File: Scalarizer.cpp

package info (click to toggle)
intel-graphics-compiler 1.0.12504.6-1%2Bdeb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 83,912 kB
  • sloc: cpp: 910,147; lisp: 202,655; ansic: 15,197; python: 4,025; yacc: 2,241; lex: 1,570; pascal: 244; sh: 104; makefile: 25
file content (1423 lines) | stat: -rw-r--r-- 53,653 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
/*========================== begin_copyright_notice ============================

Copyright (C) 2017-2021 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

#include "Compiler/Optimizer/Scalarizer.h"
#include "Compiler/IGCPassSupport.h"
#include "GenISAIntrinsics/GenIntrinsicInst.h"
#include "Compiler/CodeGenContextWrapper.hpp"
#include "Compiler/CISACodeGen/helper.h"
#include "common/LLVMWarningsPush.hpp"
#include "llvmWrapper/IR/DerivedTypes.h"
#include "llvmWrapper/IR/Instructions.h"
#include "llvmWrapper/Support/Alignment.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/raw_os_ostream.h"
#include "common/LLVMWarningsPop.hpp"
#include "common/igc_regkeys.hpp"
#include "common/Types.hpp"
#include <iostream>
#include "Probe/Assertion.h"

using namespace llvm;
using namespace IGC;

#define V_PRINT(a,b) \
    { \
        if (IGC_IS_FLAG_ENABLED(EnableScalarizerDebugLog)) \
        { \
            outs() << b; \
        } \
    }

namespace VectorizerUtils {
    static void SetDebugLocBy(Instruction* I, const Instruction* setBy) {
        if (!(I->getDebugLoc())) {
            I->setDebugLoc(setBy->getDebugLoc());
        }
    }
}

// Register pass to igc-opt
#define PASS_FLAG "igc-scalarize"
#define PASS_DESCRIPTION "Scalarize functions"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(ScalarizeFunction, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_END(ScalarizeFunction, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)

char ScalarizeFunction::ID = 0;

ScalarizeFunction::ScalarizeFunction(bool selectiveScalarization) : FunctionPass(ID)
{
    initializeScalarizeFunctionPass(*PassRegistry::getPassRegistry());

    for (int i = 0; i < Instruction::OtherOpsEnd; i++) m_transposeCtr[i] = 0;
    m_SelectiveScalarization = selectiveScalarization;

    // Initialize SCM buffers and allocation
    m_SCMAllocationArray = new SCMEntry[ESTIMATED_INST_NUM];
    m_SCMArrays.push_back(m_SCMAllocationArray);
    m_SCMArrayLocation = 0;

    V_PRINT(scalarizer, "ScalarizeFunction constructor\n");
}

ScalarizeFunction::~ScalarizeFunction()
{
    releaseAllSCMEntries();
    delete[] m_SCMAllocationArray;
    destroyDummyFunc();
    V_PRINT(scalarizer, "ScalarizeFunction destructor\n");
}

bool ScalarizeFunction::runOnFunction(Function& F)
{
    CodeGenContext* pCtx = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
    if (!IGC::ForceAlwaysInline(pCtx))
    {
        if (F.isDeclaration()) return false;
    }
    else
    {
        // Scalarization is done only on functions which return void (kernels)
        if (!F.getReturnType()->isVoidTy())
        {
            return false;
        }
    }

    m_currFunc = &F;
    m_moduleContext = &(m_currFunc->getContext());

    V_PRINT(scalarizer, "\nStart scalarizing function: " << m_currFunc->getName() << "\n");

    // obtain TagetData of the module
    m_pDL = &F.getParent()->getDataLayout();

    // Prepare data structures for scalarizing a new function
    m_usedVectors.clear();
    m_removedInsts.clear();
    m_SCM.clear();
    releaseAllSCMEntries();
    m_DRL.clear();
    m_Excludes.clear();

    // collecting instructions that we want to avoid scalarization
    if (m_SelectiveScalarization)
    {
        buildExclusiveSet();
    }

    // Scalarization. Iterate over all the instructions
    // Always hold the iterator at the instruction following the one being scalarized (so the
    // iterator will "skip" any instructions that are going to be added in the scalarization work)
    inst_iterator sI = inst_begin(m_currFunc);
    inst_iterator sE = inst_end(m_currFunc);
    while (sI != sE)
    {
        Instruction* currInst = &*sI;
        // Move iterator to next instruction BEFORE scalarizing current instruction
        ++sI;
        if (m_Excludes.count(currInst))
        {
            recoverNonScalarizableInst(currInst);
        }
        else
        {
            dispatchInstructionToScalarize(currInst);
        }
    }

    resolveVectorValues();

    // Resolved DRL entries
    resolveDeferredInstructions();

    // Iterate over removed insts and delete them
    SmallDenseSet<Instruction*, ESTIMATED_INST_NUM>::iterator ri = m_removedInsts.begin();
    SmallDenseSet<Instruction*, ESTIMATED_INST_NUM>::iterator re = m_removedInsts.end();
    SmallDenseSet<Instruction*, ESTIMATED_INST_NUM>::iterator index = ri;

    for (; index != re; ++index)
    {
        // get rid of old users
        if (Value * val = dyn_cast<Value>(*index))
        {
            UndefValue* undefVal = UndefValue::get((*index)->getType());

            if (MDNode* pEIMD = (*index)->getMetadata("implicitGlobalID"))
            {
                // Compute thread and group identification instructions must have 'Output' attribute
                // added later during compilation. The implicitGlobalID metadata attached to this
                // instruction must be assigned to a new instruction, which replaces this instruction.
                // Unfortunatelly, replaceAllUsesWith() will not ensure such propagation.
                Instruction* pNewInst = dyn_cast_or_null<llvm::Instruction>(undefVal);
                if (pNewInst)
                {
                    IGC_ASSERT_MESSAGE(pNewInst, "Missing implicit global ID instruction");
                    Instruction* instr = dyn_cast<Instruction>(*index);
                    pNewInst->copyMetadata(*instr);
                }
            }
            (val)->replaceAllUsesWith(undefVal);
        }
        IGC_ASSERT_MESSAGE((*index)->use_empty(), "Unable to remove used instruction");
        (*index)->eraseFromParent();
    }

    V_PRINT(scalarizer, "\nCompleted scalarizing function: " << m_currFunc->getName() << "\n");
    return true;
}

