File: KernelInfo.h

package info (click to toggle)
intel-graphics-compiler 1.0.12504.6-1%2Bdeb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 83,912 kB
  • sloc: cpp: 910,147; lisp: 202,655; ansic: 15,197; python: 4,025; yacc: 2,241; lex: 1,570; pascal: 244; sh: 104; makefile: 25
file content (516 lines) | stat: -rw-r--r-- 17,118 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
/*========================== begin_copyright_notice ============================

Copyright (C) 2017-2022 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

#ifndef VC_UTILS_GENX_KERNELINFO_H
#define VC_UTILS_GENX_KERNELINFO_H

#include "vc/InternalIntrinsics/InternalIntrinsics.h"
#include "vc/Utils/GenX/InternalMetadata.h"
#include "vc/Utils/GenX/Intrinsics.h"
#include "vc/Utils/GenX/RegCategory.h"

#include "Probe/Assertion.h"
#include "llvmWrapper/ADT/StringRef.h"

#include "llvm/ADT/iterator_range.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"

#include "llvm/GenXIntrinsics/GenXIntrinsics.h"
#include "llvm/GenXIntrinsics/GenXMetadata.h"

#include <cstdint>
#include <type_traits>
#include <unordered_map>

namespace vc {

enum { VISA_MAJOR_VERSION = 3, VISA_MINOR_VERSION = 6 };

enum { VC_STACK_USAGE_UNKNOWN = -1 };

// Utility function to tell how much stack required
// returns VC_STACK_USAGE_UNKNOWN if no attribute found
inline int getStackAmount(const llvm::Function *F,
                          int Default = VC_STACK_USAGE_UNKNOWN) {
  IGC_ASSERT(F);
  if (!F->hasFnAttribute(FunctionMD::VCStackAmount))
    return Default;
  llvm::StringRef Val =
      F->getFnAttribute(FunctionMD::VCStackAmount).getValueAsString();
  int Result;
  bool HaveParseError = Val.getAsInteger<int>(10, Result);
  IGC_ASSERT(!HaveParseError);
  return Result;
}

// Check if a function is to emulate instructions.
inline bool isEmulationFunction(const llvm::Function &F) {
  return F.hasFnAttribute(FunctionMD::VCEmulationRoutine);
}

// Utility function to tell whether a Function is a vISA kernel.
inline bool isKernel(const llvm::Function *F) {
  // We use DLLExport to represent a kernel in LLVM IR.
  return (F->hasDLLExportStorageClass() ||
          F->hasFnAttribute(llvm::genx::FunctionMD::CMGenXMain));
}

inline bool isKernel(const llvm::Function &F) { return isKernel(&F); }

// Check if it is a fast composite.
inline bool isCMCallable(const llvm::Function &F) {
  return F.hasFnAttribute(llvm::genx::FunctionMD::CMCallable);
}

// Utility function to tell if a Function needs to be called using
// vISA stack call ABI.
inline bool requiresStackCall(const llvm::Function *F) {
  IGC_ASSERT(F);
  bool IsStackCall = F->hasFnAttribute(llvm::genx::FunctionMD::CMStackCall);
  IGC_ASSERT_MESSAGE(!IsStackCall || !isKernel(F),
                     "The kernel cannot be a stack call");
  return IsStackCall;
}

inline bool requiresStackCall(const llvm::Function &F) {
  return requiresStackCall(&F);
}

// Utility function to tell if a Function must be called indirectly.
inline bool isIndirect(const llvm::Function *F) {
  IGC_ASSERT(F);
// FIXME: Temporary solution until SPIRV translator conversion of unnamed
// structure types is fixed for intrinsics.
  if (llvm::GenXIntrinsic::isAnyNonTrivialIntrinsic(F))
    return false;
  if (vc::InternalIntrinsic::isInternalNonTrivialIntrinsic(F))
    return false;
  if (vc::isKernel(F))
    return false;
  if (vc::isEmulationFunction(*F))
    return false;
  if (!F->hasAddressTaken() && F->hasLocalLinkage())
    return false;
  IGC_ASSERT_MESSAGE(
      requiresStackCall(F),
      "The indirectly-called function is expected to be a stack call");
  return true;
}

inline bool isIndirect(const llvm::Function &F) { return isIndirect(&F); }

// Turn a MDNode into llvm::value or its subclass.
// Return nullptr if the underlying value has type mismatch.
template <typename Ty = llvm::Value> Ty *getValueAsMetadata(llvm::Metadata *M) {
  if (auto *VM = llvm::dyn_cast<llvm::ValueAsMetadata>(M))
    if (auto *V = llvm::dyn_cast<Ty>(VM->getValue()))
      return V;
  return nullptr;
}

