1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2022 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include <cm-cl/math.h>
#include <cm-cl/vector.h>
using namespace cm;
namespace {
// We have to use 32-bit integers when it's possible
constexpr unsigned exp_shift = 52 - 32;
constexpr unsigned exp_mask = 0x7ff;
constexpr unsigned exp_bias = 0x3ff;
constexpr unsigned exp_invmask = ~(exp_mask << exp_shift);
constexpr unsigned nan_hi = 0x7ff80000;
constexpr unsigned inf_hi = 0x7ff00000;
template <bool NNaN, bool NInf, bool NSZ, int N>
CM_NODEBUG CM_INLINE vector<double, N>
__impl_fdiv_special(vector<double, N> a, vector<double, N> b) {
auto x = a.template format<uint32_t>();
auto y = b.template format<uint32_t>();
vector<uint32_t, N> x_lo = x.template select<N, 2>(0);
vector<uint32_t, N> x_hi = x.template select<N, 2>(1);
vector<uint32_t, N> y_lo = y.template select<N, 2>(0);
vector<uint32_t, N> y_hi = y.template select<N, 2>(1);
vector<uint32_t, N> x_exp = (x_hi >> exp_shift) & exp_mask;
vector<uint32_t, N> y_exp = (y_hi >> exp_shift) & exp_mask;
vector<uint32_t, N> x_sgn = x_hi & (1u << 31);
vector<uint32_t, N> y_sgn = y_hi & (1u << 31);
vector<uint32_t, N * 2> result = 0;
auto result_lo = result.template select<N, 2>(0);
auto result_hi = result.template select<N, 2>(1);
auto ex_x_max = x_exp == 0x7ff;
auto ex_y_max = y_exp == 0x7ff;
if constexpr (!NInf) // Inf / y == Inf
result_hi.merge(x_sgn ^ y_sgn | inf_hi, ex_x_max);
auto x_is_nan = ex_x_max & ((x_lo != 0) | ((x_hi & 0x000fffff) != 0));
if constexpr (!NNaN) // NaN || Inf / Inf == NaN
result_hi.merge(nan_hi, ex_x_max & (x_is_nan | ex_y_max));
auto y_special = (ex_x_max == 0) & ex_y_max;
if constexpr (!NSZ) // x / Inf == 0
result_hi.merge(x_sgn ^ y_sgn, y_special);
if constexpr (!NNaN) { // x / NaN == NaN
auto y_is_nan = (y_lo != 0) | ((y_hi & 0x000fffff) != 0);
result_hi.merge(nan_hi, y_special & y_is_nan);
}
mask<N> x_hi_is_zero = x_hi == x_sgn;
mask<N> x_lo_is_zero = x_lo == 0;
mask<N> x_is_zero = x_hi_is_zero & x_lo_is_zero;
mask<N> y_hi_is_zero = y_hi == y_sgn;
mask<N> y_lo_is_zero = y_lo == 0;
mask<N> y_is_zero = y_hi_is_zero & y_lo_is_zero;
if constexpr (!NSZ) // 0 / y == 0
result_hi.merge(x_sgn ^ y_sgn, x_is_zero & (y_special == 0));
if constexpr (!NInf) // x / 0 == Inf
result_hi.merge(x_sgn ^ y_sgn | inf_hi, (x_is_nan == 0) & y_is_zero);
if constexpr (!NNaN) // 0 / 0 == NaN
result_hi.merge(nan_hi, x_is_zero & y_is_zero);
return result.template format<double>();
}
template <bool NNaN, bool NInf, bool NSZ, int N>
CM_NODEBUG CM_INLINE vector<double, N> __impl_fdiv_fast(vector<double, N> a,
vector<double, N> b) {
auto saved_a = a;
auto saved_b = b;
auto x = a.template format<uint32_t>();
auto y = b.template format<uint32_t>();
auto x_lo = x.template select<N, 2>(0);
auto x_hi = x.template select<N, 2>(1);
auto y_lo = y.template select<N, 2>(0);
auto y_hi = y.template select<N, 2>(1);
vector<int32_t, N> x_exp =
(vector<uint32_t, N>(x_hi) >> exp_shift) & exp_mask;
vector<int32_t, N> y_exp =
(vector<uint32_t, N>(y_hi) >> exp_shift) & exp_mask;
// Check exponent ranges. Main path has to be taken for x_exp in
// [bias-832, bias+896) and [bias-126, bias+126). No overflow/underflow
// occures for any main path step.
