File: WorkaroundAnalysisPass.cpp

package info (click to toggle)
intel-graphics-compiler 1.0.12504.6-1%2Bdeb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 83,912 kB
  • sloc: cpp: 910,147; lisp: 202,655; ansic: 15,197; python: 4,025; yacc: 2,241; lex: 1,570; pascal: 244; sh: 104; makefile: 25
file content (599 lines) | stat: -rw-r--r-- 24,507 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
/*========================== begin_copyright_notice ============================

Copyright (C) 2017-2021 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

#include "Compiler/WorkaroundAnalysisPass.h"
#include "GenISAIntrinsics/GenIntrinsicInst.h"
#include "GenISAIntrinsics/GenIntrinsics.h"
#include "Compiler/IGCPassSupport.h"
#include "common/LLVMWarningsPush.hpp"
#include "llvmWrapper/IR/DerivedTypes.h"
#include <llvm/Support/CommandLine.h>
#include <llvm/IR/Function.h>
#include <llvm/ADT/SmallVector.h>
#include <llvmWrapper/IR/Intrinsics.h>
#include "common/LLVMWarningsPop.hpp"
#include "Compiler/CISACodeGen/helper.h"
#include "Compiler/CodeGenPublicEnums.h"
#include "Compiler/CodeGenPublic.h"
#include "Probe/Assertion.h"

using namespace llvm;
using namespace IGC;
using namespace IGC::IGCMD;

static cl::opt<bool> EnableFMaxFMinPlusZero(
    "enable-fmax-fmin-plus-zero", cl::init(false), cl::Hidden,
    cl::desc("Enable fmax/fmin + 0.0f flag"));

// Register pass to igc-opt
#define PASS_FLAG "igc-workaround"
#define PASS_DESCRIPTION "Workaround pass used to fix functionality of special cases"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(WorkaroundAnalysis, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_END(WorkaroundAnalysis, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
#undef PASS_ANALYSIS
#undef PASS_CFG_ONLY
#undef PASS_DESCRIPTION
#undef PASS_FLAG

char WorkaroundAnalysis::ID = 0;

// Returns BTI of the texture when resource is not dynamically indexed and when
// resource is not bindless.
int GetSampleCResourceIdx(llvm::CallInst& I)
{
    int textLocation = -1;
    if (SampleIntrinsic * pSamplerLoadInst = dyn_cast<SampleIntrinsic>(&I))
    {
        textLocation = pSamplerLoadInst->getTextureIndex();
        llvm::Value* pArgLocation = pSamplerLoadInst->getOperand(textLocation);
        if (pArgLocation->getType()->isPointerTy())
        {
            uint as = pArgLocation->getType()->getPointerAddressSpace();
            uint bufferIndex;
            bool directIdx;
            const BufferType resourceType = DecodeAS4GFXResource(as, directIdx, bufferIndex);
            if (resourceType == RESOURCE && directIdx)
            {
                return bufferIndex;
            }
        }
    }
    return textLocation;
}

WorkaroundAnalysis::WorkaroundAnalysis()
    : FunctionPass(ID)
{
    initializeWorkaroundAnalysisPass(*PassRegistry::getPassRegistry());
}

bool WorkaroundAnalysis::runOnFunction(Function& F)
{
    m_pCtxWrapper = &getAnalysis<CodeGenContextWrapper>();
    m_pDataLayout = &F.getParent()->getDataLayout();

    LLVM3DBuilder<> builder(F.getContext(), m_pCtxWrapper->getCodeGenContext()->platform.getPlatformInfo());
    m_builder = &builder;
    m_pModule = F.getParent();
    visit(F);
    return true;
}

const unsigned MaxTrackingDepth = 8;

/// IsKnownNotSNaN() - Check whether a value won't be an SNaN. By definition,
/// all Gen instructions on floating pointer values (except FMAX/FMIN, MOV,
/// LOAD) will return QNaN is one of the operand is NaN (either QNaN or SNaN).
static bool IsKnownNotSNaN(Value* V, unsigned Depth = 0) {
    // Is unknown if the maximal depth reaches.
    if (Depth > MaxTrackingDepth)
        return false;

    // SNaN is only possible for floating point values.
    if (!V->getType()->isFloatingPointTy())
        return true;

    // With FP constant, check whether it's SNaN directly.
    if (ConstantFP * CFP = dyn_cast<ConstantFP>(V)) {
        APFloat FVal = CFP->getValueAPF();

        if (!FVal.isNaN())
            return true;