/// <summary>
/// @brief We want to avoid scalarize vector-phi node if the vector is used
/// as a whole entity somewhere in the program. This function tries to find
/// this kind of definition web that involves phi-node, insert-element etc,
/// then add them into the exclusion-set (excluded from scalarization).
/// </summary>
void ScalarizeFunction::buildExclusiveSet()
{
    inst_iterator sI = inst_begin(m_currFunc);
    inst_iterator sE = inst_end(m_currFunc);
    while (sI != sE)
    {
        Instruction* currInst = &*sI;
        ++sI;
        // find the seed for the workset
        std::vector<llvm::Value*> workset;
        if (GenIntrinsicInst * GII = dyn_cast<GenIntrinsicInst>(currInst))
        {
            unsigned numOperands = IGCLLVM::getNumArgOperands(GII);
            for (unsigned i = 0; i < numOperands; i++)
            {
                Value* operand = GII->getArgOperand(i);
                if (isa<VectorType>(operand->getType()))
                {
                    workset.push_back(operand);
                }
            }
        }
        else if (auto IEI = dyn_cast<InsertElementInst>(currInst))
        {
            Value* scalarIndexVal = IEI->getOperand(2);
            // If the index is not a constant - we cannot statically remove this inst
            if (!isa<ConstantInt>(scalarIndexVal)) {
                workset.push_back(IEI);
            }
        }
        else if (auto EEI = dyn_cast<ExtractElementInst>(currInst))
        {
            Value* scalarIndexVal = EEI->getOperand(1);
            // If the index is not a constant - we cannot statically remove this inst
            if (!isa<ConstantInt>(scalarIndexVal)) {
                workset.push_back(EEI->getOperand(0));
            }
        }
        // try to find a phi-web from the seed
        bool HasPHI = false;
        std::set<llvm::Value*> defweb;
        while (!workset.empty())
        {
            auto Def = workset.back();
            workset.pop_back();
            if (m_Excludes.count(Def) || defweb.count(Def))
            {
                continue;
            }
            if (auto IEI = dyn_cast<InsertElementInst>(Def))
            {
                defweb.insert(IEI);
                if (!defweb.count(IEI->getOperand(0)) &&
                    (isa<PHINode>(IEI->getOperand(0)) ||
                        isa<ShuffleVectorInst>(IEI->getOperand(0)) ||
                        isa<InsertElementInst>(IEI->getOperand(0))))
                {
                    workset.push_back(IEI->getOperand(0));
                }
            }
            else if (auto SVI = dyn_cast<ShuffleVectorInst>(Def))
            {
                defweb.insert(SVI);
                if (!defweb.count(SVI->getOperand(0)) &&
                    (isa<PHINode>(SVI->getOperand(0)) ||
                        isa<ShuffleVectorInst>(SVI->getOperand(0)) ||
                        isa<InsertElementInst>(SVI->getOperand(0))))
                {
                    workset.push_back(SVI->getOperand(0));
                }
                if (!defweb.count(SVI->getOperand(1)) &&
                    (isa<PHINode>(SVI->getOperand(1)) ||
                        isa<ShuffleVectorInst>(SVI->getOperand(1)) ||
                        isa<InsertElementInst>(SVI->getOperand(1))))
                {
                    workset.push_back(SVI->getOperand(1));
                }
            }
            else if (auto PHI = dyn_cast<PHINode>(Def))
            {
                defweb.insert(PHI);
                HasPHI = true;  // !this def-web is qualified!
                for (int i = 0, n = PHI->getNumOperands(); i < n; ++i)
                    if (!defweb.count(PHI->getOperand(i)) &&
                        (isa<PHINode>(PHI->getOperand(i)) ||
                            isa<ShuffleVectorInst>(PHI->getOperand(i)) ||
                            isa<InsertElementInst>(PHI->getOperand(i))))
                    {
                        workset.push_back(PHI->getOperand(i));
                    }
            }
            else
            {
                continue;
            }
            // check use
            for (auto U : Def->users())
            {
                if (!defweb.count(U) &&
                    (isa<PHINode>(U) ||
                        isa<ShuffleVectorInst>(U) ||
                        isa<InsertElementInst>(U)))
                {
                    workset.push_back(U);
                }
            }
        }
        // if we find a qualified web with PHINode, add those instructions
        // into the exclusion set
        if (HasPHI)
        {
            m_Excludes.merge(defweb);
        }
    }
}

void ScalarizeFunction::dispatchInstructionToScalarize(Instruction* I)
{
    V_PRINT(scalarizer, "\tScalarizing Instruction: " << *I << "\n");

    if (m_removedInsts.count(I))
    {
        V_PRINT(scalarizer, "\tInstruction is already marked for removal. Being ignored..\n");
        return;
    }

    switch (I->getOpcode())
    {
    case Instruction::Add:
    case Instruction::Sub:
    case Instruction::Mul:
    case Instruction::FAdd:
    case Instruction::FSub:
    case Instruction::FMul:
    case Instruction::UDiv:
    case Instruction::SDiv:
    case Instruction::FDiv:
    case Instruction::URem:
    case Instruction::SRem:
    case Instruction::FRem:
    case Instruction::Shl:
    case Instruction::LShr:
    case Instruction::AShr:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor:
        scalarizeInstruction(dyn_cast<BinaryOperator>(I));
        break;
    case Instruction::ICmp:
    case Instruction::FCmp:
        scalarizeInstruction(dyn_cast<CmpInst>(I));
        break;
    case Instruction::Trunc:
    case Instruction::ZExt:
    case Instruction::SExt:
    case Instruction::FPToUI:
    case Instruction::FPToSI:
    case Instruction::UIToFP:
    case Instruction::SIToFP:
    case Instruction::FPTrunc:
    case Instruction::FPExt:
    case Instruction::PtrToInt:
    case Instruction::IntToPtr:
    case Instruction::BitCast:
        scalarizeInstruction(dyn_cast<CastInst>(I));
        break;
    case Instruction::PHI:
        scalarizeInstruction(dyn_cast<PHINode>(I));
        break;
    case Instruction::Select:
        scalarizeInstruction(dyn_cast<SelectInst>(I));
        break;
    case Instruction::ExtractElement:
        scalarizeInstruction(dyn_cast<ExtractElementInst>(I));
        break;
    case Instruction::InsertElement:
        scalarizeInstruction(dyn_cast<InsertElementInst>(I));
        break;
    case Instruction::ShuffleVector:
        scalarizeInstruction(dyn_cast<ShuffleVectorInst>(I));
        break;
        //case Instruction::Call :
        //  scalarizeInstruction(dyn_cast<CallInst>(I));
        //  break;
    case Instruction::Alloca:
        scalarizeInstruction(dyn_cast<AllocaInst>(I));
        break;
    case Instruction::GetElementPtr:
        scalarizeInstruction(dyn_cast<GetElementPtrInst>(I));
        break;
        // The remaining instructions are not supported for scalarization. Keep "as is"
    default:
        recoverNonScalarizableInst(I);
        break;
    }
}

void ScalarizeFunction::recoverNonScalarizableInst(Instruction* Inst)
{
    V_PRINT(scalarizer, "\t\tInstruction is not scalarizable.\n");

    // any vector value should have an SCM entry - even an empty one
    if (isa<VectorType>(Inst->getType())) getSCMEntry(Inst);