// Number of barriers can only be 0, 1, 2, 4, 8, 16, 24, 32.
// Alignment here means choosing nearest overlapping legal number of barriers.
static unsigned alignBarrierCnt(unsigned BarrierCnt) {
  if (BarrierCnt == 0)
    return 0;
  if (BarrierCnt > 32) {
    llvm::report_fatal_error("named barrier count must not exceed 32");
    return 0;
  }
  if (BarrierCnt > 16 && BarrierCnt <= 24)
    return 24;
  if (llvm::isPowerOf2_32(BarrierCnt))
    return BarrierCnt;
  return llvm::NextPowerOf2(BarrierCnt);
}

struct ImplicitLinearizationInfo {
  llvm::Argument *Arg;
  llvm::ConstantInt *Offset;
};
using LinearizedArgInfo = std::vector<ImplicitLinearizationInfo>;
using ArgToImplicitLinearization =
    std::unordered_map<llvm::Argument *, LinearizedArgInfo>;

inline bool isDescBufferType(llvm::StringRef TypeDesc) {
  return (IGCLLVM::contains_insensitive(TypeDesc, "buffer_t") &&
          !IGCLLVM::contains_insensitive(TypeDesc, "image1d_buffer_t"));
}

/// KernelMetadata : class to parse and update kernel metadata
class KernelMetadata {
public:
  enum class ArgIOKind {
    Normal = 0,
    Input = 1,
    Output = 2,
    InputOutput = 3,
    Fixed = 4,
  };

private:
  const llvm::Function *F = nullptr;
  llvm::MDNode *ExternalNode = nullptr;
  llvm::MDNode *InternalNode = nullptr;
  bool IsKernel = false;
  llvm::StringRef Name;
  unsigned SLMSize = 0;
  unsigned NBarrierCnt = 0;
  llvm::SmallVector<unsigned, 4> ArgKinds;
  llvm::SmallVector<unsigned, 4> ArgOffsets;
  llvm::SmallVector<ArgIOKind, 4> ArgIOKinds;
  llvm::SmallVector<llvm::StringRef, 4> ArgTypeDescs;
  llvm::SmallVector<unsigned, 4> ArgIndexes;
  llvm::SmallVector<unsigned, 4> OffsetInArgs;
  std::vector<int> BTIs;
  ArgToImplicitLinearization Linearization;

public:
  // default constructor
  KernelMetadata() {}

  /*
   * KernelMetadata constructor
   *
   * Enter:   F = Function that purports to be a CM kernel
   *
   */
  KernelMetadata(const llvm::Function *F);

private:
  template <typename InputIt>
  void updateArgsMD(InputIt Begin, InputIt End, llvm::MDNode *Node,
                    unsigned NodeOpNo) const;

public:
  void updateArgOffsetsMD(llvm::SmallVectorImpl<unsigned> &&Offsets);
  void updateArgKindsMD(llvm::SmallVectorImpl<unsigned> &&Kinds);
  void updateArgIndexesMD(llvm::SmallVectorImpl<unsigned> &&Indexes);
  void updateOffsetInArgsMD(llvm::SmallVectorImpl<unsigned> &&Offsets);
  void updateLinearizationMD(ArgToImplicitLinearization &&Lin);
  void updateBTIndicesMD(std::vector<int> &&BTIs);
  void updateSLMSizeMD(unsigned Size);

  bool hasArgLinearization(llvm::Argument *Arg) const {
    return Linearization.count(Arg);
  }

