File: math.h

package info (click to toggle)
intel-graphics-compiler 1.0.12504.6-1%2Bdeb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 83,912 kB
  • sloc: cpp: 910,147; lisp: 202,655; ansic: 15,197; python: 4,025; yacc: 2,241; lex: 1,570; pascal: 244; sh: 104; makefile: 25
file content (384 lines) | stat: -rw-r--r-- 13,497 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
/*========================== begin_copyright_notice ============================

Copyright (C) 2021-2022 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

#ifndef CM_CL_MATH_H
#define CM_CL_MATH_H

#include "define.h"
#include "detail/builtins.h"
#include "vector.h"

#include <opencl_def.h>
#include <opencl_utility.h>

namespace cm {
namespace math {

/*================ Count leading zeros =======================*/

inline uint32_t count_leading_zeros(uint32_t src) { return detail::lzd(src); }

template <int width>
vector<uint32_t, width> count_leading_zeros(vector<uint32_t, width> src) {
  return detail::lzd(src.cl_vector());
}

// FIXME: replace char with bool.
inline cl::pair<uint32_t, char> add_with_carry(uint32_t src0, uint32_t src1) {
  return detail::addc(src0, src1);
}

/*====================== Add with carry ======================*/

template <int width>
cl::pair<vector<uint32_t, width>, vector<char, width>>
add_with_carry(vector<uint32_t, width> src0, vector<uint32_t, width> src1) {
#if __clang_major__ > 9
  return detail::addc(src0.cl_vector(), src1.cl_vector());
#else  // __clang_major__ > 9
  // clang-9 has some issues with type deduction, it needs help.
  auto res = detail::addc(src0.cl_vector(), src1.cl_vector());
  return {res.first, res.second};
#endif // __clang_major__ > 9
}

/*======================= Is ordered ========================*/

inline bool is_ordered(float src0, float src1) {
  return (src0 == src0) && (src1 == src1);
}

inline bool is_ordered(double src0, double src1) {
  return (src0 == src0) && (src1 == src1);
}

/*====================== Is unordered =======================*/

inline bool is_unordered(float src0, float src1) {
  return (src0 != src0) || (src1 != src1);
}

inline bool is_unordered(double src0, double src1) {
  return (src0 != src0) || (src1 != src1);
}

/*====================== Reverse bit =======================*/

inline uint32_t reverse_bits(uint32_t src) { return detail::bfrev(src); }

template <int width>
vector<uint32_t, width> reverse_bits(vector<uint32_t, width> src) {
  return detail::bfrev(src.cl_vector());
}

/*================== Count trailing zeros ==================*/

inline uint32_t count_trailing_zeros(uint32_t src) {
  uint32_t src_reverse = reverse_bits(src);
  return count_leading_zeros(src_reverse);
}

inline uint32_t count_trailing_zeros(int32_t src) {
  return count_trailing_zeros(static_cast<uint32_t>(src));
}

inline uint32_t count_trailing_zeros(uint64_t src) {
  vector<uint64_t, 1> src_vec = src;
  vector<uint32_t, 2> src_vec_32 = src_vec.format<uint32_t>();
  uint32_t src_vec_lo_ctz =
      count_trailing_zeros(static_cast<uint32_t>(src_vec_32[0]));
  uint32_t src_vec_hi_ctz =
      count_trailing_zeros(static_cast<uint32_t>(src_vec_32[1]));
  if (src_vec_32[0] == 0)
    src_vec_lo_ctz += src_vec_hi_ctz;
  return src_vec_lo_ctz;
}

inline uint32_t count_trailing_zeros(int64_t src) {
  return count_trailing_zeros(static_cast<uint64_t>(src));
}

template <typename T, cl::enable_if_t<(sizeof(T) < sizeof(uint32_t)), int> = 0>
inline uint32_t count_trailing_zeros(T src) {
  static_assert(cl::is_integral<T>::value && !cl::is_bool<T>::value,
                "Count trailing zeros expects integer and not bool type");
  uint32_t src_32 = static_cast<uint32_t>(src) | (1U << (sizeof(T) * 8));
  return count_trailing_zeros(src_32);
}

template <int width>
vector<uint32_t, width> count_trailing_zeros(vector<uint32_t, width> src) {
  vector<uint32_t, width> src_reverse = reverse_bits(src);
  return count_leading_zeros(src_reverse);
}

template <int width>
vector<uint32_t, width> count_trailing_zeros(vector<int32_t, width> src) {
  return count_trailing_zeros(static_cast<vector<uint32_t, width>>(src));
}

