1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "cmcl/Support/BuiltinTranslator.h"
#include "cmcl/Support/AtomicsIface.h"
#include <llvm/GenXIntrinsics/GenXIntrinsics.h>
#include <llvm/ADT/STLExtras.h>
#include <llvm/ADT/StringRef.h>
#include <llvm/ADT/StringSwitch.h>
#include <llvm/IR/Constants.h>
#include <llvm/IR/Function.h>
#include <llvm/IR/IRBuilder.h>
#include <llvm/IR/Instructions.h>
#include <llvm/IR/Module.h>
#include <llvm/Support/Casting.h>
#include <llvm/Support/ErrorHandling.h>
#include "llvmWrapper/IR/DerivedTypes.h"
#include "llvmWrapper/IR/IRBuilder.h"
#include <algorithm>
#include <array>
#include <cassert>
#include <functional>
#include <iterator>
#include <type_traits>
#include <utility>
using namespace llvm;
using FunctionRef = std::reference_wrapper<Function>;
using ValueRef = std::reference_wrapper<Value>;
using InstructionRef = std::reference_wrapper<Instruction>;
using BuiltinSeq = std::vector<FunctionRef>;
using BuiltinCallHandler = std::add_pointer_t<void(CallInst &)>;
constexpr const char BuiltinPrefix[] = "__cm_cl_";
// Imports:
//
// Posible builtin operand kinds:
// namespace OperandKind { enum Enum {.....};}
//
// CMCL builtin IDs. This ID will be used in all other structures to define
// a builtin, e.g. BuiltinID::Select:
// namespace BuiltinID { enum Enum {.....};}
//
// Names of builtin functions:
// constexpr const char* BuiltinNames[] = {.....};
//
// Operand indices for each builtin. 'BuiltinName'Operand::Size holds the
// number of 'BuiltinName' builtin, e.g. SelectOperand::Size:
// namespace 'BuiltinName'Operand { enum Enum {.....};}
//
// Maps builtin ID to builtin operand size:
// constexpr int BuiltinOperandSize[] = {.....};
//
// Maps operand index to its kind for every builtin:
// constexpr OperandKind::Enum 'BuiltinName'OperandKind[] = {.....};
//
// Maps BuiltinID to pointer to corresponding 'BuiltinName'OperandKind array.
// BuiltinOperandKind[BiID][Idx] will return the kind of Idx operand of the
// builtin with BiID ID:
// constexpr const OperandKind::Enum* BuiltinOperandKind[] = {.....};
#define CMCL_AUTOGEN_BUILTIN_DESCS
#include "TranslationInfo.inc"
#undef CMCL_AUTOGEN_BUILTIN_DESCS
template <BuiltinID::Enum BiID>
static void handleBuiltinCall(CallInst &BiCall);
// Imports:
//
// Maps builtin ID to builtin handler. Builtin handler is a function that will
// translate this builtin:
// constexpr BuiltinCallHandler BuiltinCallHandlers[] = {.....};
//
// Maps builtin ID to ID of intrinsic which this builtin should be translated
// into. Holds ~0u for cases when builtin should be translated not in an
// intrinsic:
// constexpr unsigned IntrinsicForBuiltin[] = {.....};
#define CMCL_AUTOGEN_TRANSLATION_DESCS
#include "TranslationInfo.inc"
#undef CMCL_AUTOGEN_TRANSLATION_DESCS
// Return declaration for intrinsics with provided parameters.
// This is helper function to get genx intrinsic declaration for given
// intrinsic ID, return type and arguments.
// RetTy -- return type of new intrinsic.
// Args -- range of Value * representing new intrinsic arguments. Each value
// must be non-null.
// Id -- new genx intrinsic ID.
// M -- module where to insert function declaration.
//
// NOTE: It was copied from "vc/Utils/GenX/Intrinsics.h" with some changes.