mask<N> x_long_path = (x_exp + 832 - exp_bias) >= (832 + 896);
mask<N> y_long_path = (y_exp + 126 - exp_bias) >= (126 + 126);
mask<N> long_path = x_long_path | y_long_path;
vector<double, N> scale0 = 0.5, scale1 = 0.0, scale2 = 0.0;
// Long path, scale is needed
if (long_path.any()) {
constexpr double two64 = 0x1p+64;
constexpr double twom64 = 0x1p-64;
// Handle subnormal a
mask<N> x_unorm = x_exp == 0;
if (x_unorm.any()) {
a.merge(a * two64, x_unorm);
x_exp = (vector<uint32_t, N>(x_hi) >> exp_shift) & exp_mask;
// if exp is still 0, we have zero or FTZ enabled
scale0.merge(scale0 * twom64, x_unorm & (x_exp != 0));
}
// Handle subnormal b
mask<N> y_unorm = y_exp == 0;
if (y_unorm.any()) {
b.merge(b * two64, y_unorm);
y_exp = (vector<uint32_t, N>(y_hi) >> exp_shift) & exp_mask;
// if exp is still 0, we have zero or FTZ enabled
scale0.merge(scale0 * two64, y_unorm & (y_exp != 0));
}
auto exp_diff = x_exp - y_exp + 0x7ff;
auto scale1_hi =
scale1.template format<uint32_t>().template select<N, 2>(1);
auto scale2_hi =
scale2.template format<uint32_t>().template select<N, 2>(1);
vector<uint32_t, N> scale1_exp = exp_diff >> 1;
vector<uint32_t, N> scale2_exp = exp_diff - scale1_exp;
scale1_hi = scale1_exp << exp_shift;
scale2_hi = scale2_exp << exp_shift;
auto scale0_w_hi =
scale0.template format<uint32_t>().template select<N, 2>(1);
vector<uint32_t, N * 2> ma;
ma.template select<N, 2>(0) = x_lo;
vector<uint32_t, N> tmpa = vector<uint32_t, N>(scale0_w_hi) |
(vector<uint32_t, N>(x_hi) & exp_invmask);
ma.template select<N, 2>(1) = tmpa;
vector<uint32_t, N * 2> mb;
mb.template select<N, 2>(0) = y_lo;
vector<uint32_t, N> tmpb =
(exp_bias << exp_shift) | (vector<uint32_t, N>(y_hi) & exp_invmask);
mb.template select<N, 2>(1) = tmpb;
a.merge(ma.template format<double>(), long_path);
b.merge(mb.template format<double>(), long_path);
}
// Should be mapped to math.inv
vector<float, N> bf = b;
vector<float, N> y0f = 1.0f / bf;
vector<double, N> y0 = y0f;
// step(1): e0 = 1.0 - b * y0
vector<double, N> one = 1.0;
auto e0 = math::mad(-b, y0, one);
// step(2)
auto q0 = a * y0;
// step(3): e1 = e0 + e0 * e0
auto e1 = math::mad(e0, e0, e0);
// step(4)
auto qe = q0 * e1;
// step(5): q = a * y0 + qe
auto q = math::mad(a, y0, qe);
if (long_path.any()) {
auto qscaled = q;
qscaled = q * scale1;
qscaled *= scale2;
q.merge(qscaled, long_path);
vector<uint32_t, N> x_uexp = x_exp;
vector<uint32_t, N> y_uexp = y_exp;
auto special_case = ((x_uexp - 1) >= 0x7fe) | ((y_uexp - 1) >= 0x7fe);
if (special_case.any()) {
q.merge(__impl_fdiv_special<NNaN, NInf, NSZ>(saved_a, saved_b),
special_case);
}
}
return q;
}
template <int N>
CM_NODEBUG CM_NOINLINE static cl_vector<double, N * 3>
__impl_div_ieee_steps__rte_(cl_vector<double, N> ca, cl_vector<double, N> cb) {
vector<double, N> a = ca;
vector<double, N> b = cb;
vector<float, N> bf = b;
vector<float, N> y0f = 1.0f / bf; // Should be mapped to math.inv
vector<double, N> y0 = y0f;
// Because the double-to-float conversion is done in RN mode, we need this fix
// to ensure corner cases round correctly
auto y0_lo = y0.template format<uint32_t>().template select<N, 2>(0);
y0_lo = vector<uint32_t, N>(y0_lo) | 1;
vector<double, N> one = 1.0;
// step(1)
auto q0 = a * y0;
// step(2): e0 = 1.0 - b * y0
auto e0 = math::mad(b, -y0, one);
// step(3): r0 = a - b * q0
auto r0 = math::mad(b, -q0, a);
// step(4): y1 = y0 + e0 * y0
auto y1 = math::mad(y0, e0, y0);
// step(5): e1 = 1.0 - b * y1
auto e1 = math::mad(b, -y1, one);
// step(6): y2 = y0 + e0 * y1
auto y2 = math::mad(e0, y1, y0);