    // Iterate over all arguments. Check that they all exist (or rebuilt)
    if (CallInst * CI = dyn_cast<CallInst>(Inst))
    {
        unsigned numOperands = IGCLLVM::getNumArgOperands(CI);
        for (unsigned i = 0; i < numOperands; i++)
        {
            Value* operand = CI->getArgOperand(i);
            if (isa<VectorType>(operand->getType()))
            {
                // Recover value if needed (only needed for vector values)
                obtainVectorValueWhichMightBeScalarized(operand);
            }
        }
    }
    else
    {
        unsigned numOperands = Inst->getNumOperands();
        for (unsigned i = 0; i < numOperands; i++)
        {
            Value* operand = Inst->getOperand(i);
            if (isa<VectorType>(operand->getType()))
            {
                // Recover value if needed (only needed for vector values)
                obtainVectorValueWhichMightBeScalarized(operand);
            }
        }
    }
}

void ScalarizeFunction::scalarizeInstruction(BinaryOperator* BI)
{
    V_PRINT(scalarizer, "\t\tBinary instruction\n");
    IGC_ASSERT_MESSAGE(BI, "instruction type dynamic cast failed");
    IGCLLVM::FixedVectorType* instType = dyn_cast<IGCLLVM::FixedVectorType>(BI->getType());
    // Only need handling for vector binary ops
    if (!instType) return;

    // Prepare empty SCM entry for the instruction
    SCMEntry* newEntry = getSCMEntry(BI);

    // Get additional info from instruction
    unsigned numElements = int_cast<unsigned>(instType->getNumElements());

    // Obtain scalarized arguments
    SmallVector<Value*, MAX_INPUT_VECTOR_WIDTH>operand0;
    SmallVector<Value*, MAX_INPUT_VECTOR_WIDTH>operand1;
    bool op0IsConst, op1IsConst;

    obtainScalarizedValues(operand0, &op0IsConst, BI->getOperand(0), BI);
    obtainScalarizedValues(operand1, &op1IsConst, BI->getOperand(1), BI);

    // If both arguments are constants, don't bother Scalarizing inst
    if (op0IsConst && op1IsConst) return;

    // Generate new (scalar) instructions
    SmallVector<Value*, MAX_INPUT_VECTOR_WIDTH>newScalarizedInsts;
    newScalarizedInsts.resize(numElements);
    for (unsigned dup = 0; dup < numElements; dup++)
    {
        Value* Val = BinaryOperator::Create(
            BI->getOpcode(),
            operand0[dup],
            operand1[dup],
            BI->getName(),
            BI
        );
        if (BinaryOperator * BO = dyn_cast<BinaryOperator>(Val)) {
            // Copy overflow flags if any.
            if (isa<OverflowingBinaryOperator>(BO)) {
                BO->setHasNoSignedWrap(BI->hasNoSignedWrap());
                BO->setHasNoUnsignedWrap(BI->hasNoUnsignedWrap());
            }
            // Copy exact flag if any.
            if (isa<PossiblyExactOperator>(BO))
                BO->setIsExact(BI->isExact());
            // Copy fast math flags if any.
            if (isa<FPMathOperator>(BO))
                BO->setFastMathFlags(BI->getFastMathFlags());
        }
        newScalarizedInsts[dup] = Val;
    }

    // Add new value/s to SCM
    updateSCMEntryWithValues(newEntry, &(newScalarizedInsts[0]), BI, true);

    // Remove original instruction
    m_removedInsts.insert(BI);
}

void ScalarizeFunction::scalarizeInstruction(CmpInst* CI)
{
    V_PRINT(scalarizer, "\t\tCompare instruction\n");
    IGC_ASSERT_MESSAGE(CI, "instruction type dynamic cast failed");
    IGCLLVM::FixedVectorType* instType = dyn_cast<IGCLLVM::FixedVectorType>(CI->getType());
    // Only need handling for vector compares
    if (!instType) return;

    // Prepare empty SCM entry for the instruction
    SCMEntry* newEntry = getSCMEntry(CI);

    // Get additional info from instruction
    unsigned numElements = int_cast<unsigned>(instType->getNumElements());

    // Obtain scalarized arguments

    SmallVector<Value*, MAX_INPUT_VECTOR_WIDTH>operand0;
    SmallVector<Value*, MAX_INPUT_VECTOR_WIDTH>operand1;
    bool op0IsConst, op1IsConst;

    obtainScalarizedValues(operand0, &op0IsConst, CI->getOperand(0), CI);
    obtainScalarizedValues(operand1, &op1IsConst, CI->getOperand(1), CI);

    // If both arguments are constants, don't bother Scalarizing inst
    if (op0IsConst && op1IsConst) return;

    // Generate new (scalar) instructions
    SmallVector<Value*, MAX_INPUT_VECTOR_WIDTH>newScalarizedInsts;
    newScalarizedInsts.resize(numElements);
    for (unsigned dup = 0; dup < numElements; dup++)
    {
        newScalarizedInsts[dup] = CmpInst::Create(
            CI->getOpcode(),
            CI->getPredicate(),
            operand0[dup],
            operand1[dup],
            CI->getName(),
            CI
        );
    }

    // Add new value/s to SCM
    updateSCMEntryWithValues(newEntry, &(newScalarizedInsts[0]), CI, true);

    // Remove original instruction
    m_removedInsts.insert(CI);
}

void ScalarizeFunction::scalarizeInstruction(CastInst* CI)
{
    V_PRINT(scalarizer, "\t\tCast instruction\n");
    IGC_ASSERT_MESSAGE(CI, "instruction type dynamic cast failed");
    IGCLLVM::FixedVectorType* instType = dyn_cast<IGCLLVM::FixedVectorType>(CI->getType());

    // For BitCast - we only scalarize if src and dst types have same vector length
    if (isa<BitCastInst>(CI))
    {
        if (!instType) return recoverNonScalarizableInst(CI);
        IGCLLVM::FixedVectorType* srcType = dyn_cast<IGCLLVM::FixedVectorType>(CI->getOperand(0)->getType());
        if (!srcType || (instType->getNumElements() != srcType->getNumElements()))
        {
            return recoverNonScalarizableInst(CI);
        }
    }

    // Only need handling for vector cast
    if (!instType) return;

    // Prepare empty SCM entry for the instruction
    SCMEntry* newEntry = getSCMEntry(CI);

    // Get additional info from instruction
    unsigned numElements = int_cast<unsigned>(instType->getNumElements());
    IGC_ASSERT_MESSAGE(
        isa<IGCLLVM::FixedVectorType>(CI->getOperand(0)->getType()),
        "unexpected type!");
    IGC_ASSERT_MESSAGE(
        cast<IGCLLVM::FixedVectorType>(CI->getOperand(0)->getType())
                ->getNumElements() == numElements,
        "unexpected vector width");

    // Obtain scalarized argument
    SmallVector<Value*, MAX_INPUT_VECTOR_WIDTH>operand0;
    bool op0IsConst;

    obtainScalarizedValues(operand0, &op0IsConst, CI->getOperand(0), CI);

    // If argument is a constant, don't bother Scalarizing inst
    if (op0IsConst) return;

    // Obtain type, which ever scalar cast will cast-to
    Type* scalarDestType = instType->getElementType();

    // Generate new (scalar) instructions
    SmallVector<Value*, MAX_INPUT_VECTOR_WIDTH>newScalarizedInsts;
    newScalarizedInsts.resize(numElements);
    for (unsigned dup = 0; dup < numElements; dup++)
    {
        newScalarizedInsts[dup] = CastInst::Create(
            CI->getOpcode(),
            operand0[dup],
            scalarDestType,
            CI->getName(),
            CI
        );
    }

