1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "VLD_SPIRVSplitter.hpp"
#include <llvm/ADT/ScopeExit.h>
#include "Probe/Assertion.h"
#include "spirv/unified1/spirv.hpp"
namespace IGC {
namespace VLD {
llvm::Expected<SPIRVTypeEnum> DetectSPIRVType(const char *spv_buffer,
uint32_t spv_buffer_size_in_bytes) {
return SpvSplitter().Detect(spv_buffer, spv_buffer_size_in_bytes);
}
llvm::Expected<std::pair<ProgramStreamType, ProgramStreamType>>
SplitSPMDAndESIMD(const char *spv_buffer, uint32_t spv_buffer_size_in_bytes) {
SpvSplitter splitter;
return splitter.Split(spv_buffer, spv_buffer_size_in_bytes);
}
llvm::Expected<spv_result_t> SpvSplitter::ParseSPIRV(const char* spv_buffer, uint32_t spv_buffer_size_in_bytes) {
const spv_target_env target_env = SPV_ENV_UNIVERSAL_1_5;
spv_context context = spvContextCreate(target_env);
if (!context) {
return llvm::createStringError(llvm::inconvertibleErrorCode(),
"Couldn't create SPIR-V Tools context!");
}
const uint32_t *const binary = reinterpret_cast<const uint32_t *>(spv_buffer);
const size_t word_count = (spv_buffer_size_in_bytes / sizeof(uint32_t));
spv_diagnostic diagnostic = nullptr;
auto scope_exit = llvm::make_scope_exit([&] {
spvDiagnosticDestroy(diagnostic);
spvContextDestroy(context);
});
const spv_result_t result = spvBinaryParse(
context, this, binary, word_count, SpvSplitter::HandleHeaderCallback,
SpvSplitter::HandleInstructionCallback, &diagnostic);
if (result != SPV_SUCCESS) {
return llvm::createStringError(llvm::inconvertibleErrorCode(),
diagnostic->error);
}
if (!has_spmd_functions_ && !has_esimd_functions_) {
return llvm::createStringError(
llvm::inconvertibleErrorCode(),
"SPIR-V file did not contain any SPMD or ESIMD functions!");
}
return result;
}
SPIRVTypeEnum SpvSplitter::GetCurrentSPIRVType() {
// If all entry points are marked as ESIMD, treat this as fully ESIMD module,
// even if there are functions that are not marked with ESIMD (known bug in
// VC).
if (!entry_points_.empty() && std::all_of(entry_points_.begin(), entry_points_.end(), [&](auto el) {
return esimd_decorated_ids_.find(el) != esimd_decorated_ids_.end();
})) {
IGC_ASSERT(has_esimd_functions_);
return SPIRVTypeEnum::SPIRV_ESIMD;
} else if (!has_esimd_functions_) {
// This is SPMD module as entry points are included in the flag.
return SPIRVTypeEnum::SPIRV_SPMD;
}
return SPIRVTypeEnum::SPIRV_SPMD_AND_ESIMD;
}
llvm::Expected<std::pair<ProgramStreamType, ProgramStreamType>>
SpvSplitter::Split(const char *spv_buffer, uint32_t spv_buffer_size_in_bytes) {
this->Reset();
this->only_detect_ = false;
auto result = ParseSPIRV(spv_buffer, spv_buffer_size_in_bytes);
if (!result) {
return result.takeError();
}
// Add declarations of ESIMD functions that are called from SPMD module,
// otherwise SPIR-V reader might fail.