        APInt IVal = FVal.bitcastToAPInt();
        switch (IVal.getBitWidth()) {
        default:
            break;
        case 16: return !IVal[9];
        case 32: return !IVal[22];
        case 64: return !IVal[51];
        }
        return false;
    }

    Instruction* I = dyn_cast<Instruction>(V);
    if (!I)
        return false;

    // Phi-node is known not SNaN if all its incoming values are not SNaN.
    if (PHINode * PN = dyn_cast<PHINode>(V)) {
        bool NotSNaN = true;
        for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
            Value* InVal = PN->getIncomingValue(i);
            if (V == InVal)
                continue;
            NotSNaN = NotSNaN && IsKnownNotSNaN(InVal, Depth + 1);
        }
        return NotSNaN;
    }

    switch (I->getOpcode()) {
    case Instruction::BitCast:
        // SNaN is possible returned after BitCast.
        return false;
    case Instruction::FSub:
        // TODO: Revisit later after unsafe math is considered during source
        // modifier folding in pattern match and/or signed zeros are telled in
        // safe math mode.
        // Skip 0 - x, which may be lowered as '-' source modifier, which won't
        // quietize the NaN.
        if (ConstantFP * CFP = dyn_cast<ConstantFP>(I->getOperand(0))) {
            if (CFP->isZero())
                return false;
        }
        return true;
    case Instruction::Select:
        return IsKnownNotSNaN(I->getOperand(1), Depth + 1) &&
            IsKnownNotSNaN(I->getOperand(2), Depth + 1);
    case Instruction::FAdd:
    case Instruction::FMul:
    case Instruction::FDiv:
        // TODO: List all instructions finally lowered into Gen insts quietize
        // the NaN.
        return true;
    case Instruction::Call:
        if (GenIntrinsicInst * GII = dyn_cast<GenIntrinsicInst>(I)) {
            switch (GII->getIntrinsicID()) {
            case GenISAIntrinsic::GenISA_rsq:
                return true;
            default:
                break;
            }
        }
        else if (IntrinsicInst * II = dyn_cast<IntrinsicInst>(I)) {
            switch (II->getIntrinsicID()) {
            case Intrinsic::sqrt:
            case Intrinsic::powi:
            case Intrinsic::sin:
            case Intrinsic::cos:
            case Intrinsic::pow:
            case Intrinsic::log:
            case Intrinsic::log10:
            case Intrinsic::log2:
            case Intrinsic::exp:
            case Intrinsic::exp2:
            case Intrinsic::floor:
            case Intrinsic::ceil:
            case Intrinsic::trunc:
            case Intrinsic::rint:
            case Intrinsic::nearbyint:
            case Intrinsic::fma:
            case Intrinsic::fmuladd:
            case Intrinsic::maxnum:
            case Intrinsic::minnum:
                // TODO: Do we need to add various conversions to FP?
                // NOTE: fabs since it may be folded as a source modifier.
                // TODO: Revisit fabs later after unsafe math mode is
                // considered during source modifier folding in pattern match.
                return true;
            default:
                break;
            }
        }
        break;
    default:
        break;
    }

    return false;
}

static Constant* getQNaN(Type* Ty) {
    APFloat QNaN = APFloat::getQNaN(Ty->getFltSemantics());
    return ConstantFP::get(Ty->getContext(), QNaN);
}

void WorkaroundAnalysis::visitCallInst(llvm::CallInst& I)
{
    CodeGenContext* pCodeGenCtx = m_pCtxWrapper->getCodeGenContext();

    if (pCodeGenCtx->getModuleMetaData()->enableRangeReduce || IGC_IS_FLAG_ENABLED(EnableTrigFuncRangeReduction))
    {
        if (IntrinsicInst* intrinsicInst = dyn_cast<IntrinsicInst>(&I))
        {
            if (intrinsicInst->getIntrinsicID() == Intrinsic::sin || intrinsicInst->getIntrinsicID() == Intrinsic::cos)
            {
                m_builder->SetInsertPoint(intrinsicInst);
                Value* angle = intrinsicInst->getOperand(0);
                Value* int1_res_s1 = m_builder->CreateFCmpOGE(angle, llvm::ConstantFP::get(m_builder->getFloatTy(), 0.0));
                Value* float_selRes_s = m_builder->CreateSelect(int1_res_s1, llvm::ConstantFP::get(m_builder->getFloatTy(), 6.283185f), llvm::ConstantFP::get(m_builder->getFloatTy(), -6.283185f));
                Value* float_selRes_s4 = m_builder->CreateSelect(int1_res_s1, llvm::ConstantFP::get(m_builder->getFloatTy(), 0.159155f), llvm::ConstantFP::get(m_builder->getFloatTy(), -0.159155f));
                Value* float_res_s5 = m_builder->CreateFMul(float_selRes_s4, angle);
                Value* funcFloor = m_builder->CreateFPToSI(float_res_s5, m_builder->getInt32Ty());
                Value* funcfloorfloat = m_builder->CreateSIToFP(funcFloor, m_builder->getFloatTy());
                Value* float_res_s_i_s = m_builder->CreateFSub(float_res_s5, funcfloorfloat);
                Value* float_res_s6 = m_builder->CreateFMul(float_res_s_i_s, float_selRes_s);
                intrinsicInst->setOperand(0, float_res_s6);