    // Add new value/s to SCM
    updateSCMEntryWithValues(newEntry, &(newScalarizedInsts[0]), CI, true);

    // Remove original instruction
    m_removedInsts.insert(CI);
}

void ScalarizeFunction::scalarizeInstruction(PHINode* PI)
{
    V_PRINT(scalarizer, "\t\tPHI instruction\n");
    IGC_ASSERT_MESSAGE(PI, "instruction type dynamic cast failed");
    IGCLLVM::FixedVectorType* instType = dyn_cast<IGCLLVM::FixedVectorType>(PI->getType());
    // Only need handling for vector PHI
    if (!instType) return;

    // Obtain number of incoming nodes \ PHI values
    unsigned numValues = PI->getNumIncomingValues();

    // Normally, a phi would be scalarized and a collection of
    // extractelements would be emitted for each value.  Since
    // VME payload CVariables don't necessarily match the size
    // of the llvm type, keep these phis vectorized here so we
    // can emit the appropriate movs in emitVectorCopy() when
    // emitting movs for phis.
    for (unsigned i = 0; i < numValues; i++)
    {
        auto* Op = PI->getIncomingValue(i);

        if (auto * GII = dyn_cast<GenIntrinsicInst>(Op))
        {
            switch (GII->getIntrinsicID())
            {
            case GenISAIntrinsic::GenISA_vmeSendIME2:
            case GenISAIntrinsic::GenISA_vmeSendFBR2:
            case GenISAIntrinsic::GenISA_vmeSendSIC2:
                recoverNonScalarizableInst(PI);
                return;

            default: break;
            }
        }
    }

    {
        // If PHI is used in insts that take vector as operands, keep this vector phi.
        // With the vector phi, variable alias can do a better job. Otherwise, more mov
        // insts could be generated.
        DenseMap<PHINode*, int> visited;
        SmallVector<PHINode*, 8> phis;
        phis.push_back(PI);
        while (!phis.empty())
        {
            PHINode* PN = phis.back();
            phis.pop_back();
            for (auto U : PN->users())
            {
                if (GenIntrinsicInst * GII = dyn_cast<GenIntrinsicInst>(U))
                {
                    switch (GII->getIntrinsicID())
                    {
                    default:
                        break;
                    case GenISAIntrinsic::GenISA_sub_group_dpas:
                    case GenISAIntrinsic::GenISA_dpas:
                    case GenISAIntrinsic::GenISA_simdBlockWrite:
                        recoverNonScalarizableInst(PI);
                        return;
                    }
                }
                else if (PHINode * N = dyn_cast<PHINode>(U))
                {
                    if (visited.count(N) == 0) {
                        visited[N] = 1;
                        phis.push_back(N);
                    }
                }
            }
        }
        visited.clear();
        phis.clear();
    }


    // Prepare empty SCM entry for the instruction
    SCMEntry* newEntry = getSCMEntry(PI);

    // Get additional info from instruction
    Type* scalarType = instType->getElementType();
    unsigned numElements = int_cast<unsigned>(instType->getNumElements());

    // Create new (empty) PHI nodes, and place them.
    SmallVector<Value*, MAX_INPUT_VECTOR_WIDTH>newScalarizedPHI;
    newScalarizedPHI.resize(numElements);
    for (unsigned i = 0; i < numElements; i++)
    {
        newScalarizedPHI[i] = PHINode::Create(scalarType, numValues, PI->getName(), PI);
    }

    // Iterate over incoming values in vector PHI, and fill scalar PHI's accordingly
    SmallVector<Value*, MAX_INPUT_VECTOR_WIDTH>operand;

    for (unsigned j = 0; j < numValues; j++)
    {
        // Obtain scalarized arguments
        obtainScalarizedValues(operand, NULL, PI->getIncomingValue(j), PI);

        // Fill all scalarized PHI nodes with scalar arguments
        for (unsigned i = 0; i < numElements; i++)
        {
            cast<PHINode>(newScalarizedPHI[i])->addIncoming(operand[i], PI->getIncomingBlock(j));
        }
    }

    // Add new value/s to SCM
    updateSCMEntryWithValues(newEntry, &(newScalarizedPHI[0]), PI, true);

    // Remove original instruction
    m_removedInsts.insert(PI);
}

void ScalarizeFunction::scalarizeInstruction(SelectInst* SI)
{
    V_PRINT(scalarizer, "\t\tSelect instruction\n");
    IGC_ASSERT_MESSAGE(SI, "instruction type dynamic cast failed");
    IGCLLVM::FixedVectorType* instType = dyn_cast<IGCLLVM::FixedVectorType>(SI->getType());
    // Only need handling for vector select
    if (!instType) return;

    // Prepare empty SCM entry for the instruction
    SCMEntry* newEntry = getSCMEntry(SI);

    // Get additional info from instruction
    unsigned numElements = int_cast<unsigned>(instType->getNumElements());

    // Obtain scalarized arguments (select inst has 3 arguments: Cond, TrueVal, FalseVal)
    SmallVector<Value*, MAX_INPUT_VECTOR_WIDTH>condOp;
    SmallVector<Value*, MAX_INPUT_VECTOR_WIDTH>trueValOp;
    SmallVector<Value*, MAX_INPUT_VECTOR_WIDTH>falseValOp;

    obtainScalarizedValues(trueValOp, NULL, SI->getTrueValue(), SI);
    obtainScalarizedValues(falseValOp, NULL, SI->getFalseValue(), SI);

    // Check if condition is a vector.
    Value* conditionVal = SI->getCondition();
    if (isa<VectorType>(conditionVal->getType()))
    {
        // Obtain scalarized breakdowns of condition
        obtainScalarizedValues(condOp, NULL, conditionVal, SI);
    }
    else
    {
        condOp.resize(numElements);
        // Broadcast the (scalar) condition, to be used by all the insruction breakdowns
        for (unsigned i = 0; i < numElements; i++) condOp[i] = conditionVal;
    }

    // Generate new (scalar) instructions
    SmallVector<Value*, MAX_INPUT_VECTOR_WIDTH>newScalarizedInsts;
    newScalarizedInsts.resize(numElements);
    for (unsigned dup = 0; dup < numElements; dup++)
    {
        // Small optimization: Some scalar selects may be redundant (trueVal == falseVal)
        if (trueValOp[dup] != falseValOp[dup])
        {
            newScalarizedInsts[dup] = SelectInst::Create(
                condOp[dup],
                trueValOp[dup],
                falseValOp[dup],
                SI->getName(),
                SI
            );
        }
        else
        {
            // just "connect" the destination value to the true value input
            newScalarizedInsts[dup] = trueValOp[dup];
        }
    }

    // Add new value/s to SCM
    updateSCMEntryWithValues(newEntry, &(newScalarizedInsts[0]), SI, true);

    // Remove original instruction
    m_removedInsts.insert(SI);
}

void ScalarizeFunction::scalarizeInstruction(ExtractElementInst* EI)
{
    V_PRINT(scalarizer, "\t\tExtractElement instruction\n");
    IGC_ASSERT_MESSAGE(EI, "instruction type dynamic cast failed");