for (auto esimd_func_id : esimd_functions_to_declare_) {
if (esimd_function_declarations_.find(esimd_func_id) ==
esimd_function_declarations_.end()) {
return llvm::createStringError(
llvm::inconvertibleErrorCode(),
"SPIR-V Splitter error: ESIMD function declaration not found!");
}
spmd_program_.insert(spmd_program_.end(),
esimd_function_declarations_[esimd_func_id].begin(),
esimd_function_declarations_[esimd_func_id].end());
}
switch (GetCurrentSPIRVType()) {
case SPIRVTypeEnum::SPIRV_ESIMD:
spmd_program_.clear();
break;
case SPIRVTypeEnum::SPIRV_SPMD:
esimd_program_.clear();
break;
case SPIRVTypeEnum::SPIRV_SPMD_AND_ESIMD:
default:
break;
}
return std::make_pair(spmd_program_, esimd_program_);
}
llvm::Expected<SPIRVTypeEnum>
SpvSplitter::Detect(const char* spv_buffer, uint32_t spv_buffer_size_in_bytes) {
this->Reset();
this->only_detect_ = true;
auto result = ParseSPIRV(spv_buffer, spv_buffer_size_in_bytes);
if (!result) {
return result.takeError();
}
return GetCurrentSPIRVType();
}
const std::string &SpvSplitter::GetErrorMessage() const {
return error_message_;
}
bool SpvSplitter::HasError() const { return !error_message_.empty(); }
void SpvSplitter::Reset() {
spmd_program_.clear();
esimd_program_.clear();
esimd_decorated_ids_.clear();
entry_points_.clear();
esimd_function_declarations_.clear();
esimd_functions_to_declare_.clear();
is_inside_spmd_function_ = false;
is_inside_esimd_function_ = false;
has_spmd_functions_ = false;
has_esimd_functions_ = false;
cur_esimd_function_id_ = -1;
}
spv_result_t SpvSplitter::HandleInstructionCallback(
void *user_data, const spv_parsed_instruction_t *parsed_instruction) {
IGC_ASSERT(user_data);
auto splitter = static_cast<SpvSplitter *>(user_data);
return splitter->HandleInstruction(parsed_instruction);
}
spv_result_t SpvSplitter::HandleHeaderCallback(
void *user_data, spv_endianness_t endian, uint32_t magic, uint32_t version,
uint32_t generator, uint32_t id_bound, uint32_t schema) {
IGC_ASSERT(user_data);
auto splitter = static_cast<SpvSplitter *>(user_data);
return splitter->HandleHeader(endian, magic, version, generator, id_bound,
schema);
}
spv_result_t SpvSplitter::HandleHeader(spv_endianness_t endian, uint32_t magic,
uint32_t version, uint32_t generator,
uint32_t id_bound, uint32_t schema) {
// insert the same header to both spmd and esimd programs.
auto append_header = [&](std::vector<uint32_t> &programVector) {
programVector.insert(programVector.end(),
{magic, version, generator, id_bound, schema});
};
if(!only_detect_) {
append_header(spmd_program_);
append_header(esimd_program_);
}
return SPV_SUCCESS;
}
spv_result_t SpvSplitter::HandleInstruction(
const spv_parsed_instruction_t *parsed_instruction) {
spv_result_t ret = SPV_SUCCESS;
// Handlers decide if given instruction should be addded.
switch (parsed_instruction->opcode) {
case spv::OpDecorate:
ret = HandleDecorate(parsed_instruction);
break;
case spv::OpGroupDecorate:
ret = HandleGroupDecorate(parsed_instruction);
break;
case spv::OpFunction:
ret = HandleFunctionStart(parsed_instruction);
break;
case spv::OpFunctionParameter:
ret = HandleFunctionParameter(parsed_instruction);
break;
case spv::OpFunctionEnd:
ret = HandleFunctionEnd(parsed_instruction);
break;
case spv::OpEntryPoint:
ret = HandleEntryPoint(parsed_instruction);
break;
default:
if (!is_inside_spmd_function_) {
AddInstToProgram(parsed_instruction, esimd_program_);
}
if (!is_inside_esimd_function_) {
AddInstToProgram(parsed_instruction, spmd_program_);
}
break;
}
return ret;
}
// Looks for decorations that mark functions specific to ESIMD module.
spv_result_t SpvSplitter::HandleDecorate(
const spv_parsed_instruction_t *parsed_instruction) {
IGC_ASSERT(parsed_instruction &&
parsed_instruction->opcode == spv::OpDecorate);
auto isSpecificFunctionDecoration = [&parsed_instruction](auto decoration_type) {
if (parsed_instruction->num_operands == 2 &&
parsed_instruction->operands[1].type == SPV_OPERAND_TYPE_DECORATION &&
parsed_instruction->words[parsed_instruction->operands[1].offset] ==
decoration_type) {
uint32_t function_id =
parsed_instruction->words[parsed_instruction->operands[0].offset];
return function_id;
}
return (uint32_t)0;
};
// Look for VectorComputeFunctionINTEL decoration.
if (auto function_id = isSpecificFunctionDecoration(spv::DecorationVectorComputeFunctionINTEL)) {
esimd_decorated_ids_.insert(function_id);
} else if (auto function_id = isSpecificFunctionDecoration(spv::DecorationStackCallINTEL)) {
// StackCallINTEL is a decoration specific to ESIMD, so do not add it to SPMD program.