            }
        }
    }



    // TODO: Fix this for all Shaders once and for all
    if (pCodeGenCtx->type == ShaderType::VERTEX_SHADER && pCodeGenCtx->isPOSH())
    {
        if (const GenIntrinsicInst * intr = dyn_cast<GenIntrinsicInst>(&I))
        {
            VertexShaderContext* pShaderCtx = static_cast <VertexShaderContext*>(pCodeGenCtx);
            switch (intr->getIntrinsicID())
            {
            case llvm::GenISAIntrinsic::GenISA_gather4Cptr:
            case llvm::GenISAIntrinsic::GenISA_gather4POCptr:
            case llvm::GenISAIntrinsic::GenISA_gather4POptr:
            case llvm::GenISAIntrinsic::GenISA_gather4ptr:
            case llvm::GenISAIntrinsic::GenISA_sampleptr:
            case llvm::GenISAIntrinsic::GenISA_sampleLptr:
            case llvm::GenISAIntrinsic::GenISA_sampleBCptr:
            case llvm::GenISAIntrinsic::GenISA_sampleBptr:
            case llvm::GenISAIntrinsic::GenISA_sampleCptr:
            case llvm::GenISAIntrinsic::GenISA_sampleDCptr:
            case llvm::GenISAIntrinsic::GenISA_sampleDptr:
            case llvm::GenISAIntrinsic::GenISA_sampleKillPix:
            case llvm::GenISAIntrinsic::GenISA_sampleLCptr:
            case llvm::GenISAIntrinsic::GenISA_sampleinfoptr:
                pShaderCtx->programOutput.m_SamplerCount = 1;
                break;
            default:
                break;
            }
        }
    }


    if (const GenIntrinsicInst * intr = dyn_cast<GenIntrinsicInst>(&I))
    {
        switch (intr->getIntrinsicID())
        {
        case llvm::GenISAIntrinsic::GenISA_gather4POCptr:
        case llvm::GenISAIntrinsic::GenISA_gather4POptr:
            GatherOffsetWorkaround(cast<SamplerGatherIntrinsic>(&I));
            break;
        case GenISAIntrinsic::GenISA_ldmsptr:
            ldmsOffsetWorkaournd(cast<LdMSIntrinsic>(&I));
            break;
        case llvm::GenISAIntrinsic::GenISA_sampleBCptr:
        case llvm::GenISAIntrinsic::GenISA_sampleCptr:
        case llvm::GenISAIntrinsic::GenISA_sampleDCptr:
        case llvm::GenISAIntrinsic::GenISA_sampleLCptr:
        {

            uint bufferIndex = GetSampleCResourceIdx(I);
            if (bufferIndex == -1) break;

            IGC_ASSERT(bufferIndex < 256);