    // Proper scalarization makes "extractElement" instructions redundant
    // Only need to "follow" the scalar element (as the input vector was
    // already scalarized)
    Value* vectorValue = EI->getOperand(0);
    Value* scalarIndexVal = EI->getOperand(1);

    // If the index is not a constant - we cannot statically remove this inst
    if (!isa<ConstantInt>(scalarIndexVal)) return recoverNonScalarizableInst(EI);

    // Obtain the scalarized operands
    SmallVector<Value*, MAX_INPUT_VECTOR_WIDTH>operand;
    obtainScalarizedValues(operand, NULL, vectorValue, EI);

    // Connect the "extracted" value to all its consumers
    uint64_t scalarIndex = cast<ConstantInt>(scalarIndexVal)->getZExtValue();
    auto valueVType = cast<IGCLLVM::FixedVectorType>(vectorValue->getType());
    if (static_cast<unsigned int>(scalarIndex) < (unsigned)valueVType->getNumElements())
    {
        IGC_ASSERT_MESSAGE(NULL != operand[static_cast<unsigned int>(scalarIndex)], "SCM error");

        if (IGC_IS_FLAG_ENABLED(UseOffsetInLocation))
        {
            // Metadata "implicitGlobalID" must be propagated to a new instruction as a WA
            // for missing meta data preservation in this pass. When a general fix is applied
            // then instructions below for this specific propagation must be removed.
            Value* pNewVal = operand[static_cast<unsigned int>(scalarIndex)];

            if (MDNode* pEIMD = EI->getMetadata("implicitGlobalID"))
            {
                // Compute thread and group identification instructions must have 'Output' attribute
                // added later during compilation. The implicitGlobalID metadata attached to this
                // instruction must be assigned to a new instruction, which replaces this instruction.
                // Unfortunatelly, replaceAllUsesWith() will not ensure such propagation.
                Instruction* pNewInst = dyn_cast_or_null<llvm::Instruction>(pNewVal);
                IGC_ASSERT_MESSAGE(pNewInst, "Missing implicit global ID instruction");

                pNewInst->copyMetadata(*EI);
            }
        }

        // Replace all users of this inst, with the extracted scalar value
        EI->replaceAllUsesWith(operand[static_cast<unsigned int>(scalarIndex)]);
    }
    else
    {
        IGC_ASSERT_MESSAGE(0, "The instruction extractElement is out of bounds.");
        EI->replaceAllUsesWith(UndefValue::get(valueVType->getElementType()));
    }

    // Remove original instruction
    m_removedInsts.insert(EI);
}

void ScalarizeFunction::scalarizeInstruction(InsertElementInst* II)
{
    V_PRINT(scalarizer, "\t\tInsertElement instruction\n");
    IGC_ASSERT_MESSAGE(II, "instruction type dynamic cast failed");

    // Proper scalarization makes "InsertElement" instructions redundant.
    // Only need to "follow" the scalar elements and update in SCM
    Value* sourceVectorValue = II->getOperand(0);
    Value* sourceScalarValue = II->getOperand(1);
    Value* scalarIndexVal = II->getOperand(2);

    // If the index is not a constant - we cannot statically remove this inst
    if (!isa<ConstantInt>(scalarIndexVal)) return recoverNonScalarizableInst(II);

    // Prepare empty SCM entry for the instruction
    SCMEntry* newEntry = getSCMEntry(II);

    IGC_ASSERT_MESSAGE(isa<ConstantInt>(scalarIndexVal), "inst arguments error");
    uint64_t scalarIndex = cast<ConstantInt>(scalarIndexVal)->getZExtValue();
    IGC_ASSERT_MESSAGE(
        scalarIndex <
            dyn_cast<IGCLLVM::FixedVectorType>(II->getType())->getNumElements(),
        "index error");

    // Obtain breakdown of input vector
    SmallVector<Value*, MAX_INPUT_VECTOR_WIDTH>scalarValues;
    if (isa<UndefValue>(sourceVectorValue))
    {
        // Scalarize the undef value (generate a scalar undef)
        IGCLLVM::FixedVectorType* inputVectorType = dyn_cast<IGCLLVM::FixedVectorType>(sourceVectorValue->getType());
        IGC_ASSERT_MESSAGE(inputVectorType, "expected vector argument");

        UndefValue* undefVal = UndefValue::get(inputVectorType->getElementType());

        // fill new SCM entry with UNDEFs and the new value
        scalarValues.resize(static_cast<unsigned int>(inputVectorType->getNumElements()));
        for (unsigned j = 0; j < inputVectorType->getNumElements(); j++)
        {
            scalarValues[j] = undefVal;
        }
        scalarValues[static_cast<unsigned int>(scalarIndex)] = sourceScalarValue;
    }
    else
    {
        // Obtain the scalar values of the input vector
        obtainScalarizedValues(scalarValues, NULL, sourceVectorValue, II);
        // Add the new element
        scalarValues[static_cast<unsigned int>(scalarIndex)] = sourceScalarValue;
    }

    // Add new value/s to SCM
    updateSCMEntryWithValues(newEntry, &(scalarValues[0]), II, true, false);

    // Remove original instruction
    m_removedInsts.insert(II);
}

void ScalarizeFunction::scalarizeInstruction(ShuffleVectorInst* SI)
{
    V_PRINT(scalarizer, "\t\tShuffleVector instruction\n");
    IGC_ASSERT_MESSAGE(nullptr != SI, "instruction type dynamic cast failed");

    // Proper scalarization makes "ShuffleVector" instructions redundant.
    // Only need to "follow" the scalar elements and update in SCM

    // Grab input vectors types and width
    Value* sourceVector0Value = SI->getOperand(0);
    IGC_ASSERT(nullptr != sourceVector0Value);
    Value* sourceVector1Value = SI->getOperand(1);
    IGC_ASSERT(nullptr != sourceVector1Value);
    IGCLLVM::FixedVectorType* const inputType = dyn_cast<IGCLLVM::FixedVectorType>(sourceVector0Value->getType());
    IGC_ASSERT_MESSAGE(nullptr != inputType, "vector input error");
    IGC_ASSERT_MESSAGE(inputType == sourceVector1Value->getType(), "vector input error");
    unsigned sourceVectorWidth = int_cast<unsigned>(inputType->getNumElements());

    // generate an array of values (pre-shuffle), which concatenates both vectors
    SmallVector<Value*, MAX_INPUT_VECTOR_WIDTH>allValues;
    allValues.resize(2 * sourceVectorWidth);

    // Obtain scalarized input values (into concatenated array). if vector was Undef - keep NULL.
    if (!isa<UndefValue>(sourceVector0Value))
    {
        obtainScalarizedValues(allValues, NULL, sourceVector0Value, SI, 0);
    }
    if (!isa<UndefValue>(sourceVector1Value))
    {
        // Place values, starting in the middle of concatenated array
        obtainScalarizedValues(allValues, NULL, sourceVector1Value, SI, sourceVectorWidth);
    }