  // Linearization iterators
  LinearizedArgInfo::const_iterator arg_lin_begin(llvm::Argument *Arg) const {
    IGC_ASSERT(hasArgLinearization(Arg));
    const auto &L = Linearization.at(Arg);
    return L.cbegin();
  }
  LinearizedArgInfo::const_iterator arg_lin_end(llvm::Argument *Arg) const {
    IGC_ASSERT(hasArgLinearization(Arg));
    const auto &L = Linearization.at(Arg);
    return L.cend();
  }
  using arg_lin_range = llvm::iterator_range<LinearizedArgInfo::const_iterator>;
  arg_lin_range arg_lin(llvm::Argument *Arg) const {
    return arg_lin_range(arg_lin_begin(Arg), arg_lin_end(Arg));
  }

  // Accessors
  bool isKernel() const { return IsKernel; }
  llvm::StringRef getName() const { return Name; }
  const llvm::Function *getFunction() const { return F; }
  unsigned getSLMSize() const { return SLMSize; }
  bool hasNBarrier() const { return NBarrierCnt > 0; }
  // Args:
  //    HasBarrier - whether kernel has barrier or sbarrier instructions
  unsigned getAlignedBarrierCnt(bool HasBarrier) const {
    if (hasNBarrier())
      // Get legal barrier count based on the number of named barriers plus
      // regular barrier
      return alignBarrierCnt(NBarrierCnt + (HasBarrier ? 1 : 0));
    return HasBarrier;
  }
  llvm::ArrayRef<unsigned> getArgKinds() const { return ArgKinds; }
  llvm::ArrayRef<ArgIOKind> getArgIOKinds() const { return ArgIOKinds; }
  llvm::ArrayRef<llvm::StringRef> getArgTypeDescs() const {
    return ArgTypeDescs;
  }
  unsigned getNumArgs() const { return ArgKinds.size(); }
  unsigned getArgKind(unsigned Idx) const { return ArgKinds[Idx]; }
  llvm::StringRef getArgTypeDesc(unsigned Idx) const {
    if (Idx >= ArgTypeDescs.size())
      return "";
    return ArgTypeDescs[Idx];
  }

  enum { AK_NORMAL, AK_SAMPLER, AK_SURFACE };
  RegCategory getArgCategory(unsigned Idx) const {
    switch (getArgKind(Idx) & 7) {
    case AK_SAMPLER:
      return vc::RegCategory::Sampler;
    case AK_SURFACE:
      return vc::RegCategory::Surface;
    default:
      return vc::RegCategory::General;
    }
  }

  // check if an argument is annotated with attribute "buffer_t".
  bool isBufferType(unsigned Idx) const {
    return isDescBufferType(getArgTypeDesc(Idx));
  }

  int32_t getBTI(unsigned Index) const {
    IGC_ASSERT(Index < BTIs.size());
    return BTIs[Index];
  }

  // The number of low bits in argument kind used to store argument category.
  static constexpr int AKBitsForCategory = 3;

  // All the Kinds defined
  // These correspond to the values used in vISA
  // Bits 0-2 represent category (see enum)
  // Bits 7..3 represent the value needed for the runtime to determine what
  //           the implicit argument should be
  //
  enum ImpValue : uint32_t {
    IMP_NONE = 0x0,
    IMP_LOCAL_SIZE = 0x1 << AKBitsForCategory,
    IMP_GROUP_COUNT = 0x2 << AKBitsForCategory,
    IMP_LOCAL_ID = 0x3 << AKBitsForCategory,
    IMP_SB_DELTAS = 0x4 << AKBitsForCategory,
    IMP_SB_BTI = 0x5 << AKBitsForCategory,
    IMP_SB_DEPCNT = 0x6 << AKBitsForCategory,
    IMP_OCL_PRINTF_BUFFER = 0xB << AKBitsForCategory,
    IMP_OCL_PRIVATE_BASE = 0xC << AKBitsForCategory,
    IMP_OCL_LINEARIZATION = 0xD << AKBitsForCategory,
    IMP_OCL_BYVALSVM = 0xE << AKBitsForCategory,
    // Implicit argument with implicit args buffer.
    // It is not supported by CMRT. It is not supported for platforms with
    // payload in memory (for those platforms r0.0 is used to obtain the
    // pointer).
    IMP_IMPL_ARGS_BUFFER = 0xF << AKBitsForCategory,
    IMP_PSEUDO_INPUT = 0x10 << AKBitsForCategory
  };