            if (pCodeGenCtx->type == ShaderType::PIXEL_SHADER)
            {
                PixelShaderContext* pShaderCtx = static_cast <PixelShaderContext*>(pCodeGenCtx);
                pShaderCtx->programOutput.m_AccessedBySampleC[bufferIndex / 32] |= BIT(bufferIndex % 32);
            }
            else if (pCodeGenCtx->type == ShaderType::VERTEX_SHADER)
            {
                VertexShaderContext* pShaderCtx = static_cast <VertexShaderContext*>(pCodeGenCtx);
                pShaderCtx->programOutput.m_AccessedBySampleC[bufferIndex / 32] |= BIT(bufferIndex % 32);
            }
            else if (pCodeGenCtx->type == ShaderType::GEOMETRY_SHADER)
            {
                GeometryShaderContext* pShaderCtx = static_cast <GeometryShaderContext*>(pCodeGenCtx);
                pShaderCtx->programOutput.m_AccessedBySampleC[bufferIndex / 32] |= BIT(bufferIndex % 32);
            }
            else if (pCodeGenCtx->type == ShaderType::HULL_SHADER)
            {
                HullShaderContext* pShaderCtx = static_cast <HullShaderContext*>(pCodeGenCtx);
                pShaderCtx->programOutput.m_AccessedBySampleC[bufferIndex / 32] |= BIT(bufferIndex % 32);
            }
            else if (pCodeGenCtx->type == ShaderType::DOMAIN_SHADER)
            {
                DomainShaderContext* pShaderCtx = static_cast <DomainShaderContext*>(pCodeGenCtx);
                pShaderCtx->programOutput.m_AccessedBySampleC[bufferIndex / 32] |= BIT(bufferIndex % 32);
            }
            else if (pCodeGenCtx->type == ShaderType::COMPUTE_SHADER)
            {
                ComputeShaderContext* pShaderCtx = static_cast <ComputeShaderContext*>(pCodeGenCtx);
                pShaderCtx->programOutput.m_AccessedBySampleC[bufferIndex / 32] |= BIT(bufferIndex % 32);
            }
        }
        break;
        case llvm::GenISAIntrinsic::GenISA_RenderTargetReadSampleFreq:
        {
            //Render target read should return 0 when the sample is outside primitive processed.
            //    R0.xyzw = RTRead(RTi, SampleIndex);
            //    R1 = 1<<SamplexIndex
            //    R2 = R1 & InputCoverage
            //    F0 = Cmp ne R2, 0
            //    Dst.w = (F0) Sel R0.w, 1
            CodeGenContext* pCodeGenCtx = m_pCtxWrapper->getCodeGenContext();
            if (pCodeGenCtx->platform.WaReturnZeroforRTReadOutsidePrimitive())
            {
                Value* one = llvm::ConstantFP::get(m_builder->getFloatTy(), 1.0);
                llvm::Instruction* cloneinst = I.clone();
                cloneinst->insertAfter(&I);
                m_builder->SetInsertPoint(&(*std::next(BasicBlock::iterator(cloneinst))));
                Value* inputCoverage = m_builder->CreateCoverage();

                Value* shiftLeft = m_builder->CreateShl(m_builder->getInt32(1), I.getOperand(1));
                Value* andWithInputCoverage = m_builder->CreateAnd(shiftLeft, inputCoverage);
                Value* cmpInst = m_builder->CreateICmpNE(andWithInputCoverage, m_builder->getInt32(0));

                Value* valueX = m_builder->CreateExtractElement(cloneinst, m_builder->getInt32(0));
                Value* valueY = m_builder->CreateExtractElement(cloneinst, m_builder->getInt32(1));
                Value* valueZ = m_builder->CreateExtractElement(cloneinst, m_builder->getInt32(2));
                Value* valueW = m_builder->CreateExtractElement(cloneinst, m_builder->getInt32(3));

                Value* selW = m_builder->CreateSelect(cmpInst, valueW, one);

                llvm::Value* newValue = llvm::UndefValue::get(IGCLLVM::FixedVectorType::get(m_builder->getFloatTy(), 4));
                newValue = m_builder->CreateInsertElement(newValue, valueX, m_builder->getInt32(0));
                newValue = m_builder->CreateInsertElement(newValue, valueY, m_builder->getInt32(1));
                newValue = m_builder->CreateInsertElement(newValue, valueZ, m_builder->getInt32(2));
                newValue = m_builder->CreateInsertElement(newValue, selW, m_builder->getInt32(3));

                (&I)->replaceAllUsesWith(newValue);
                I.eraseFromParent();
            }
        }
        break;
        default:
            break;
        }
    }

}

void WorkaroundAnalysis::ldmsOffsetWorkaournd(LdMSIntrinsic* ldms)
{
    // In some cases immediate offsets are not working in hardware for ldms message
    // to solve it we add directly the offset to the integer coordinate
    Value* zero = m_builder->getInt32(0);
    if (ldms->getImmOffset(0) == zero &&
        ldms->getImmOffset(1) == zero &&
        ldms->getImmOffset(2) == zero)
    {
        return;
    }
    for (unsigned int i = 0; i < 2; i++)
    {
        m_builder->SetInsertPoint(ldms);
        Value* coord = ldms->getCoordinate(i);
        Value* newCoord = m_builder->CreateAdd(
            coord,
            m_builder->CreateTrunc(ldms->getImmOffset(i), coord->getType()));
        ldms->setCoordinate(i, newCoord);
        ldms->setImmOffset(i, m_builder->getInt32(0));
    }
}