    // Generate array for shuffled scalar values
    SmallVector<Value*, MAX_INPUT_VECTOR_WIDTH>newVector;
    unsigned width = int_cast<unsigned>(cast<IGCLLVM::FixedVectorType>(SI->getType())->getNumElements());

    // Generate undef value, which may be needed as some scalar elements
    UndefValue* undef = UndefValue::get(inputType->getElementType());

    newVector.resize(width);
    // Go over shuffle order, and place scalar values in array
    for (unsigned i = 0; i < width; i++)
    {
        int maskValue = SI->getMaskValue(i);
        if (maskValue >= 0 && NULL != allValues[maskValue])
        {
            newVector[i] = allValues[maskValue];
        }
        else
        {
            newVector[i] = undef;
        }
    }

    // Create the new SCM entry
    SCMEntry* newEntry = getSCMEntry(SI);
    updateSCMEntryWithValues(newEntry, &(newVector[0]), SI, true, false);

    // Remove original instruction
    m_removedInsts.insert(SI);
}

void ScalarizeFunction::scalarizeInstruction(CallInst* CI)
{
    V_PRINT(scalarizer, "\t\tCall instruction\n");
    IGC_ASSERT_MESSAGE(CI, "instruction type dynamic cast failed");

    recoverNonScalarizableInst(CI);
}

void ScalarizeFunction::scalarizeInstruction(AllocaInst* AI)
{
    V_PRINT(scalarizer, "\t\tAlloca instruction\n");
    IGC_ASSERT_MESSAGE(AI, "instruction type dynamic cast failed");

    return recoverNonScalarizableInst(AI);
}

void ScalarizeFunction::scalarizeInstruction(GetElementPtrInst* GI)
{
    V_PRINT(scalarizer, "\t\tGEP instruction\n");
    IGC_ASSERT_MESSAGE(GI, "instruction type dynamic cast failed");

    // If it has more than one index, leave it as is.
    if (GI->getNumIndices() != 1)
    {
        return recoverNonScalarizableInst(GI);
    }
    Value* baseValue = GI->getOperand(0);
    Value* indexValue = GI->getOperand(1);

    // If it's not a vector instruction, leave it as is.
    if (!baseValue->getType()->isVectorTy() && !indexValue->getType()->isVectorTy())
    {
        return recoverNonScalarizableInst(GI);
    }
    SmallVector<Value*, MAX_INPUT_VECTOR_WIDTH>operand1;
    SmallVector<Value*, MAX_INPUT_VECTOR_WIDTH>operand2;
    Type* ptrTy;
    unsigned width = 1;

    if (baseValue->getType()->isVectorTy())
    {
        width = int_cast<unsigned>(dyn_cast<IGCLLVM::FixedVectorType>(baseValue->getType())->getNumElements());
        // Obtain the scalarized operands
        obtainScalarizedValues(operand1, NULL, baseValue, GI);
        ptrTy = dyn_cast<VectorType>(baseValue->getType())->getElementType();
    }
    else
    {
        ptrTy = baseValue->getType();
    }
    if (indexValue->getType()->isVectorTy())
    {
        width = int_cast<unsigned>(dyn_cast<IGCLLVM::FixedVectorType>(indexValue->getType())->getNumElements());
        // Obtain the scalarized operands
        obtainScalarizedValues(operand2, NULL, indexValue, GI);
    }
    IGC_ASSERT_MESSAGE(width > 1, "expected vector instruction");
    SmallVector<Value*, MAX_INPUT_VECTOR_WIDTH>scalarValues;
    scalarValues.resize(width);

    Value* assembledVector = UndefValue::get(IGCLLVM::FixedVectorType::get(ptrTy, width));
    for (unsigned i = 0; i < width; ++i)
    {
        auto op1 = baseValue->getType()->isVectorTy() ? operand1[i] : baseValue;
        auto op2 = indexValue->getType()->isVectorTy() ? operand2[i] : indexValue;

        Type *BaseTy = cast<PointerType>(op1->getType())->getPointerElementType();
        Value* newGEP = GetElementPtrInst::Create(BaseTy, op1, op2, "", GI);
        Value* constIndex = ConstantInt::get(Type::getInt32Ty(context()), i);
        Instruction* insert = InsertElementInst::Create(assembledVector,
            newGEP, constIndex, "assembled.vect", GI);
        assembledVector = insert;
        scalarValues[i] = newGEP;

        V_PRINT(scalarizer,
            "\t\t\tCreated vector assembly inst:" << *assembledVector << "\n");
    }
    // Prepare empty SCM entry for the new instruction
    SCMEntry* newEntry = getSCMEntry(assembledVector);
    // Add new value/s to SCM
    updateSCMEntryWithValues(newEntry, &(scalarValues[0]), assembledVector, true);
    GI->replaceAllUsesWith(assembledVector);

    // Remove original instruction
    m_removedInsts.insert(GI);
}

void ScalarizeFunction::obtainScalarizedValues(SmallVectorImpl<Value*>& retValues, bool* retIsConstant,
    Value* origValue, Instruction* origInst, int destIdx)
{
    V_PRINT(scalarizer, "\t\t\tObtaining scalar value... " << *origValue << "\n");

    IGCLLVM::FixedVectorType* origType = dyn_cast<IGCLLVM::FixedVectorType>(origValue->getType());
    IGC_ASSERT_MESSAGE(origType, "Value must have a vector type!");
    unsigned width = int_cast<unsigned>(origType->getNumElements());

    if (destIdx == -1)
    {
        destIdx = 0;
        retValues.resize(width);
    }

    if (NULL != retIsConstant)
    {
        // Set retIsConstant (return value) to true, if the origValue is constant
        if (!isa<Constant>(origValue))
        {
            *retIsConstant = false;
        }
        else
        {
            *retIsConstant = true;
        }
    }

    // Lookup value in SCM
    SCMEntry* currEntry = getScalarizedValues(origValue);
    if (currEntry && (NULL != currEntry->scalarValues[0]))
    {
        // Value was found in SCM
        V_PRINT(scalarizer,
            "\t\t\tFound existing entry in lookup of " << origValue->getName() << "\n");
        for (unsigned i = 0; i < width; i++)
        {
            // Copy values to return array
            IGC_ASSERT_MESSAGE(NULL != currEntry->scalarValues[i], "SCM entry contains NULL value");
            retValues[i + destIdx] = currEntry->scalarValues[i];
        }
    }
    else if (isa<UndefValue>(origValue))
    {
        IGC_ASSERT_MESSAGE(origType, "original value must have a vector type!");
        // value is an undefVal. Break it to element-sized undefs
        V_PRINT(scalarizer, "\t\t\tUndefVal constant\n");
        Value* undefElement = UndefValue::get(origType->getElementType());
        for (unsigned i = 0; i < width; i++)
        {
            retValues[i + destIdx] = undefElement;
        }
    }
    else if (Constant * vectorConst = dyn_cast<Constant>(origValue))
    {
        V_PRINT(scalarizer, "\t\t\tProper constant: " << *vectorConst << "\n");
        // Value is a constant. Break it down to scalars by employing a constant expression
        for (unsigned i = 0; i < width; i++)
        {
            retValues[i + destIdx] = ConstantExpr::getExtractElement(vectorConst,
                ConstantInt::get(Type::getInt32Ty(context()), i));
        }
    }
    else if (isa<Instruction>(origValue) && !currEntry)
    {
        // Instruction not found in SCM. Means it will be defined in a following basic block.
        // Generate a DRL: dummy values, which will be resolved after all scalarization is complete.
        V_PRINT(scalarizer, "\t\t\t*** Not found. Setting DRL. \n");
        Type* dummyType = origType->getElementType();
        Function* dummy_function = getOrCreateDummyFunc(dummyType, origInst->getModule());
        DRLEntry newDRLEntry;
        newDRLEntry.unresolvedInst = origValue;
        newDRLEntry.dummyVals.resize(width);
        for (unsigned i = 0; i < width; i++)
        {
            // Generate dummy "call" instruction (but don't really place in function)
            retValues[i + destIdx] = CallInst::Create(dummy_function);
            newDRLEntry.dummyVals[i] = retValues[i + destIdx];
        }