// Cannot link it here because CMCL is a separate independent project.
template <typename Range>
Function *getGenXDeclarationForIdFromArgs(Type &RetTy, Range &&Args,
GenXIntrinsic::ID Id, Module &M) {
assert(GenXIntrinsic::isGenXIntrinsic(Id) && "Expected genx intrinsic id");
SmallVector<Type *, 4> Types;
if (GenXIntrinsic::isOverloadedRet(Id)) {
if (isa<StructType>(RetTy))
llvm::copy(cast<StructType>(RetTy).elements(), std::back_inserter(Types));
else
Types.push_back(&RetTy);
}
for (auto &&EnumArg : llvm::enumerate(Args)) {
if (GenXIntrinsic::isOverloadedArg(Id, EnumArg.index()))
Types.push_back(EnumArg.value()->getType());
}
return GenXIntrinsic::getGenXDeclaration(&M, Id, Types);
}
static bool isCMCLBuiltin(const Function &F) {
return F.getName().contains(BuiltinPrefix);
}
static BuiltinSeq collectBuiltins(Module &M) {
BuiltinSeq Builtins;
std::copy_if(M.begin(), M.end(), std::back_inserter(Builtins),
[](Function &F) { return isCMCLBuiltin(F); });
assert(std::all_of(Builtins.begin(), Builtins.end(),
[](Function &F) { return F.isDeclaration(); }) &&
"CM-CL builtins are just function declarations");
return std::move(Builtins);
}
static void cleanUpBuiltin(Function &F) {
assert(isCMCLBuiltin(F) && "wrong argument: cm-cl builtin is expected");
std::vector<InstructionRef> ToErase;
std::transform(
F.user_begin(), F.user_end(), std::back_inserter(ToErase),
[](User *Usr) -> Instruction & { return *cast<Instruction>(Usr); });
std::for_each(ToErase.begin(), ToErase.end(),
[](Instruction &I) { I.eraseFromParent(); });
F.eraseFromParent();
}
static void cleanUpBuiltins(iterator_range<BuiltinSeq::iterator> Builtins) {
std::for_each(Builtins.begin(), Builtins.end(),
[](Function &F) { cleanUpBuiltin(F); });
}
static BuiltinID::Enum decodeBuiltin(StringRef BiName) {
auto BiIt = std::find_if(std::begin(BuiltinNames), std::end(BuiltinNames),
[BiName](const char *NameFromTable) {
return BiName.contains(NameFromTable);
});
assert(BiIt != std::end(BuiltinNames) && "unknown CM-CL builtin");
return static_cast<BuiltinID::Enum>(BiIt - std::begin(BuiltinNames));
}
// Getting vc-intrinsic (or llvm instruction/intrinsic) operand based on cm-cl
// builtin operand.
template <BuiltinID::Enum BiID>
Value &readValueFromBuiltinOp(CallInst &BiCall, int OpIdx, IRBuilder<> &IRB) {
Value &BiOp = *BiCall.getArgOperand(OpIdx);
assert(OpIdx < BuiltinOperandSize[BiID] && "operand index is illegal");
switch (BuiltinOperandKind[BiID][OpIdx]) {
case OperandKind::Output:
llvm_unreachable("cannot read value from an output operand");
case OperandKind::Constant:
assert(isa<Constant>(BiOp) && "constant operand is expected");
return BiOp;
case OperandKind::Input:
return BiOp;
default:
llvm_unreachable("Unexpected operand kind");
}
}
// Returns a intended builtin operand type.
// Vector operands are passed through pointer, intended type in this case is
// the vector type, not pointer to vector type.
template <BuiltinID::Enum BiID>
Type &getTypeFromBuiltinOperand(CallInst &BiCall, int OpIdx) {
assert(OpIdx < BuiltinOperandSize[BiID] && "operand index is illegal");
Value &BiOp = *BiCall.getArgOperand(OpIdx);
switch (BuiltinOperandKind[BiID][OpIdx]) {
case OperandKind::Output:
return *BiOp.getType()->getPointerElementType();
case OperandKind::Input:
case OperandKind::Constant:
return *BiOp.getType();
default:
llvm_unreachable("Unexpected operand kind");
}
}
// A helper function to get vector type width.
// \p Ty must be a fixed vector type.
static int getVectorWidth(Type &Ty) {
return cast<IGCLLVM::FixedVectorType>(Ty).getNumElements();
}
// A helper function to get structure type from its element types.
template <typename... ArgTys> Type &getStructureOf(ArgTys &... ElementTys) {
return *StructType::create("", &ElementTys...);
}
// Returns the type wich instruction that a builtin is translated into will
// have.
template <BuiltinID::Enum BiID>
Type &getTranslatedBuiltinType(CallInst &BiCall);
// Prepare vc-intrinsic (or llvm instruction/intrinsic) operands based on
// cm-cl builtin operands.
template <BuiltinID::Enum BiID>
std::vector<Value *> getTranslatedBuiltinOperands(CallInst &BiCall,
IRBuilder<> &IRB);
// Imports:
//
// getTranslatedBuiltinType specialization for every builtin.