  enum { SKIP_OFFSET_VAL = -1 };
  // Check if this argument should be omitted as a kernel input.
  bool shouldSkipArg(unsigned Idx) const {
    return static_cast<int32_t>(ArgOffsets[Idx]) == SKIP_OFFSET_VAL;
  }
  unsigned getNumNonSKippingInputs() const {
    unsigned K = 0;
    for (unsigned Val : ArgOffsets)
      K += (static_cast<int32_t>(Val) != SKIP_OFFSET_VAL);
    return K;
  }
  unsigned getArgOffset(unsigned Idx) const { return ArgOffsets[Idx]; }
  unsigned getOffsetInArg(unsigned Idx) const { return OffsetInArgs[Idx]; }
  unsigned getArgIndex(unsigned Idx) const { return ArgIndexes[Idx]; }

  ArgIOKind getArgInputOutputKind(unsigned Idx) const {
    if (Idx < ArgIOKinds.size())
      return ArgIOKinds[Idx];
    return ArgIOKind::Normal;
  }
  bool isOutputArg(unsigned Idx) const {
    auto Kind = getArgInputOutputKind(Idx);
    return Kind == ArgIOKind::Output || Kind == ArgIOKind::InputOutput;
  }
  bool isFastCompositeArg(unsigned Idx) const {
    return isOutputArg(Idx) || getArgInputOutputKind(Idx) == ArgIOKind::Input;
  }
};

inline bool isImplicitArgKind(uint32_t ArgKind,
                              KernelMetadata::ImpValue RefImplArgID) {
  uint32_t ImplArgID = ArgKind & llvm::maskTrailingZeros<uint32_t>(
                                     KernelMetadata::AKBitsForCategory);
  return ImplArgID == RefImplArgID;
}

inline bool isNormalCategoryArgKind(uint32_t ArgKind) {
  return (ArgKind & llvm::maskTrailingOnes<uint32_t>(
                        KernelMetadata::AKBitsForCategory)) ==
         KernelMetadata::AK_NORMAL;
}

inline bool isLocalIDKind(uint32_t ArgKind) {
  return isImplicitArgKind(ArgKind, KernelMetadata::IMP_LOCAL_ID);
}

inline bool isLocalSizeKind(uint32_t ArgKind) {
  return isImplicitArgKind(ArgKind, KernelMetadata::IMP_LOCAL_SIZE);
}

inline bool isGroupCountKind(uint32_t ArgKind) {
  return isImplicitArgKind(ArgKind, KernelMetadata::IMP_GROUP_COUNT);
}

inline bool isPrintBufferKind(uint32_t ArgKind) {
  return isImplicitArgKind(ArgKind, KernelMetadata::IMP_OCL_PRINTF_BUFFER);
}

inline bool isPrivateBaseKind(uint32_t ArgKind) {
  return isImplicitArgKind(ArgKind, KernelMetadata::IMP_OCL_PRIVATE_BASE);
}

inline bool isByValSVMKind(uint32_t ArgKind) {
  return isImplicitArgKind(ArgKind, KernelMetadata::IMP_OCL_BYVALSVM);
}

inline bool isImplicitArgsBufferKind(uint32_t ArgKind) {
  return isImplicitArgKind(ArgKind, KernelMetadata::IMP_IMPL_ARGS_BUFFER);
}

// Get implicit argument of the kernel \p Kernel defined by ID \p ImplArgID.
// If kernel has no such argument behavior is undefined.
const llvm::Argument &getImplicitArg(const llvm::Function &Kernel,
                                     KernelMetadata::ImpValue ImplArgID);

inline llvm::Argument &getImplicitArg(llvm::Function &Kernel,
                                      KernelMetadata::ImpValue ImplArgID) {
  return const_cast<llvm::Argument &>(
      getImplicitArg(static_cast<const llvm::Function &>(Kernel), ImplArgID));
}

void replaceFunctionRefMD(const llvm::Function &From, llvm::Function &To);