        // Copy the data into DRL structure
        m_DRL.push_back(newDRLEntry);
    }
    else
    {
        V_PRINT(scalarizer,
            "\t\t\tCreating scalar conversion for " << origValue->getName() << "\n");
        // Value is an Instruction/global/function argument, and was not converted to scalars yet.
        // Create scalar values (break down the vector) and place in SCM:
        //   %scalar0 = extractelement <4 x Type> %vector, i32 0
        //   %scalar1 = extractelement <4 x Type> %vector, i32 1
        //   %scalar2 = extractelement <4 x Type> %vector, i32 2
        //   %scalar3 = extractelement <4 x Type> %vector, i32 3
        // The breaking instructions will be placed the the head of the function, or right
        // after the instruction (if it is an instruction)
        Instruction* locationInst = &*(inst_begin(m_currFunc));
        Instruction* origInstruction = dyn_cast<Instruction>(origValue);
        if (origInstruction)
        {
            BasicBlock::iterator insertLocation(origInstruction);
            ++insertLocation;
            locationInst = &(*insertLocation);
            // If the insert location is PHI, move the insert location to after all PHIs is the block
            if (isa<PHINode>(locationInst))
            {
                locationInst = locationInst->getParent()->getFirstNonPHI();
            }
        }

        // Generate extractElement instructions
        for (unsigned i = 0; i < width; ++i)
        {
            Value* constIndex = ConstantInt::get(Type::getInt32Ty(context()), i);
            retValues[i + destIdx] = ExtractElementInst::Create(origValue, constIndex, "scalar", locationInst);
        }
        SCMEntry* newEntry = getSCMEntry(origValue);
        updateSCMEntryWithValues(newEntry, &(retValues[destIdx]), origValue, false);

    }
}

void ScalarizeFunction::obtainVectorValueWhichMightBeScalarized(Value* vectorVal)
{
    m_usedVectors.insert(vectorVal);
}

void ScalarizeFunction::resolveVectorValues()
{
    SmallSetVector<Value*, ESTIMATED_INST_NUM>::iterator it = m_usedVectors.begin();
    SmallSetVector<Value*, ESTIMATED_INST_NUM>::iterator e = m_usedVectors.end();
    for (; it != e; ++it) {
        obtainVectorValueWhichMightBeScalarizedImpl(*it);
    }
}

void ScalarizeFunction::obtainVectorValueWhichMightBeScalarizedImpl(Value* vectorVal)
{
    IGC_ASSERT_MESSAGE(isa<VectorType>(vectorVal->getType()), "Must be a vector type");
    if (isa<UndefValue>(vectorVal)) return;

    // ONLY IF the value appears in the SCM - there is a chance it was removed.
    if (!m_SCM.count(vectorVal)) return;
    SCMEntry* valueEntry = m_SCM[vectorVal];

    // Check in SCM entry, if value was really removed
    if (false == valueEntry->isOriginalVectorRemoved) return;

    V_PRINT(scalarizer, "\t\t\tTrying to use a removed value. Reassembling it...\n");
    // The vector value was removed. Need to reassemble it...
    //   %assembled.vect.0 = insertelement <4 x type> undef             , type %scalar.0, i32 0
    //   %assembled.vect.1 = insertelement <4 x type> %indx.vect.0, type %scalar.1, i32 1
    //   %assembled.vect.2 = insertelement <4 x type> %indx.vect.1, type %scalar.2, i32 2
    //   %assembled.vect.3 = insertelement <4 x type> %indx.vect.2, type %scalar.3, i32 3
    // Place the re-assembly in the location where the original instruction was
    Instruction* vectorInst = dyn_cast<Instruction>(vectorVal);
    IGC_ASSERT_MESSAGE(vectorInst, "SCM reports a non-instruction was removed. Should not happen");
    Instruction* insertLocation = vectorInst;
    // If the original instruction was PHI, place the re-assembly only after all PHIs is the block
    if (isa<PHINode>(vectorInst))
    {
        insertLocation = insertLocation->getParent()->getFirstNonPHI();
    }

    Value* assembledVector = UndefValue::get(vectorVal->getType());
    unsigned width = int_cast<unsigned>(dyn_cast<IGCLLVM::FixedVectorType>(vectorVal->getType())->getNumElements());
    for (unsigned i = 0; i < width; i++)
    {
        IGC_ASSERT_MESSAGE(NULL != valueEntry->scalarValues[i], "SCM entry has NULL value");
        Value* constIndex = ConstantInt::get(Type::getInt32Ty(context()), i);
        Instruction* insert = InsertElementInst::Create(assembledVector,
            valueEntry->scalarValues[i], constIndex, "assembled.vect", insertLocation);
        VectorizerUtils::SetDebugLocBy(insert, vectorInst);
        assembledVector = insert;
        V_PRINT(scalarizer,
            "\t\t\tCreated vector assembly inst:" << *assembledVector << "\n");
    }
    // Replace the uses of "vectorVal" with the new vector
    vectorVal->replaceAllUsesWith(assembledVector);

    // create SCM entry to represent the new vector value..
    SCMEntry* newEntry = getSCMEntry(assembledVector);
    updateSCMEntryWithValues(newEntry, &(valueEntry->scalarValues[0]), assembledVector, false);
}

ScalarizeFunction::SCMEntry* ScalarizeFunction::getSCMEntry(Value* origValue)
{
    // origValue may be scalar or vector:
    // When the actual returned value of the CALL inst is different from the The "proper" retval
    // the original CALL inst value may be scalar (i.e. int2 is converted to double which is a scalar)
    IGC_ASSERT_MESSAGE(!isa<UndefValue>(origValue), "Trying to create SCM to undef value...");
    if (m_SCM.count(origValue)) return m_SCM[origValue];

    // If index of next free SCMEntry overflows the array size, create a new array
    if (m_SCMArrayLocation == ESTIMATED_INST_NUM)
    {
        // Create new SCMAllocationArray, push it to the vector of arrays, and set free index to 0
        m_SCMAllocationArray = new SCMEntry[ESTIMATED_INST_NUM];
        m_SCMArrays.push_back(m_SCMAllocationArray);
        m_SCMArrayLocation = 0;
    }
    // Allocate the new entry, and increment the free-element index
    SCMEntry* newEntry = &(m_SCMAllocationArray[m_SCMArrayLocation++]);