// template <>
// Type &getTranslatedBuiltinType<BuiltinID::'BuiltinName'>(CallInst &BiCall) {
// return .....;
// }
//
// getTranslatedBuiltinOperands specialization for every builtin.
// template <>
// std::vector<Value *>
// getTranslatedBuiltinOperands<BuiltinID::'BuiltinName'>(CallInst &BiCall,
// IRBuilder<> &IRB) {
// return {.....};
// }
#define CMCL_AUTOGEN_TRANSLATION_IMPL
#include "TranslationInfo.inc"
#undef CMCL_AUTOGEN_TRANSLATION_IMPL
// Generates instruction/instructions that represent cm-cl builtin semantics,
// output values (if any) a written into output vector.
// The order of output values are covered in the comment to
// writeBuiltinResults.
// Args:
// RetTy - type of generated instruction
template <BuiltinID::Enum BiID>
Value &createMainInst(const std::vector<Value *> &Operands, Type &RetTy,
IRBuilder<> &IRB) {
auto *Decl = getGenXDeclarationForIdFromArgs(
RetTy, Operands,
static_cast<GenXIntrinsic::ID>(IntrinsicForBuiltin[BiID]),
*IRB.GetInsertBlock()->getModule());
auto *CI =
IRB.CreateCall(Decl, Operands, RetTy.isVoidTy() ? "" : "cmcl.builtin");
return *CI;
}
// Works only for intrinsics which are overloaded by the return value type.
template <BuiltinID::Enum BiID>
static Value &createLLVMIntrinsic(const std::vector<Value *> &Operands,
Type &RetTy, IRBuilder<> &IRB) {
auto IID = static_cast<Intrinsic::ID>(IntrinsicForBuiltin[BiID]);
assert(IID != Intrinsic::not_intrinsic && "Expected LLVM intrinsic");
Module *M = IRB.GetInsertBlock()->getModule();
auto *Decl = Intrinsic::getDeclaration(M, IID, {&RetTy});
return *IRB.CreateCall(Decl, Operands);
}
template <>
Value &createMainInst<BuiltinID::AbsFloat>(const std::vector<Value *> &Operands,
Type &RetTy, IRBuilder<> &IRB) {
assert(Operands.size() == AbsFloatOperand::Size &&
"builtin operands should be trasformed into LLVM fabs "
"intrinsic operands without changes");
return createLLVMIntrinsic<BuiltinID::AbsFloat>(Operands, RetTy, IRB);
}
//----------------------- Rounding operations ----------------------------//
template <>
Value &createMainInst<BuiltinID::Ceil>(const std::vector<Value *> &Operands,
Type &RetTy, IRBuilder<> &IRB) {
assert(Operands.size() == CeilOperand::Size &&
"builtin operands should be trasformed into LLVM ceil "
"intrinsic operands without changes");
return createLLVMIntrinsic<BuiltinID::Ceil>(Operands, RetTy, IRB);
}
template <>
Value &createMainInst<BuiltinID::Floor>(const std::vector<Value *> &Operands,
Type &RetTy, IRBuilder<> &IRB) {
assert(Operands.size() == FloorOperand::Size &&
"builtin operands should be trasformed into LLVM floor "
"intrinsic operands without changes");
return createLLVMIntrinsic<BuiltinID::Floor>(Operands, RetTy, IRB);
}
template <>
Value &createMainInst<BuiltinID::Trunc>(const std::vector<Value *> &Operands,
Type &RetTy, IRBuilder<> &IRB) {
assert(Operands.size() == TruncOperand::Size &&
"builtin operands should be trasformed into LLVM trunc "
"intrinsic operands without changes");
return createLLVMIntrinsic<BuiltinID::Trunc>(Operands, RetTy, IRB);
}
//------------------------------------------------------------------------//
template <>
Value &createMainInst<BuiltinID::MinNum>(const std::vector<Value *> &Operands,
Type &RetTy, IRBuilder<> &IRB) {
assert(Operands.size() == MinNumOperand::Size &&
"builtin operands should be trasformed into LLVM minnum "
"intrinsic operands without changes");
return createLLVMIntrinsic<BuiltinID::MinNum>(Operands, RetTy, IRB);
}