esimd_functions_to_declare_.insert(function_id);
} else {
AddInstToProgram(parsed_instruction, spmd_program_);
}
AddInstToProgram(parsed_instruction, esimd_program_);
return SPV_SUCCESS;
}
// Looks for group decorations that mark functions specific to ESIMD module.
spv_result_t SpvSplitter::HandleGroupDecorate(
const spv_parsed_instruction_t *parsed_instruction) {
IGC_ASSERT(parsed_instruction &&
parsed_instruction->opcode == spv::OpGroupDecorate);
IGC_ASSERT(parsed_instruction->num_operands > 0);
// Look for decoration groups previously marked with
// VectorComputeFunctionINTEL decoration.
uint32_t group_id =
parsed_instruction->words[parsed_instruction->operands[0].offset];
if (esimd_decorated_ids_.find(group_id) != esimd_decorated_ids_.end()) {
for (uint32_t i = 1; i < parsed_instruction->num_operands; ++i) {
uint32_t id =
parsed_instruction->words[parsed_instruction->operands[i].offset];
esimd_decorated_ids_.insert(id);
}
} else {
AddInstToProgram(parsed_instruction, spmd_program_);
}
AddInstToProgram(parsed_instruction, esimd_program_);
return SPV_SUCCESS;
}
spv_result_t SpvSplitter::HandleFunctionStart(
const spv_parsed_instruction_t *parsed_instruction) {
IGC_ASSERT(parsed_instruction &&
parsed_instruction->opcode == spv::OpFunction);
if (esimd_decorated_ids_.find(parsed_instruction->result_id) !=
esimd_decorated_ids_.end()) {
is_inside_esimd_function_ = true;
has_esimd_functions_ = true;
cur_esimd_function_id_ = parsed_instruction->result_id;
AddInstToProgram(parsed_instruction, esimd_program_);
AddInstToProgram(parsed_instruction,
esimd_function_declarations_[cur_esimd_function_id_]);
} else {
is_inside_spmd_function_ = true;
has_spmd_functions_ = true;
AddInstToProgram(parsed_instruction, spmd_program_);
}
return SPV_SUCCESS;
}
spv_result_t SpvSplitter::HandleFunctionParameter(
const spv_parsed_instruction_t *parsed_instruction) {
IGC_ASSERT(parsed_instruction &&
parsed_instruction->opcode == spv::OpFunctionParameter);
if (is_inside_esimd_function_) {
AddInstToProgram(parsed_instruction, esimd_program_);
AddInstToProgram(parsed_instruction,
esimd_function_declarations_[cur_esimd_function_id_]);
} else {
AddInstToProgram(parsed_instruction, spmd_program_);
}
return SPV_SUCCESS;
}
spv_result_t SpvSplitter::HandleFunctionEnd(
const spv_parsed_instruction_t *parsed_instruction) {
IGC_ASSERT(parsed_instruction &&
parsed_instruction->opcode == spv::OpFunctionEnd);
if (is_inside_esimd_function_) {
AddInstToProgram(parsed_instruction, esimd_program_);
AddInstToProgram(parsed_instruction,
esimd_function_declarations_[cur_esimd_function_id_]);
cur_esimd_function_id_ = -1;
}
if (is_inside_spmd_function_) {
AddInstToProgram(parsed_instruction, spmd_program_);
}
is_inside_esimd_function_ = false;
is_inside_spmd_function_ = false;
return SPV_SUCCESS;
}
spv_result_t SpvSplitter::HandleEntryPoint(
const spv_parsed_instruction_t *parsed_instruction) {
IGC_ASSERT(parsed_instruction &&
parsed_instruction->opcode == spv::OpEntryPoint);
IGC_ASSERT(parsed_instruction->num_operands > 0);
uint32_t id =
parsed_instruction->words[parsed_instruction->operands[1].offset];
entry_points_.insert(id);
AddInstToProgram(parsed_instruction, spmd_program_);
AddInstToProgram(parsed_instruction, esimd_program_);
return SPV_SUCCESS;
}
void SpvSplitter::AddInstToProgram(
const spv_parsed_instruction_t *parsed_instruction,
ProgramStreamType &program) {
if (!only_detect_) {
program.insert(program.end(), parsed_instruction->words,
parsed_instruction->words + parsed_instruction->num_words);
}
}
} // namespace VLD
} // namespace IGC
|