    // Set all primary data in entry
    if (newEntry->scalarValues.size())
        newEntry->scalarValues[0] = NULL;
    else
        newEntry->scalarValues.push_back(NULL);

    newEntry->isOriginalVectorRemoved = false;

    // Insert new entry to SCM map
    m_SCM.insert(std::pair<Value*, SCMEntry*>(origValue, newEntry));

    return newEntry;
}

void ScalarizeFunction::updateSCMEntryWithValues(ScalarizeFunction::SCMEntry* entry,
    Value* scalarValues[],
    const Value* origValue,
    bool isOrigValueRemoved,
    bool matchDbgLoc)
{
    IGC_ASSERT_MESSAGE((origValue->getType()->isArrayTy() || origValue->getType()->isVectorTy()), "only Vector values are supported");
    unsigned width = int_cast<unsigned>(dyn_cast<IGCLLVM::FixedVectorType>(origValue->getType())->getNumElements());

    entry->isOriginalVectorRemoved = isOrigValueRemoved;

    entry->scalarValues.resize(width);

    for (unsigned i = 0; i < width; ++i)
    {
        IGC_ASSERT_MESSAGE(NULL != scalarValues[i], "Trying to fill SCM with NULL value");
        entry->scalarValues[i] = scalarValues[i];
    }

    if (matchDbgLoc)
    {
        if (const Instruction * origInst = dyn_cast<Instruction>(origValue))
        {
            for (unsigned i = 0; i < width; ++i)
            {
                Instruction* scalarInst = dyn_cast<Instruction>(scalarValues[i]);
                if (scalarInst) VectorizerUtils::SetDebugLocBy(scalarInst, origInst);
            }
        }
    }
}

ScalarizeFunction::SCMEntry* ScalarizeFunction::getScalarizedValues(Value* origValue)
{
    if (m_SCM.count(origValue)) return m_SCM[origValue];
    return NULL;
}

void ScalarizeFunction::releaseAllSCMEntries()
{
    IGC_ASSERT_MESSAGE(m_SCMArrays.size() > 0, "At least one buffer is allocated at all times");
    while (m_SCMArrays.size() > 1)
    {
        // If there are additional allocated entry Arrays, release all of them (leave only the first)
        SCMEntry* popEntry = m_SCMArrays.pop_back_val();
        delete[] popEntry;
    }
    // set the "current" array pointer to the only remaining array
    m_SCMAllocationArray = m_SCMArrays[0];
    m_SCMArrayLocation = 0;
}

void ScalarizeFunction::resolveDeferredInstructions()
{
    llvm::MapVector<Value*, Value*> dummyToScalarMap;

    // lambda to check if a value is a dummy instruction
    auto isDummyValue = [this](Value* val) -> bool
    {
        auto* call = dyn_cast<CallInst>(val);
        if (!call) return false;
        // If the Value is one of the dummy functions that we created.
        for (const auto& function : createdDummyFunctions) {
            if (call->getCalledFunction() == function.second)
                return true;
        }

        return false;
    };

    for (auto deferredEntry = m_DRL.begin(); m_DRL.size() > 0;)
    {
        DRLEntry current = *deferredEntry;
        V_PRINT(scalarizer,
            "\tDRL Going to fix value of orig inst: " << *current.unresolvedInst << "\n");
        Instruction* vectorInst = dyn_cast<Instruction>(current.unresolvedInst);
        IGC_ASSERT_MESSAGE(vectorInst, "DRL only handles unresolved instructions");

        IGCLLVM::FixedVectorType* currType = dyn_cast<IGCLLVM::FixedVectorType>(vectorInst->getType());
        IGC_ASSERT_MESSAGE(currType, "Cannot have DRL of non-vector value");
        unsigned width = int_cast<unsigned>(currType->getNumElements());

        SCMEntry* currentInstEntry = getSCMEntry(vectorInst);

        if (currentInstEntry->scalarValues[0] == NULL)
        {
            V_PRINT(scalarizer, "\t\tInst was not scalarized yet, Scalarizing now...\n");
            SmallVector<Value*, MAX_INPUT_VECTOR_WIDTH>newInsts;

            // This instruction was not scalarized. Create scalar values and place in SCM.
            //   %scalar0 = extractelement <4 x Type> %vector, i32 0
            //   %scalar1 = extractelement <4 x Type> %vector, i32 1
            //   %scalar2 = extractelement <4 x Type> %vector, i32 2
            //   %scalar3 = extractelement <4 x Type> %vector, i32 3
            // Place the vector break-down instructions right after the actual vector
            BasicBlock::iterator insertLocation(vectorInst);
            ++insertLocation;
            // If the insert location is PHI, move the insert location to after all PHIs is the block
            if (isa<PHINode>(insertLocation))
            {
                insertLocation = BasicBlock::iterator(insertLocation->getParent()->getFirstNonPHI());
            }

            newInsts.resize(width);
            for (unsigned i = 0; i < width; i++)
            {
                Value *constIndex = ConstantInt::get(Type::getInt32Ty(context()), i);
                Instruction *EE = ExtractElementInst::Create(vectorInst, constIndex, "scalar", &(*insertLocation));
                newInsts[i] = EE;
            }
            updateSCMEntryWithValues(currentInstEntry, &(newInsts[0]), vectorInst, false);
        }

        bool totallyResolved = true;

        // Connect the resolved values to their consumers
        for (unsigned i = 0; i < width; ++i)
        {
            Instruction* dummyInst = dyn_cast<Instruction>(current.dummyVals[i]);
            IGC_ASSERT_MESSAGE(dummyInst, "Dummy values are all instructions!");
            Value* scalarVal = currentInstEntry->scalarValues[i];

            if (isDummyValue(scalarVal))
            {
                // It's possible the scalar values are not resolved earlier and are themselves dummy instructions.
                // In order to find the real value, we look in the map to see which value replaced it.
                if (dummyToScalarMap.count(scalarVal))
                scalarVal = dummyToScalarMap[scalarVal];
                else
                    totallyResolved = false;
            }

            // Save every dummy instruction with the scalar value its replaced with
            dummyToScalarMap[dummyInst] = scalarVal;
        }

        if (totallyResolved)
        {
            m_DRL.erase(deferredEntry);
        }
        else
        {
            deferredEntry++;
        }

        if (deferredEntry == m_DRL.end())
        {
            deferredEntry = m_DRL.begin();
        }
    }

    for ( auto entry : dummyToScalarMap )
    {
        // Replace and erase all dummy instructions (don't use eraseFromParent as the dummy is not in the function)
        Instruction *dummyInst = cast<Instruction>(entry.first);
        dummyInst->replaceAllUsesWith(entry.second);
        dummyInst->deleteValue();
    }

    // clear DRL
    m_DRL.clear();
}

extern "C" FunctionPass* createScalarizerPass(bool selectiveScalarization)
{
    return new ScalarizeFunction(selectiveScalarization);
}