// step(7): q1 = q0 + r0 * y1
auto q1 = math::mad(r0, y1, q0);
// step(8): y3 = y1 + e1 * y2
auto y3 = math::mad(e1, y2, y1);
// step(9): r1 = a - b * q1
auto r1 = math::mad(b, -q1, a);
vector<double, N * 3> out;
out.template select<N, 1>(0 * N) = q1;
out.template select<N, 1>(1 * N) = y3;
out.template select<N, 1>(2 * N) = r1;
return out.cl_vector();
}
template <int N>
CM_NODEBUG CM_NOINLINE static cl_vector<double, N>
__impl_div_ieee_step_10__rtz_(cl_vector<double, N> cr1,
cl_vector<double, N> cy3,
cl_vector<double, N> cq1) {
vector<double, N> r1 = cr1, y3 = cy3, q1 = cq1;
return math::mad(r1, y3, q1).cl_vector();
}
template <bool NNaN, bool NInf, bool NSZ, int N>
CM_NODEBUG CM_INLINE vector<double, N> __impl_fdiv_ieee(vector<double, N> a,
vector<double, N> b) {
auto saved_a = a;
auto saved_b = b;
auto x = a.template format<uint32_t>();
auto y = b.template format<uint32_t>();
auto x_lo = x.template select<N, 2>(0);
auto x_hi = x.template select<N, 2>(1);
auto y_lo = y.template select<N, 2>(0);
auto y_hi = y.template select<N, 2>(1);
vector<int32_t, N> x_exp =
(vector<uint32_t, N>(x_hi) >> exp_shift) & exp_mask;
vector<int32_t, N> y_exp =
(vector<uint32_t, N>(y_hi) >> exp_shift) & exp_mask;
vector<int32_t, N> g_ediff = 0;
// Check exponent ranges. Main path has to be taken for x_exp in
// [bias-896, bias+896) and [bias-126, bias+126). No overflow/underflow
// occures for any main path step.
mask<N> x_long_path = (x_exp + 896 - exp_bias) >= (896 + 896);
mask<N> y_long_path = (y_exp + 126 - exp_bias) >= (126 + 126);
mask<N> long_path = x_long_path | y_long_path;
vector<double, N> scale0 = 0.5, scale1 = 0.0, scale2 = 0.0;
// Long path, scale is needed
if (long_path.any()) {
constexpr double two64 = 0x1p+64;
constexpr double twom64 = 0x1p-64;
// Handle subnormal a
mask<N> x_unorm = x_exp == 0;
if (x_unorm.any()) {
a.merge(a * two64, x_unorm);
x_exp = (vector<uint32_t, N>(x_hi) >> exp_shift) & exp_mask;
// if exp is still 0, we have zero or FTZ enabled
scale0.merge(scale0 * twom64, x_unorm & (x_exp != 0));
}
// Handle subnormal b
mask<N> y_unorm = y_exp == 0;
if (y_unorm.any()) {
b.merge(b * two64, y_unorm);
y_exp = (vector<uint32_t, N>(y_hi) >> exp_shift) & exp_mask;
// if exp is still 0, we have zero or FTZ enabled
scale0.merge(scale0 * two64, y_unorm & (y_exp != 0));
}
auto exp_diff = x_exp - y_exp + 0x7ff;
auto scale1_hi =
scale1.template format<uint32_t>().template select<N, 2>(1);
auto scale2_hi =
scale2.template format<uint32_t>().template select<N, 2>(1);
vector<uint32_t, N> scale1_exp = exp_diff >> 1;
vector<uint32_t, N> scale2_exp = exp_diff - scale1_exp;
scale1_hi = scale1_exp << exp_shift;
scale2_hi = scale2_exp << exp_shift;
auto scale0_w_hi =
scale0.template format<uint32_t>().template select<N, 2>(1);
vector<uint32_t, N * 2> ma;
ma.template select<N, 2>(0) = x_lo;
vector<uint32_t, N> tmpa = vector<uint32_t, N>(scale0_w_hi) |
(vector<uint32_t, N>(x_hi) & exp_invmask);
ma.template select<N, 2>(1) = tmpa;
vector<uint32_t, N * 2> mb;
mb.template select<N, 2>(0) = y_lo;
vector<uint32_t, N> tmpb =
(exp_bias << exp_shift) | (vector<uint32_t, N>(y_hi) & exp_invmask);
mb.template select<N, 2>(1) = tmpb;
a.merge(ma.template format<double>(), long_path);
b.merge(mb.template format<double>(), long_path);
// g_ediff value is needed to detect gradual underflow
vector<double, N> abs_a = detail::__cm_cl_abs_float(a.cl_vector());
vector<double, N> abs_b = detail::__cm_cl_abs_float(b.cl_vector());
vector<int64_t, N> i_abs_a = abs_a.template format<int64_t>();