template <>
Value &createMainInst<BuiltinID::MaxNum>(const std::vector<Value *> &Operands,
Type &RetTy, IRBuilder<> &IRB) {
assert(Operands.size() == MaxNumOperand::Size &&
"builtin operands should be trasformed into LLVM maxnum "
"intrinsic operands without changes");
return createLLVMIntrinsic<BuiltinID::MaxNum>(Operands, RetTy, IRB);
}
template <>
Value &createMainInst<BuiltinID::Select>(const std::vector<Value *> &Operands,
Type &, IRBuilder<> &IRB) {
assert(Operands.size() == SelectOperand::Size &&
"builtin operands should be trasformed into LLVM select instruction "
"operands without changes");
// trunc <iW x N> to <i1 x N> for mask
auto &WrongTypeCond = *Operands[SelectOperand::Condition];
auto Width =
cast<IGCLLVM::FixedVectorType>(WrongTypeCond.getType())->getNumElements();
auto *CondTy = IGCLLVM::FixedVectorType::get(IRB.getInt1Ty(), Width);
auto *RightTypeCond = IRB.CreateTrunc(&WrongTypeCond, CondTy,
WrongTypeCond.getName() + ".trunc");
auto *SelectResult =
IRB.CreateSelect(RightTypeCond, Operands[SelectOperand::TrueValue],
Operands[SelectOperand::FalseValue], "cmcl.sel");
return *SelectResult;
}
template <>
Value &createMainInst<BuiltinID::Fma>(const std::vector<Value *> &Operands,
Type &RetTy, IRBuilder<> &IRB) {
assert(Operands.size() == FmaOperand::Size &&
"builtin operands should be trasformed into LLVM fma "
"intrinsic operands without changes");
return createLLVMIntrinsic<BuiltinID::Fma>(Operands, RetTy, IRB);
}
template <>
Value &createMainInst<BuiltinID::Sqrt>(const std::vector<Value *> &Operands,
Type &RetTy, IRBuilder<> &IRB) {
assert(Operands.size() == SqrtOperand::Size &&
"builtin operands should be trasformed into LLVM sqrt "
"intrinsic operands without changes");
auto *InstSqrt = cast<Instruction>(&createLLVMIntrinsic<BuiltinID::Sqrt>(
{Operands[SqrtOperand::Source]}, RetTy, IRB));
if (cast<ConstantInt>(Operands[SqrtOperand::IsFast])->getSExtValue())
InstSqrt->setFast(true);
return *InstSqrt;
}
template <>
Value &createMainInst<BuiltinID::Log2>(const std::vector<Value *> &Operands,
Type &RetTy, IRBuilder<> &IRB) {
assert(Operands.size() == Log2Operand::Size &&
"builtin operands should be trasformed into LLVM log2 "
"intrinsic operands without changes");
auto *InstLog2 = cast<Instruction>(&createLLVMIntrinsic<BuiltinID::Log2>(
{Operands[Log2Operand::Source]}, RetTy, IRB));
if (cast<ConstantInt>(Operands[Log2Operand::IsFast])->getSExtValue())
InstLog2->setFast(true);
return *InstLog2;
}
template <>
Value &createMainInst<BuiltinID::Exp2>(const std::vector<Value *> &Operands,
Type &RetTy, IRBuilder<> &IRB) {
assert(Operands.size() == Exp2Operand::Size &&
"builtin operands should be trasformed into LLVM exp2 "
"intrinsic operands without changes");
auto *InstExp2 = cast<Instruction>(&createLLVMIntrinsic<BuiltinID::Exp2>(
{Operands[Exp2Operand::Source]}, RetTy, IRB));
if (cast<ConstantInt>(Operands[Exp2Operand::IsFast])->getSExtValue())
InstExp2->setFast(true);
return *InstExp2;
}
template <>
Value &createMainInst<BuiltinID::Powr>(const std::vector<Value *> &Operands,
Type &RetTy, IRBuilder<> &IRB) {
assert(Operands.size() == PowrOperand::Size &&
"builtin operands should be trasformed into LLVM pow "
"intrinsic operands without changes");
std::vector<Value*> Args{ Operands[PowrOperand::Base],
Operands[PowrOperand::Exponent] };
auto *InstPow = cast<Instruction>(&createLLVMIntrinsic<BuiltinID::Powr>(
Args, RetTy, IRB));
if (cast<ConstantInt>(Operands[PowrOperand::IsFast])->getSExtValue())