template <int width>
vector<uint32_t, width> count_trailing_zeros(vector<uint64_t, width> src) {
  vector<uint32_t, (width * 2)> src_vec_32 = src.template format<uint32_t>();
  vector<uint32_t, width> src_vec_32_lo =
      src_vec_32.template select<width, 2>(0);
  vector<uint32_t, width> src_vec_32_hi =
      src_vec_32.template select<width, 2>(1);
  vector<uint32_t, width> src_vec_32_lo_ctz =
      count_trailing_zeros(src_vec_32_lo);
  vector<uint32_t, width> src_vec_32_hi_ctz =
      count_trailing_zeros(src_vec_32_hi);
  vector<uint32_t, width> res = src_vec_32_lo_ctz;
  vector<uint32_t, width> res_with_hi = src_vec_32_lo_ctz + src_vec_32_hi_ctz;
  res.merge(res_with_hi, src_vec_32_lo == vector<uint32_t, width>{0});
  return res;
}

template <int width>
vector<uint32_t, width> count_trailing_zeros(vector<int64_t, width> src) {
  return count_trailing_zeros(static_cast<vector<uint64_t, width>>(src));
}

template <typename T, int width,
          cl::enable_if_t<(sizeof(T) < sizeof(uint32_t)), int> = 0>
vector<uint32_t, width> count_trailing_zeros(vector<T, width> src) {
  static_assert(cl::is_integral<T>::value && !cl::is_bool<T>::value,
                "Count trailing zeros expects integer and not bool type");
  vector<uint32_t, width> src_32 =
      static_cast<vector<uint32_t, width>>(src) | (1U << (sizeof(T) * 8));
  return count_trailing_zeros(src_32);
}

/*=================== Count population =====================*/

template <typename T, int width>
vector<uint32_t, width> count_population(vector<T, width> src) {
  return detail::cbit(src.cl_vector());
};

template <int width>
vector<uint32_t, width> count_population(vector<uint64_t, width> src) {
  vector<uint32_t, (width * 2)> src_vec_32 = src.template format<uint32_t>();
  vector<uint32_t, width> src_vec_32_lo =
      src_vec_32.template select<width, 2>(0);
  vector<uint32_t, width> src_vec_32_hi =
      src_vec_32.template select<width, 2>(1);
  return count_population(src_vec_32_lo) + count_population(src_vec_32_hi);
}

template <int width>
vector<uint32_t, width> count_population(vector<int64_t, width> src) {
  return count_population(static_cast<vector<uint64_t, width>>(src));
}

template <typename T> uint32_t count_population(T src) {
  return detail::cbit(src);
}

inline uint32_t count_population(uint64_t src) {
  vector<uint64_t, 1> src_vec = src;
  vector<uint32_t, 2> src_vec_32 = src_vec.format<uint32_t>();
  return count_population(static_cast<uint32_t>(src_vec_32[0])) +
         count_population(static_cast<uint32_t>(src_vec_32[1]));
}

inline uint32_t count_population(int64_t src) {
  return count_population(static_cast<uint64_t>(src));
}

/*========================= Mad ============================*/

template <typename T, int width,
          cl::enable_if_t<cl::is_floating_point<T>::value, int> = 0>
vector<T, width> mad(vector<T, width> src0, vector<T, width> src1,
                     vector<T, width> src2) {
  return detail::fma(src0.cl_vector(), src1.cl_vector(), src2.cl_vector());
}

template <typename T, cl::enable_if_t<cl::is_floating_point<T>::value, int> = 0>
T mad(T src0, T src1, T src2) {
  return detail::fma(src0, src1, src2);
}

/*================== Absolute function =====================*/

// Calculates the absolute value.
// Floating point and integer types are supported.
// Unsigned values are returned without a change.
template <typename T> T absolute(T src) { return detail::absolute(src); }
template <typename T, int width>
vector<T, width> absolute(vector<T, width> src) {
  return detail::absolute(src.cl_vector());
}

/*================== Rounding operations ===================*/

template <typename T> T ceil(T src) { return detail::ceil(src); }
template <typename T, int width> vector<T, width> ceil(vector<T, width> src) {
  return detail::ceil(src.cl_vector());
}

template <typename T> T floor(T src) { return detail::floor(src); }
template <typename T, int width> vector<T, width> floor(vector<T, width> src) {
  return detail::floor(src.cl_vector());
}

template <typename T> T truncate(T src) { return detail::trunc(src); }
template <typename T, int width>
vector<T, width> truncate(vector<T, width> src) {
  return detail::trunc(src.cl_vector());
}

template <typename T> T roundne(T src) { return detail::roundne(src); }
template <typename T, int width> vector<T, width> roundne(vector<T, width> src) {
  return detail::roundne(src.cl_vector());
}