vector<int64_t, N> i_abs_b = abs_b.template format<int64_t>();
// The substruction has to be emulated
auto idiff = i_abs_a - i_abs_b;
vector<int32_t, N> idiff_hi =
idiff.template format<int32_t>().template select<N, 2>(1);
auto exp_diff2 = idiff_hi >> exp_shift; // arith shift is expected
g_ediff.merge(exp_diff + exp_diff2, long_path);
}
// step(0..9)
vector<double, N * 3> out =
__impl_div_ieee_steps__rte_(a.cl_vector(), b.cl_vector());
vector<double, N> q1 = out.template select<N, 1>(0);
vector<double, N> y3 = out.template select<N, 1>(N);
vector<double, N> r1 = out.template select<N, 1>(2 * N);
// step(10): q = q1 + r1 * y3
auto q = math::mad(r1, y3, q1);
if (long_path.any()) {
mask<N> gradual_underflow =
(g_ediff < 2046 - 1022) & (g_ediff >= 2046 - 1078);
// step(10) for gradual underflow case
if (gradual_underflow.any()) {
q.merge(__impl_div_ieee_step_10__rtz_(r1.cl_vector(), y3.cl_vector(),
q1.cl_vector()),
gradual_underflow);
}
auto qscaled = q;
qscaled = q * scale1;
// gradual underflow, shift amount is 1
mask<N> last_case = 0;
if (gradual_underflow.any()) {
// gradual underflow, normal result is inexact
mask<N> r1_is_not_zero = r1 != 0.0;
mask<N> gediff_is_magic = g_ediff == 2046 - 1023;
mask<N> result_is_inexact =
gradual_underflow & r1_is_not_zero & (gediff_is_magic == 0);
auto qscaled_lo =
qscaled.template format<uint32_t>().template select<N, 2>(0);
qscaled_lo.merge(vector<uint32_t, N>(qscaled_lo) | 1, result_is_inexact);
// gradual underflow, shift amount is 1
last_case = gradual_underflow & r1_is_not_zero & gediff_is_magic;
if (last_case.any()) {
vector<double, N> uq = qscaled;
auto uqi = uq.template format<uint32_t>();
auto uqi_lo = uqi.template select<N, 2>(0);
auto uqi_hi = uqi.template select<N, 2>(1);
vector<double, N> uq1 = 0.0;
auto uq1i = uq1.template format<uint32_t>();
auto uq1i_lo = uq1i.template select<N, 2>(0);
auto uq1i_hi = uq1i.template select<N, 2>(1);
uq1i_hi = vector<uint32_t, N>(uqi_hi) & 0xfff00000u;
uq = uq - uq1;
// add sticky bit and preserve sign after previous sub
uqi_hi = (vector<uint32_t, N>(uqi_hi) & ~(1u << 31)) |
(vector<uint32_t, N>(uq1i_hi) & (1u << 31));
uqi_lo = vector<uint32_t, N>(uqi_lo) | 1;
qscaled.merge(uq, last_case);
}
}
qscaled *= scale2;
auto qscaled_hi =
qscaled.template format<uint32_t>().template select<N, 2>(1);
qscaled_hi.merge(vector<uint32_t, N>(qscaled_hi) + 0x00080000u, last_case);
q.merge(qscaled, long_path);
vector<uint32_t, N> x_uexp = x_exp;
vector<uint32_t, N> y_uexp = y_exp;
auto special_case = ((x_uexp - 1) >= 0x7fe) | ((y_uexp - 1) >= 0x7fe);
if (special_case.any()) {
q.merge(__impl_fdiv_special<NNaN, NInf, NSZ>(saved_a, saved_b),
special_case);
}
}
return q;
}
constexpr bool _nnan = true;
constexpr bool _ninf = true;
constexpr bool _nsz = true;
constexpr bool _ = false;
} // namespace
#define __IMPL_FDIV_SCALAR(ALG, NNAN, NINF, NSZ) \
CM_NODEBUG CM_NOINLINE extern "C" double \
__cm_intrinsic_impl_fdiv__##ALG##_##NNAN##_##NINF##_##NSZ(double a, \
double b) { \
vector<double, 1> va = a; \
vector<double, 1> vb = b; \
return __impl_fdiv_##ALG<NNAN, NINF, NSZ>(va, vb)[0]; \
}
#define __IMPL_FDIV_VECTOR(WIDTH, ALG, NNAN, NINF, NSZ) \
CM_NODEBUG CM_NOINLINE extern "C" cl_vector<double, WIDTH> \
__cm_intrinsic_impl_fdiv__##ALG##__v##WIDTH##_##NNAN##_##NINF##_##NSZ( \
cl_vector<double, WIDTH> a, cl_vector<double, WIDTH> b) { \
vector<double, WIDTH> va{a}; \
vector<double, WIDTH> vb{b}; \
auto r = __impl_fdiv_##ALG<NNAN, NINF, NSZ>(va, vb); \
return r.cl_vector(); \
}
#include "emulation_fdiv_boilerplate.h"
|