1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2020-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "Compiler/Optimizer/OCLBIUtils.h"
#include "Compiler/Optimizer/ValueTracker.h"
#include "Compiler/MetaDataApi/MetaDataApi.h"
#include "Compiler/DebugInfo/Utils.h"
#include "common/LLVMWarningsPush.hpp"
#include "llvmWrapper/IR/DerivedTypes.h"
#include "common/LLVMWarningsPop.hpp"
#include "Probe/Assertion.h"
#include "IGC/common/StringMacros.hpp"
using namespace llvm;
using namespace IGC;
using namespace IGC::IGCMD;
// This function is called when a gen intrinsic instruction is met during the first step
// of the overall algorithm. It currently supports GenISA_GetBufferPtr only, but it could
// be extended in the future.
Value* ValueTracker::handleGenIntrinsic(GenIntrinsicInst* I)
{
if (I->getIntrinsicID() == GenISAIntrinsic::GenISA_GetBufferPtr)
{
// Reached a GetBufferPtr instruction.
// This will always be true for non-inlined samplers. With the resource pointer change, a GBP is created
// for each argument sampler. However the argument is still required due to how snap_coord WA and normalized
// coords are implemented on compute shaders. The argument pointer will have the resource ID and type
// encoded in its unique addrspace. We can also figure out the addrspace from the GetBufferPtr instruction.
// So if we reach a GBP, search all the arguments for one that matches its encoded addrspace, and return it.
Value* bufIdV = I->getOperand(0);
Value* bufTyV = I->getOperand(1);
IGC_ASSERT(isa<ConstantInt>(bufIdV));
IGC_ASSERT(isa<ConstantInt>(bufTyV));
IGC::BufferType bufType = (IGC::BufferType)(cast<ConstantInt>(bufTyV)->getZExtValue());
unsigned as = IGC::EncodeAS4GFXResource(*bufIdV, bufType, 0);
Function* mainFunc = I->getParent()->getParent();
for (auto& arg : mainFunc->args())
{
unsigned argAS = -1;
if (arg.getType()->isPointerTy())
{
argAS = arg.getType()->getPointerAddressSpace();
}
if (as == argAS)
{
return &arg;
}
}
// If we can't find it via address space, look around in resource allocator.
if (m_pMDUtils)
{
return CImagesBI::CImagesUtils::findImageFromBufferPtr(
*m_pMDUtils,
mainFunc,
bufType,
cast<ConstantInt>(bufIdV)->getZExtValue(),
m_pModMD);
}
IGC_ASSERT_MESSAGE(0, "Found GetBufferPtr but cannot match it with an argument!");
return nullptr;
}
return nullptr;
}
// This function is called when an extract element instruction is met during the first step
// of the overall algorithm. It currently expects that extract element instruction operand will
// be either InsertElementInst, BitCastInst, PtrToIntInst or ShuffleVectorInst. Other operands
// will trigger an assert.
Value* ValueTracker::handleExtractElement(ExtractElementInst* E)
{
uint64_t idx = 0;
if (auto* CI = dyn_cast<ConstantInt>(E->getIndexOperand()))
{
idx = CI->getZExtValue();
}
else
{
IGC_ASSERT_MESSAGE(0, "dynamic index");
return nullptr;
}
Value* baseValue = E->getVectorOperand();
while (true)
{
if (auto* I = dyn_cast<InsertElementInst>(baseValue))
{
auto* pIdx = I->getOperand(2);
if (isa<ConstantInt>(pIdx))
{
if (cast<ConstantInt>(pIdx)->getZExtValue() == idx)
{
baseValue = I->getOperand(1);
break;
}
else
{
baseValue = I->getOperand(0);
}
}
else
{
IGC_ASSERT_MESSAGE(0, "dynamic index");
return nullptr;
}
}
else if (auto* I = dyn_cast<BitCastInst>(baseValue))
{
auto srcVT = dyn_cast<IGCLLVM::FixedVectorType>(I->getSrcTy());
auto dstVT = dyn_cast<IGCLLVM::FixedVectorType>(I->getDestTy());
if (!srcVT || !dstVT) {
// If any of the two types is not a vector type then it is an unknown situation.
// Such a bitcast may have not been thought of and needs implementation or code may have been corrupted.
