEnableRectList = (bPositionFound == true) ? isRectList : false;
return;
}
bool RectListOptimizationPass::runOnFunction(Function& F)
{
bool changed = false;
do {
if (IGC_IS_FLAG_ENABLED(DisableRectListOpt))
{
break;
}
IGCMD::MetaDataUtils* pMdUtils = getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils();
if (pMdUtils->findFunctionsInfoItem(&F) == pMdUtils->end_FunctionsInfo())
{
break;
}
IGC::CodeGenContext* ctx = getAnalysis<IGC::CodeGenContextWrapper>().getCodeGenContext();
if (!ctx || ctx->type != ShaderType::GEOMETRY_SHADER) {
IGC_ASSERT_MESSAGE(0, "Failed to get the code gen context or not a Geometry shader\n");
break;
}
IGC::GeometryShaderContext* pgsctx = static_cast <IGC::GeometryShaderContext*>(ctx);
if (!pgsctx) {
IGC_ASSERT_MESSAGE(0, "Failed to get the GS code gen context \n");
break;
}
//First we need to detect if the shader has valid conditions to pursue
//Check if number of vertices are 4
if (!isGSOutputVertValid(F))
break;
//Create a map of Vertex to (attribute, instruction)
if (!scanAndInserOutputGSList(F))
break;
//analyze for rectangle List pattern
analyzeForRectList(F, pgsctx);
//TBD: Add option to eleminate 4th vertex if needed
} while (false);
return changed;
}
void RectListOptimizationPass::visitCallInst(llvm::CallInst& I)
{
return;
}
namespace IGC {
// Identifies rectangle from 4 vertices and replaces TOPOLOGY to RECTLIST
#define PASS_FLAG "igc-rectlist-opt"
#define PASS_DESCRIPTION "This is an optimization pass for inserting RECTLIST topology "
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS true
IGC_INITIALIZE_PASS_BEGIN(RectListOptimizationPass, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_END(RectListOptimizationPass, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
llvm::Pass* createRectListOptimizationPass()
{
return new RectListOptimizationPass();
}
}
|