// Returns whether the provided module \p M has at least one kernel according
// to metadata.
bool hasKernel(const llvm::Module &M);

namespace detail {

// FIXME: Cannot support conversion from const iterator to mutable iterator,
//        because llvm::NamedMDNode::const_op_iterator doesn't support it.
//        Support it once LLVM does it too.
template <bool IsConst> class KernelIteratorImpl final {
  using ValueType =
      std::conditional_t<IsConst, const llvm::Function, llvm::Function>;
  using InnerIter =
      std::conditional_t<IsConst, llvm::NamedMDNode::const_op_iterator,
                         llvm::NamedMDNode::op_iterator>;
  using ModuleT = std::conditional_t<IsConst, const llvm::Module, llvm::Module>;
  using NamedMDNodeT =
      std::conditional_t<IsConst, const llvm::NamedMDNode, llvm::NamedMDNode>;

  InnerIter MDNodeIt{};

  KernelIteratorImpl(InnerIter It) : MDNodeIt{It} {}

public:
  using difference_type = typename InnerIter::difference_type;
  using value_type = std::remove_cv_t<ValueType>;
  using pointer = ValueType *;
  using reference = ValueType &;
  using iterator_category = typename InnerIter::iterator_category;

  KernelIteratorImpl() = default;

  static KernelIteratorImpl CreateBegin(ModuleT &M) {
    NamedMDNodeT *KernelsMD =
        M.getNamedMetadata(llvm::genx::FunctionMD::GenXKernels);
    if (!KernelsMD)
      return {};
    return {KernelsMD->op_begin()};
  }

  static KernelIteratorImpl CreateEnd(ModuleT &M) {
    NamedMDNodeT *KernelsMD =
        M.getNamedMetadata(llvm::genx::FunctionMD::GenXKernels);
    if (!KernelsMD)
      return {};
    return {KernelsMD->op_end()};
  }

  KernelIteratorImpl &operator++() {
    ++MDNodeIt;
    return *this;
  }

  KernelIteratorImpl operator++(int) {
    auto Tmp = *this;
    operator++();
    return Tmp;
  }

  KernelIteratorImpl &operator--() {
    --MDNodeIt;
    return *this;
  }

  KernelIteratorImpl operator--(int) {
    auto Tmp = *this;
    operator--();
    return Tmp;
  }

  pointer operator->() {
    // InnerIter returns pointer in operator*.
    auto *KernelNode = *MDNodeIt;
    pointer Kernel = getValueAsMetadata<ValueType>(
        KernelNode->getOperand(llvm::genx::KernelMDOp::FunctionRef));
    IGC_ASSERT_MESSAGE(
        Kernel, "Kernel MD must hold a valid pointer to kernel function");
    return Kernel;
  }

  reference operator*() { return *operator->(); }

  friend bool operator==(const KernelIteratorImpl &LHS,
                         const KernelIteratorImpl &RHS) {
    return LHS.MDNodeIt == RHS.MDNodeIt;
  }

  friend bool operator!=(const KernelIteratorImpl &LHS,
                         const KernelIteratorImpl &RHS) {
    return !(LHS == RHS);
  }
};
} // namespace detail

// Bidirectional iterator to iterate over module kernels based on the info in
// kernel metadata. Iterator dereferencing returns either const or mutable
// reference for llvm::Function depeneding on whether the iterator is const.
// The iterator correctly handles case when there's no metadata in the module.
//
// Usage example:
// for (Function &Kernel : vc::kernels(M))
using KernelIterator = detail::KernelIteratorImpl</* IsConst =*/false>;
using ConstKernelIterator = detail::KernelIteratorImpl</* IsConst =*/true>;

inline KernelIterator kernel_begin(llvm::Module &M) {
  return KernelIterator::CreateBegin(M);
}

inline KernelIterator kernel_end(llvm::Module &M) {
  return KernelIterator::CreateEnd(M);
}

inline ConstKernelIterator kernel_begin(const llvm::Module &M) {
  return ConstKernelIterator::CreateBegin(M);
}

inline ConstKernelIterator kernel_end(const llvm::Module &M) {
  return ConstKernelIterator::CreateEnd(M);
}

using KernelRange = llvm::iterator_range<KernelIterator>;
using ConstKernelRange = llvm::iterator_range<ConstKernelIterator>;

inline KernelRange kernels(llvm::Module &M) {
  return llvm::make_range(kernel_begin(M), kernel_end(M));
}

inline ConstKernelRange kernels(const llvm::Module &M) {
  return llvm::make_range(kernel_begin(M), kernel_end(M));
}

} // namespace vc

#endif // VC_UTILS_GENX_KERNELINFO_H