IGC_ASSERT_MESSAGE(0, "unknown construct!");
return nullptr;
}
auto srcNElts = srcVT->getNumElements();
auto dstNElts = dstVT->getNumElements();
if (srcNElts * 2 != dstNElts) {
IGC_ASSERT_MESSAGE(0, "Can't handle vector bitcast with given sizes");
return nullptr;
}
// Destination vector is twice as long.
// Check if the dstType is twice as narrow.
auto srcVEltType = srcVT->getElementType();
auto dstVEltType = dstVT->getElementType();
auto srcVEltTypeSize = srcVEltType->getPrimitiveSizeInBits();
auto dstVEltTypeSize = dstVEltType->getPrimitiveSizeInBits();
if (srcVEltTypeSize != dstVEltTypeSize * 2) {
IGC_ASSERT_MESSAGE(0, "Can't handle vector bitcast with given types and sizes");
return nullptr;
}
// Destination type is twice as narrow.
// Shift the element index and continue.
idx /= 2;
baseValue = I->getOperand(0);
continue;
}
else if (auto* I = dyn_cast<PtrToIntInst>(baseValue))
{
baseValue = I->getOperand(0);
continue;
}
else if (auto* I = dyn_cast<ShuffleVectorInst>(baseValue))
{
auto mask = I->getShuffleMask();
uint shuffleidx = int_cast<uint>(mask[(uint)idx]);
auto vType = dyn_cast<IGCLLVM::FixedVectorType>(I->getOperand(0)->getType());
baseValue = (shuffleidx < vType->getNumElements()) ?
I->getOperand(0) : I->getOperand(1);
}
else
{
IGC_ASSERT_MESSAGE(0, "unknown construct!");
return nullptr;
}
}
return baseValue;
}
// This function is called when a global variable is met during the first step
// of the overall algorithm. It currently supports global sampler only.
Value* ValueTracker::handleGlobalVariable(GlobalVariable* G)
{
Constant* pSamplerVal = G->getInitializer();
// Add debug info intrinsic for this variable inside the function using this sampler.
Instruction* pEntryPoint = &(*m_Function->getEntryBlock().getFirstInsertionPt());
Utils::UpdateGlobalVarDebugInfo(G, pSamplerVal, pEntryPoint, false);
// Found a global sampler, return it.
return isa<ConstantStruct>(pSamplerVal) ?
pSamplerVal->getAggregateElement(0U) : pSamplerVal;
}
// This function is called when a constant expression is met during the first step
// of the overall algorithm. It currently supports only sampler index retrieving.
Value* ValueTracker::handleConstExpr(ConstantExpr* CE)
{
uint64_t samplerState = 0;
uint64_t samplerIndex = 0;
// To handle Inline samplers defined as global variables
if (m_pMDUtils == nullptr)
{
return nullptr;
}
// Get the sampler Index first
if (CE->getOpcode() == Instruction::PtrToInt)
{
Value* ptrVal = CE->getOperand(0);
if (isa<ConstantPointerNull>(ptrVal))
{
samplerIndex = 0;
}
else if (auto* ptrExpr = dyn_cast<ConstantExpr>(ptrVal))
{
if (ptrExpr->getOpcode() == Instruction::IntToPtr)
{
Value* samplerIdxVal = ptrExpr->getOperand(0);
ConstantInt* C = dyn_cast<ConstantInt>(samplerIdxVal);
if (!C)
{
// Cannot trace, it could be a bindless or indirect access
return nullptr;
}
samplerIndex = int_cast<uint64_t>(C->getZExtValue());
}
else
{
// Cannot trace, it could be a bindless or indirect access
return nullptr;
}
}
else
{
// Cannot trace, it could be a bindless or indirect access
return nullptr;
}
}
else
{
// Cannot trace, it could be a bindless or indirect access
return nullptr;
}
// Get the sampler state value from metadata based on the sampler index
bool samplerIndexFound = false;
if (m_pModMD->FuncMD.find(m_Function) != m_pModMD->FuncMD.end())
{
FunctionMetaData funcMD = m_pModMD->FuncMD.find(m_Function)->second;
ResourceAllocMD resAllocMD = funcMD.resAllocMD;
for (auto i = resAllocMD.inlineSamplersMD.begin(), e = resAllocMD.inlineSamplersMD.end(); i != e; ++i)
{
InlineSamplersMD inlineSamplerMD = *i;
if (samplerIndex == inlineSamplerMD.index)
{
samplerState = inlineSamplerMD.m_Value;
samplerIndexFound = true;
break;
}
}
}
if (samplerIndexFound)
{
Value* samplerConstValue = ConstantInt::getIntegerValue(Type::getInt64Ty(m_Function->getContext()), APInt(64, samplerState));
return samplerConstValue;
}
else
{
// Cannot trace, it could be a bindless or indirect access
return nullptr;
}
}
// This function represents the second step of the overall algorithm. It goes
// down through the tree and looks for the value stored in alloca. In most cases
// it returns the final value (image, sampler or constant). For more complex cases,
// alloca can store a pointer, so we need to get back to the first step of the algorithm
// to continue tracking.