InstPow->setFast(true);
return *InstPow;
}
template <>
Value &createMainInst<BuiltinID::Sin>(const std::vector<Value *> &Operands,
Type &RetTy, IRBuilder<> &IRB) {
assert(Operands.size() == SinOperand::Size &&
"builtin operands should be trasformed into LLVM sin "
"intrinsic operands without changes");
auto *InstSin = cast<Instruction>(&createLLVMIntrinsic<BuiltinID::Sin>(
{Operands[SinOperand::Source]}, RetTy, IRB));
if (cast<ConstantInt>(Operands[SinOperand::IsFast])->getSExtValue())
InstSin->setFast(true);
return *InstSin;
}
template <>
Value &createMainInst<BuiltinID::Cos>(const std::vector<Value *> &Operands,
Type &RetTy, IRBuilder<> &IRB) {
assert(Operands.size() == CosOperand::Size &&
"builtin operands should be trasformed into LLVM cos "
"intrinsic operands without changes");
auto *InstCos = cast<Instruction>(&createLLVMIntrinsic<BuiltinID::Cos>(
{Operands[CosOperand::Source]}, RetTy, IRB));
if (cast<ConstantInt>(Operands[CosOperand::IsFast])->getSExtValue())
InstCos->setFast(true);
return *InstCos;
}
using CMCLSemantics = cmcl::atomic::MemorySemantics::Enum;
using CMCLMemoryScope = cmcl::atomic::MemoryScope::Enum;
using CMCLOperation = cmcl::atomic::Operation::Enum;
static AtomicOrdering getLLVMAtomicOrderingFromCMCL(CMCLSemantics S) {
switch (S) {
case CMCLSemantics::Relaxed:
return AtomicOrdering::Monotonic;
case CMCLSemantics::Acquire:
return AtomicOrdering::Acquire;
case CMCLSemantics::Release:
return AtomicOrdering::Release;
case CMCLSemantics::AcquireRelease:
return AtomicOrdering::AcquireRelease;
case CMCLSemantics::SequentiallyConsistent:
return AtomicOrdering::SequentiallyConsistent;
}
llvm_unreachable("unhandled cmcl semantics");
}
static AtomicRMWInst::BinOp getLLVMAtomicBinOpFromCMCL(CMCLOperation Op) {
switch (Op) {
default:
llvm_unreachable("unexpected cmcl binary op");
case CMCLOperation::MinSInt:
return AtomicRMWInst::Min;
case CMCLOperation::Xchg:
return AtomicRMWInst::Xchg;
case CMCLOperation::MaxSInt:
return AtomicRMWInst::Max;
case CMCLOperation::Min:
return AtomicRMWInst::UMin;
case CMCLOperation::Max:
return AtomicRMWInst::UMax;
case CMCLOperation::Add:
return AtomicRMWInst::Add;
case CMCLOperation::Sub:
return AtomicRMWInst::Sub;
case CMCLOperation::Orl:
return AtomicRMWInst::Or;
case CMCLOperation::Xorl:
return AtomicRMWInst::Xor;
case CMCLOperation::Andl:
return AtomicRMWInst::And;
}
}
template <>
Value &
createMainInst<BuiltinID::AtomicRMW>(const std::vector<Value *> &Operands,
Type &, IRBuilder<> &IRB) {
assert(Operands.size() == AtomicRMWOperand::Size &&
"builtin operands should be trasformed into LLVM atomicrmw "
"instruction operands without changes");
auto &Ctx = IRB.getContext();
auto *Ptr = Operands[AtomicRMWOperand::Ptr];
auto Ordering = getLLVMAtomicOrderingFromCMCL(static_cast<CMCLSemantics>(
cast<ConstantInt>(Operands[AtomicRMWOperand::Semantics])
->getZExtValue()));
auto ScopeName = cmcl::atomic::MemoryScope::getScopeNameFromCMCL(
static_cast<CMCLMemoryScope>(
cast<ConstantInt>(Operands[AtomicRMWOperand::Scope])
->getZExtValue()));
auto BinOp = getLLVMAtomicBinOpFromCMCL(static_cast<CMCLOperation>(
cast<ConstantInt>(Operands[AtomicRMWOperand::Operation])
->getSExtValue()));
return *IGCLLVM::createAtomicRMW(
IRB, BinOp, Ptr, Operands[AtomicRMWOperand::Operand], Ordering,
Ctx.getOrInsertSyncScopeID(ScopeName));
}
template <>
Value &createMainInst<BuiltinID::CmpXchg>(const std::vector<Value *> &Operands,
Type &, IRBuilder<> &IRB) {