/*================== Square root ===========================*/

template <typename T> T square_root(T src) {
  static_assert(cl::is_floating_point<T>::value,
                "square root expects floating point type");
  return detail::sqrt</* is fast */ false>(src);
}

template <typename T, int width>
vector<T, width> square_root(vector<T, width> src) {
  static_assert(cl::is_floating_point<T>::value,
                "square root expects floating point type");
  return detail::sqrt</* is fast */ false>(src.cl_vector());
}

template <typename T> T square_root(T src, cm::tag::fast_t) {
  static_assert(cl::is_floating_point<T>::value,
                "square root expects floating point type");
  return detail::sqrt</* is fast */ true>(src);
}

template <typename T, int width>
vector<T, width> square_root(vector<T, width> src, cm::tag::fast_t) {
  static_assert(cl::is_floating_point<T>::value,
                "square root expects floating point type");
  return detail::sqrt</* is fast */ true>(src.cl_vector());
}

/*====================== Min/Max ===========================*/

template <typename T, int width>
vector<T, width> minimum(vector<T, width> src0, vector<T, width> src1) {
  static_assert(cl::is_floating_point<T>::value,
                "only floating point types supported yet for minimum");
  return detail::min_float(src0.cl_vector(), src1.cl_vector());
}

template <typename T, int width>
vector<T, width> maximum(vector<T, width> src0, vector<T, width> src1) {
  static_assert(cl::is_floating_point<T>::value,
                "only floating point types supported yet for maximum");
  return detail::max_float(src0.cl_vector(), src1.cl_vector());
}

template <typename T> T minimum(T src0, T src1) {
  static_assert(cl::is_floating_point<T>::value,
                "only floating point types supported yet for minimum");
  return detail::min_float(src0, src1);
}

template <typename T> T maximum(T src0, T src1) {
  static_assert(cl::is_floating_point<T>::value,
                "only floating point types supported yet for maximum");
  return detail::max_float(src0, src1);
}

/*====================== log_base_2 =====================*/

template <typename T> T log_base_2(T src, cm::tag::fast_t) {
  static_assert(cl::is_floating_point<T>::value,
                "log2 expects floating point type");
  return detail::log2</* is fast */ true>(src);
}

template <typename T, int width>
vector<T, width> log_base_2(vector<T, width> src, cm::tag::fast_t) {
  static_assert(cl::is_floating_point<T>::value,
                "log2 expects floating point type");
  return detail::log2</* is fast */ true>(src.cl_vector());
}

/*====================== exp_base_2 =====================*/

template <typename T> T exp_base_2(T src, cm::tag::fast_t) {
  static_assert(cl::is_floating_point<T>::value,
                "exp2 expects floating point type");
  return detail::exp2</* is fast */ true>(src);
}

template <typename T, int width>
vector<T, width> exp_base_2(vector<T, width> src, cm::tag::fast_t) {
  static_assert(cl::is_floating_point<T>::value,
                "exp2 expects floating point type");
  return detail::exp2</* is fast */ true>(src.cl_vector());
}

/*======================= power =========================*/

// when fast power instruction is implemented on GPU using
// native log2 and exp2, we take the absolute value of the base.
template <typename T>
T power_absolute_base(T base, T exponent, cm::tag::fast_t) {
  static_assert(cl::is_floating_point<T>::value,
                "power expects floating point type");
  return detail::powr</* is fast */ true>(base, exponent);
}

template <typename T, int width>
vector<T, width> power_absolute_base(vector<T, width> base,
                                     vector<T, width> exponent,
                                     cm::tag::fast_t) {
  static_assert(cl::is_floating_point<T>::value,
                "power expects floating point type");
  return detail::powr</* is fast */ true>(base.cl_vector(),
                                          exponent.cl_vector());
}

/*======================= sine ==========================*/

template <typename T> T sine(T src, cm::tag::fast_t) {
  static_assert(cl::is_floating_point<T>::value,
                "sine expects floating point type");
  return detail::sin</* is fast */ true>(src);
}

template <typename T, int width>
vector<T, width> sine(vector<T, width> src, cm::tag::fast_t) {
  static_assert(cl::is_floating_point<T>::value,
                "sine expects floating point type");
  return detail::sin</* is fast */ true>(src.cl_vector());
}

/*======================= cosine ========================*/

template <typename T> T cosine(T src, cm::tag::fast_t) {
  static_assert(cl::is_floating_point<T>::value,
                "cosine expects floating point type");
  return detail::cos</* is fast */ true>(src);
}

template <typename T, int width>
vector<T, width> cosine(vector<T, width> src, cm::tag::fast_t) {
  static_assert(cl::is_floating_point<T>::value,
                "cosine expects floating point type");
  return detail::cos</* is fast */ true>(src.cl_vector());
}

/*==========================================================*/

} // namespace math
} // namespace cm

#endif // CM_CL_MATH_H