Value* ValueTracker::findAllocaValue(Value* V, const uint depth)
{
if (!V) return nullptr;
for (auto U : V->users())
{
if (visitedValues.find(U) != visitedValues.end()) continue;
visitedValues.insert(U);
if (auto* GEP = dyn_cast<GetElementPtrInst>(U))
{
if (!GEP->hasAllConstantIndices()) {
continue;
}
unsigned numIndices = GEP->getNumIndices();
if (numIndices > depth + 1)
continue;
bool matchingGep = false;
for (unsigned int i = 1; i < numIndices; ++i)
{
if (gepIndices[depth - i]->getZExtValue() == cast<ConstantInt>(GEP->getOperand(i + 1))->getZExtValue())
matchingGep = true;
else
{
matchingGep = false;
break;
}
}
if (!matchingGep)
continue;
unsigned reducedIndices = numIndices - 1;
if (auto leaf = findAllocaValue(GEP, depth - reducedIndices))
{
IGC_ASSERT(gepIndices.size() >= reducedIndices);
gepIndices.resize(gepIndices.size() - reducedIndices);
return leaf;
}
}
else if (auto* CI = dyn_cast<CastInst>(U))
{
if (auto leaf = findAllocaValue(CI, depth))
return leaf;
}
else if (auto* CI = dyn_cast<CallInst>(U))
{
if (CI->getCalledFunction()->getIntrinsicID() == Intrinsic::memcpy)
{
// Continue search in current users, handle the memcpy arg in the tracking later.
workList.push_back(CI->getOperand(1));
}
else if (!CI->getCalledFunction()->isIntrinsic()) // handle user-defined functions
{
for (const auto& OP : CI->operands())
{
if (OP == V)
{
Function* F = CI->getCalledFunction();
unsigned OpNo = OP.getOperandNo();
IGC_ASSERT(F->arg_size() > OpNo);
if (auto leaf = findAllocaValue(F->arg_begin() + OpNo, depth))
{
callInsts.push_back(CI);
return leaf;
}
}
}
}
}
else if (auto* LI = dyn_cast<LoadInst>(U))
{
// Continue tracing load if it's type is a pointer. Example(tracing %1 alloca value):
// %0 = alloca %opencl.image2d_t.read_only addrspace(1)*, align 8
// %1 = alloca %opencl.image2d_t.read_only addrspace(1)*, align 8
// %2 = load %opencl.image2d_t.read_only addrspace(1)*, %opencl.image2d_t.read_only addrspace(1)** %1, align 8
// store %opencl.image2d_t.read_only addrspace(1)* %2, %opencl.image2d_t.read_only addrspace(1)** %0, align 8
// %3 = load % opencl.image2d_t.read_only addrspace(1)*, %opencl.image2d_t.read_only addrspace(1)** %0, align 8
// We cannot ignore load if alloca type is a pointer.
if (LI->getType()->isPointerTy())
{
if (auto leaf = findAllocaValue(LI, depth))
return leaf;
}
}
else if (auto* ST = dyn_cast<StoreInst>(U))
{
auto StoredValue = ST->getValueOperand();
if (StoredValue == V)
{
// If we are here, it means that alloca value is stored into another alloca.