assert(Operands.size() == CmpXchgOperand::Size &&
"builtin operands should be trasformed into LLVM cmpxchg "
"instruction operands without changes");
auto *Ptr = Operands[CmpXchgOperand::Ptr];
auto &Ctx = IRB.getContext();
auto OrderingSuccess =
getLLVMAtomicOrderingFromCMCL(static_cast<CMCLSemantics>(
cast<ConstantInt>(Operands[CmpXchgOperand::SemanticsSuccess])
->getZExtValue()));
auto OrderingFalilure =
getLLVMAtomicOrderingFromCMCL(static_cast<CMCLSemantics>(
cast<ConstantInt>(Operands[CmpXchgOperand::SemanticsFailure])
->getZExtValue()));
auto ScopeName = cmcl::atomic::MemoryScope::getScopeNameFromCMCL(
static_cast<CMCLMemoryScope>(
cast<ConstantInt>(Operands[CmpXchgOperand::Scope])->getZExtValue()));
auto *CmpXchgInst = IGCLLVM::createAtomicCmpXchg(
IRB, Ptr, Operands[CmpXchgOperand::Operand0],
Operands[CmpXchgOperand::Operand1], OrderingSuccess, OrderingFalilure,
Ctx.getOrInsertSyncScopeID(ScopeName));
return *IRB.CreateExtractValue(CmpXchgInst, 0 /*CmpXchg result*/,
".cmpxchg.res");
}
// Produces a vector of main inst results from its value.
// For multiple output an intrinsic may return a structure. This function will
// extract all structure elements and put them in index order into resulting
// vector.
static std::vector<ValueRef> splitMainInstResult(Value &CombinedResult,
IRBuilder<> &IRB) {
if (!isa<StructType>(CombinedResult.getType()))
return {CombinedResult};
auto *ResTy = cast<StructType>(CombinedResult.getType());
std::vector<ValueRef> Results;
for (int Idx = 0; Idx != ResTy->getNumElements(); ++Idx)
Results.push_back(
*IRB.CreateExtractValue(&CombinedResult, Idx, "cmcl.extract.res"));
return Results;
}
// Writes output values of created "MainInst".
// The order of output values in \p Results:
// builtin return value if any, output operands in order of builtin
// arguments (VectorOut, VectorInOut, etc.) if any.
template <BuiltinID::Enum BiID>
void writeBuiltinResults(Value &CombinedResult, CallInst &BiCall,
IRBuilder<> &IRB) {
auto Results = splitMainInstResult(CombinedResult, IRB);
int ResultIdx = 0;
// Handle return value.
if (!BiCall.getType()->isVoidTy()) {
Results[ResultIdx].get().takeName(&BiCall);
BiCall.replaceAllUsesWith(&Results[ResultIdx].get());
++ResultIdx;
}
// Handle output operands.
for (int BiOpIdx = 0; BiOpIdx != BuiltinOperandSize[BiID]; ++BiOpIdx)
if (BuiltinOperandKind[BiID][BiOpIdx] == OperandKind::Output)
IRB.CreateStore(&Results[ResultIdx++].get(),
BiCall.getArgOperand(BiOpIdx));
}
template <BuiltinID::Enum BiID>
static void handleBuiltinCall(CallInst &BiCall) {
IRBuilder<> IRB{&BiCall};
auto Operands = getTranslatedBuiltinOperands<BiID>(BiCall, IRB);
auto &RetTy = getTranslatedBuiltinType<BiID>(BiCall);
auto &Result = createMainInst<BiID>(Operands, RetTy, IRB);
writeBuiltinResults<BiID>(Result, BiCall, IRB);
}
static bool handleBuiltin(Function &Builtin) {
assert(isCMCLBuiltin(Builtin) &&
"wrong argument: CM-CL builtin was expected");
if (Builtin.use_empty())
return false;
auto BiID = decodeBuiltin(Builtin.getName());
for (User *Usr : Builtin.users()) {
assert((BiID >= 0 && BiID < BuiltinID::Size &&
BuiltinCallHandlers[BiID]) &&
"no handler for such builtin ID");
BuiltinCallHandlers[BiID](*cast<CallInst>(Usr));
}
return true;
}
bool cmcl::translateBuiltins(Module &M) {
auto Builtins = collectBuiltins(M);
if (Builtins.empty())
return false;
for (Function &Builtin : Builtins)
handleBuiltin(Builtin);
cleanUpBuiltins(Builtins);
return true;
}
|