/// transform gather4poc and gatherpo into gather4c/gather4
void WorkaroundAnalysis::GatherOffsetWorkaround(SamplerGatherIntrinsic* gatherpo)
{
    if (IGC_IS_FLAG_DISABLED(EnableGather4cpoWA))
    {
        return;
    }
    Value* const zero = m_builder->getInt32(0);
    Value* const zeroFP = llvm::ConstantFP::get(gatherpo->getOperand(0)->getType(), 0);
    const bool hasRef = gatherpo->getIntrinsicID() == GenISAIntrinsic::GenISA_gather4POCptr;
    const uint extraBeginArgsNo = hasRef ? 1 : 0;

    unsigned int offsetArgumentIndices[] = {
        7u + extraBeginArgsNo,
        8u + extraBeginArgsNo,
        9u + extraBeginArgsNo
    };
    if (gatherpo->getOperand(offsetArgumentIndices[0]) != zero ||
        gatherpo->getOperand(offsetArgumentIndices[1]) != zero ||
        gatherpo->getOperand(offsetArgumentIndices[2]) != zero)
    {
        // only apply the WA if all the immediate offsets are zero
        return;
    }
    Value* resource = gatherpo->getTextureValue();
    Value* sampler = gatherpo->getSamplerValue();

    Value* lod = zeroFP;

    Function* resInfo =
        GenISAIntrinsic::getDeclaration(m_pModule, GenISAIntrinsic::GenISA_resinfoptr, resource->getType());
    m_builder->SetInsertPoint(gatherpo);
    Value* info = m_builder->CreateCall2(resInfo, resource, m_builder->CreateFPToUI(lod, zero->getType()));

    std::vector<Value*> arg;
    if (extraBeginArgsNo > 0)
    {
        arg.push_back(gatherpo->getOperand(0));
        IGC_ASSERT(extraBeginArgsNo == 1);
    }


    arg.push_back(nullptr);                  // u
    arg.push_back(nullptr);                  // v
    arg.push_back(gatherpo->getOperand(4 + extraBeginArgsNo)); // r
    arg.push_back(ConstantFP::get(gatherpo->getOperand(0)->getType(), 0.0));   // ai
    arg.push_back(resource);
    arg.push_back(sampler);
    arg.push_back(zero);
    arg.push_back(zero);
    arg.push_back(zero);
    arg.push_back(gatherpo->getOperand(offsetArgumentIndices[2] + 1));

    for (unsigned int i = 0; i < 2; i++)
    {
        Value* coord = gatherpo->getOperand(i + extraBeginArgsNo);
        Value* offset = gatherpo->getOperand(i + 2 + extraBeginArgsNo);

        Value* size = m_builder->CreateExtractElement(info, m_builder->getInt32(i));
        size = m_builder->CreateUIToFP(size, coord->getType());
        Value* invSize = m_builder->CreateFDiv(ConstantFP::get(coord->getType(), 1.0), size);

        // offset is only encoded on 6 bits
        offset = m_builder->CreateShl(offset, m_builder->getInt32(32 - 6));
        offset = m_builder->CreateAShr(offset, m_builder->getInt32(32 - 6));
        offset = m_builder->CreateSIToFP(offset, coord->getType());
        //
        Value* newCoord = m_builder->CreateFMul(offset, invSize);
        newCoord = m_builder->CreateFAdd(newCoord, coord);
        arg[i + extraBeginArgsNo] = newCoord;
    }
    Type* types[] =
    {
        gatherpo->getType(),
        gatherpo->getOperand(0)->getType(),
        resource->getType(),
        sampler->getType(),
    };
    Function* gather4Func = GenISAIntrinsic::getDeclaration(
        m_pModule,
        hasRef ? GenISAIntrinsic::GenISA_gather4Cptr : GenISAIntrinsic::GenISA_gather4ptr,
        types);
    Value* gather4c = m_builder->CreateCall(gather4Func, arg);
    gatherpo->replaceAllUsesWith(gather4c);
    gatherpo->eraseFromParent();
}


#define PASS_FLAG "igc-wa-fminmax"
#define PASS_DESCRIPTION "Workaround fmax/fmin"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(WAFMinFMax, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_END(WAFMinFMax, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)

char WAFMinFMax::ID = 0;