// Check if value is pointer type, if so, it means that our object can be accessed
// through another alloca and we need to continue tracing it.
if (StoredValue->getType()->isPointerTy())
{
if (auto leaf = findAllocaValue(ST->getPointerOperand(), depth))
return leaf;
}
}
else
return ST->getValueOperand();
}
}
return nullptr;
}
// This function represents the first step of the overall algorithm. It goes up through
// the tree and looks for the alloca that stores a value used as a call instruction parameter.
// Once alloca is found, the function findAllocaValue is called which is the second step
// of the algorithm.
Value* ValueTracker::trackValue(Value* I)
{
Value* baseValue = I;
auto isFinalValue = [this](auto V) { return callInsts.empty() && workList.empty() && (V == nullptr || llvm::isa<Argument>(V) || llvm::isa<ConstantInt>(V)); };
while (true)
{
if (isFinalValue(baseValue)) {
return baseValue;
}
else if (baseValue == nullptr) {
if (workList.empty()) return baseValue;
baseValue = workList.back();
workList.pop_back();
}
if (auto* I = dyn_cast<Argument>(baseValue))
{
// If we are here, it means that baseValue is an argument of function not argument of kernel,
// so we need to continue tracking
IGC_ASSERT(!callInsts.empty());
CallInst* CI = callInsts.back();
IGC_ASSERT(CI->getNumOperands() > I->getArgNo());
baseValue = CI->getOperand(I->getArgNo());
// Remove the last call instruction as callee function body has already been processed
// by tracing algorithm
callInsts.pop_back();
}
else if (auto* I = dyn_cast<AllocaInst>(baseValue))
{
// As alloca has been found, proceed with the second step of the algorithm.
baseValue = findAllocaValue(I, gepIndices.size());
}
else if (auto* I = dyn_cast<CallInst>(baseValue))
{
Function* F = I->getCalledFunction();
if (F->getName() == "__translate_sampler_initializer")
{
baseValue = cast<CallInst>(baseValue)->getOperand(0);
}
else if (auto* I = dyn_cast<GenIntrinsicInst>(baseValue))
{
baseValue = handleGenIntrinsic(I);
}
else
{
baseValue = nullptr;
}
}
else if (auto* I = dyn_cast<CastInst>(baseValue))
{
baseValue = I->getOperand(0);
}
else if (auto* I = dyn_cast<ExtractElementInst>(baseValue))
{
baseValue = handleExtractElement(I);
}
else if (auto* I = dyn_cast<GetElementPtrInst>(baseValue))
{
if (!I->hasAllConstantIndices())
return nullptr;
for (unsigned int i = I->getNumIndices(); i > 1; --i)
gepIndices.push_back(cast<ConstantInt>(I->getOperand(i)));
baseValue = I->getOperand(0);
}
else if (auto* I = dyn_cast<LoadInst>(baseValue))
{
Value* addr = I->getPointerOperand();
if (GlobalVariable * globalSampler = dyn_cast<GlobalVariable>(addr->stripPointerCasts()))
{
return handleGlobalVariable(globalSampler);
}
baseValue = addr;
}
else if (auto* I = llvm::dyn_cast<ConstantExpr> (baseValue))
{
baseValue = handleConstExpr(I);
}
else if (auto* I = llvm::dyn_cast<PHINode> (baseValue))
{
if (phiVisited.find(I) != phiVisited.end())
{
return phiVisited[I];
}
// For PHINode check if all operands are the same. That allows
// to continue tracking, otherwise stop tracking.
unsigned num = I->getNumIncomingValues();
bool foundFirst = false;
for (unsigned i = 0; i < num; ++i)
{
Value* op = trackValue(I->getIncomingValue(i));
if (!foundFirst)
{
baseValue = op;
foundFirst = true;
}
else if (op != baseValue)
{
baseValue = nullptr;
break;
}
}
phiVisited.insert(std::make_pair(I, baseValue));
return baseValue;
}
else
{
baseValue = nullptr;
}
}
return nullptr;
}
// This is a static function, created for user convenience, that creates a ValueTracker
// object and triggers an actual tracking.
Value* ValueTracker::track(
CallInst* pCallInst,
const uint index,
const MetaDataUtils* pMdUtils,
const IGC::ModuleMetaData* pModMD)
{
ValueTracker VT(pCallInst->getParent()->getParent(), pMdUtils, pModMD);
Value* baseValue = pCallInst->getOperand(index);
return VT.trackValue(baseValue);
}
|