WAFMinFMax::WAFMinFMax()
    : FunctionPass(ID)
{
    initializeWAFMinFMaxPass(*PassRegistry::getPassRegistry());
}

bool WAFMinFMax::runOnFunction(Function& F)
{
    m_ctx = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();

    llvm::IGCIRBuilder<> builder(F.getContext());
    m_builder = &builder;
    visit(F);
    return true;
}

void WAFMinFMax::visitCallInst(CallInst& I)
{
    if (const IntrinsicInst * intr = dyn_cast<IntrinsicInst>(&I))
    {
        switch (intr->getIntrinsicID())
        {
        case Intrinsic::maxnum:
        case Intrinsic::minnum:
        {
            if (m_ctx->m_DriverInfo.SupportsIEEEMinMax())
            {
                // OCL's fmax/fmin maps to GEN's max/min in non-IEEE mode.
                // By default, gen uses non-IEEE mode.  But, in BDW and SKL
                // prior to C step, IEEE mode is used if denorm bit is set.
                // If there are no sNaN as inputs to fmax/fmin,  IEEE mode
                // is the same as non-IEEE mode;  if there are sNaN,  non-IEEE
                // mode is NOT the same as IEEE mode. But non-IEEE mode is the
                // same as the following
                //     non-IEEE_fmax(x, y) =
                //           x1 = IEEE_fmin(x, qNaN), y1 = IEEE_fmin(y, qNaN)
                //             (or fadd(x, -0.0); y1 = fadd(y, -0.0);)
                //           IEEE_fmax(x1, y1)
                // SKL C+ has IEEE minmax bit in Control Register(CR), so far we
                // don't set it (meaning non-ieee mode).
                //
                // Therefore, if fmax/fmin is in IEEE mode, we need to workaround
                // that by converting sNAN to qNAN if one of operands is sNAN but
                // needing to preserve the original value if it's not sNAN.
                //
                // There are more than one ways to achieve that:
                //  - X + 0.0
                //    It's the simplest one. However, it cannot preserver -0.0
                //    as -0.0 + 0.0 = 0.0. It also has other issues depending
                //    on rounding mode. We could enhance it by adding -0.0 if X
                //    is negative. But that
                //    introduces additional overhead.
                //
                //  The following two are both good candidates with single
                //  instruction overhead only:
                //
                //  - x * 1.0
                //  - FMIN(x, qNAN) or FMAX(x, qNAN)
                //
                //    According to PRM, both of them should aways give x or
                //    qNAN.
                //
                // We choose FMIN to prevent other optimizations kicking in.
                //

                // Note that m_enableFMaxFMinPlusZero is used here for GEN9 only; if it
                // is set,  it means that IEEE-mode min/max is used if denorm bit is set.
                Type* Ty = intr->getType();
                ModuleMetaData* modMD = getAnalysis<MetaDataUtilsWrapper>().getModuleMetaData();
                bool minmaxModeSetByDenormBit =
                    (!m_ctx->platform.hasIEEEMinmaxBit() ||
                        m_ctx->platform.WaOCLEnableFMaxFMinPlusZero() ||
                        EnableFMaxFMinPlusZero);
                bool hasNaNs = !modMD->compOpt.FiniteMathOnly;
                if (hasNaNs && minmaxModeSetByDenormBit &&
                    ((Ty->isFloatTy() && (m_ctx->m_floatDenormMode32 == FLOAT_DENORM_RETAIN)) ||
                    (Ty->isDoubleTy() && (m_ctx->m_floatDenormMode64 == FLOAT_DENORM_RETAIN)) ||
                        (Ty->isHalfTy() && (m_ctx->m_floatDenormMode16 == FLOAT_DENORM_RETAIN))))
                {
                    m_builder->SetInsertPoint(&I);

                    IGCLLVM::Intrinsic IID = Intrinsic::minnum;
                    Function* IFunc =
                        Intrinsic::getDeclaration(I.getParent()->getParent()->getParent(),
                            IID, I.getType());
                    Value* QNaN = getQNaN(I.getType());

                    Value* src0 = I.getOperand(0);
                    if (!IsKnownNotSNaN(src0))
                        I.setArgOperand(0, m_builder->CreateCall2(IFunc, src0, QNaN));

                    Value* src1 = I.getOperand(1);
                    if (!IsKnownNotSNaN(src1))
                        I.setArgOperand(1, m_builder->CreateCall2(IFunc, src1, QNaN));
                }
            }
            break;
        }

        default:
            break;
        }
    }
}