File: FunctionGroup.cpp

package info (click to toggle)
intel-graphics-compiler 1.0.12504.6-1%2Bdeb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 83,912 kB
  • sloc: cpp: 910,147; lisp: 202,655; ansic: 15,197; python: 4,025; yacc: 2,241; lex: 1,570; pascal: 244; sh: 104; makefile: 25
file content (603 lines) | stat: -rw-r--r-- 21,255 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
/*========================== begin_copyright_notice ============================

Copyright (C) 2017-2021 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

//
// This file implements FunctionGroup, FunctionGroupAnalysis.
// See FunctionGroup.h for more details.
//
// The FunctionGroupPass part was adapted from CallGraphSCCPass.cpp.
//
// This file is currently in lib/Target/GenX, as that is the only place it
// is used. It could be moved somewhere more general.
//
//===----------------------------------------------------------------------===//

#include "FunctionGroup.h"
#include "vc/Utils/GenX/KernelInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/GenXIntrinsics/GenXMetadata.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/ValueMapper.h"

#include <algorithm>

#include "GenXUtil.h"

#include "llvmWrapper/IR/LegacyPassManagers.h"
#include "llvmWrapper/IR/PassTimingInfo.h"
#include "llvmWrapper/IR/Value.h"

#include "Probe/Assertion.h"

#define DEBUG_TYPE "functiongroup-passmgr"

using namespace llvm;

static cl::opt<bool> PrintFunctionsUsers(
    "fga-print-functions-users", cl::init(true), cl::Hidden,
    cl::desc("FunctionGroupAnalysis::print emits users of functions"));

bool FunctionGroup::verify() const {
  // TODO: ideally, we'd like to access call-graph here. However,
  // we do not maintain it here.
  for (auto I = Functions.begin(), E = Functions.end(); I != E; ++I) {
    Function *F = &(**I);
    // Note: we do not check FG heads here -
    // users of FG heads can belong to different FG
    if (F == getHead())
      continue;
    for (auto *U : F->users()) {
      auto *CI = genx::checkFunctionCall(U, F);
      if (!CI)
        continue;

      // Note: it is expected that all users of any function from
      // Functions array belong to the same FG
      const Function *Caller = CI->getFunction();
      auto *OtherGroup = FGA->getAnyGroup(Caller);
      IGC_ASSERT_MESSAGE(OtherGroup == this,
                         "inconsistent function group detected!");
      if (OtherGroup != this)
        return false;
    }
  }
  return true;
}

void FunctionGroup::print(raw_ostream &OS) const {
  OS << "{" << getName() << "}\n";

  std::vector<StringRef> FuncsNames;
  llvm::transform(Functions, std::back_inserter(FuncsNames),
                  [](const Function *F) { return F->getName(); });
  // The head remains the first.
  std::sort(std::next(FuncsNames.begin()), FuncsNames.end());
  for (const auto &F : FuncsNames) {
    OS << "  " << F << "\n";
  }

  for (const auto &EnItem : enumerate(Subgroups)) {
    OS << "--SGR[" << EnItem.index() << "]: ";
    OS << "<" << EnItem.value()->getHead()->getName() << ">\n";
  }
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void FunctionGroup::dump() const { print(dbgs()); }
#endif // if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)

/***********************************************************************
 * FunctionGroupAnalysis implementation
 */
char FunctionGroupAnalysis::ID = 0;
INITIALIZE_PASS(FunctionGroupAnalysis, "FunctionGroupAnalysis",
                "FunctionGroupAnalysis", false, true /*analysis*/)

ModulePass *llvm::createFunctionGroupAnalysisPass() {
  initializeFunctionGroupAnalysisPass(*PassRegistry::getPassRegistry());
  return new FunctionGroupAnalysis();
}

// clear : clear out the analysis
void FunctionGroupAnalysis::clear() {
  for (auto T : TypesToProcess)
    GroupMap[T].clear();

  Groups.clear();
  NonMainGroups.clear();
  M = nullptr;
}

FunctionGroup *FunctionGroupAnalysis::getGroup(const Function *F,
                                               FGType Type) const {
  auto i = GroupMap[Type].find(F);
  if (i == GroupMap[Type].end())
    return nullptr;
  return i->second;
}

// getGroup : get the FunctionGroup containing Function F, else 0
FunctionGroup *FunctionGroupAnalysis::getGroup(const Function *F) const {
  return getGroup(F, FGType::GROUP);
}

FunctionGroup *FunctionGroupAnalysis::getSubGroup(const Function *F) const {
  return getGroup(F, FGType::SUBGROUP);
}

FunctionGroup *FunctionGroupAnalysis::getAnyGroup(const Function *F) const {
  auto *Group = getGroup(F, FGType::SUBGROUP);
  if (!Group)
    Group = getGroup(F, FGType::GROUP);
  IGC_ASSERT_MESSAGE(Group, "Function isn't assigned to any function group");
  return Group;
}

// getGroupForHead : get the FunctionGroup for which Function F is the
// head, else 0
FunctionGroup *FunctionGroupAnalysis::getGroupForHead(const Function *F) const {
  auto *FG = getGroup(F);
  IGC_ASSERT(FG->size());
  if (*FG->begin() == F)
    return FG;
  return nullptr;
}

// replaceFunction : replace a Function in a FunctionGroup
// An in-use iterator in the modified FunctionGroup remains valid.
void FunctionGroupAnalysis::replaceFunction(Function *OldF, Function *NewF) {
  for (auto T : TypesToProcess) {
    auto OldFIt = GroupMap[T].find(OldF);
    if (OldFIt == GroupMap[T].end())
      continue;
    FunctionGroup *FG = OldFIt->second;
    GroupMap[T].erase(OldFIt);
    GroupMap[T][NewF] = FG;
    for (auto i = FG->begin();; ++i) {
      IGC_ASSERT(i != FG->end());
      if (*i == OldF) {
        *i = NewF;
        break;
      }
    }
  }
}

// addToFunctionGroup : add Function F to FunctionGroup FG
// Using this (rather than calling push_back directly on the FunctionGroup)
// means that the mapping from F to FG will be created, and getGroup() will
// work for this Function.
void FunctionGroupAnalysis::addToFunctionGroup(FunctionGroup *FG, Function *F,
                                               FGType Type) {
  IGC_ASSERT(FG);
  IGC_ASSERT_MESSAGE(FG->getParent()->getModule() == M,
    "attaching to FunctionGroup from wrong Module");
  IGC_ASSERT_MESSAGE(!GroupMap[Type][F],
    "Function already attached to FunctionGroup");
  GroupMap[Type][F] = FG;
  FG->push_back(F);
}

// createFunctionGroup : create new FunctionGroup for which F is the head
FunctionGroup *FunctionGroupAnalysis::createFunctionGroup(Function *F,
                                                          FGType Type) {
  auto *FG = new FunctionGroup(this);
  auto FGOwner = std::unique_ptr<FunctionGroup>(FG);
  if (Type == FGType::GROUP)
    Groups.push_back(std::move(FGOwner));
  else
    NonMainGroups.push_back(std::move(FGOwner));
  addToFunctionGroup(FG, F, Type);
  return FG;
}

// Returns true if pass is simple module pass,
// e.g. it is neither FG pass nor function pass manager.
static bool isModulePass(Pass *P) {
  if (P->getPassKind() != PT_Module)
    return false;
  return !P->getAsPMDataManager();
}

static StringRef TypeToAttr(FunctionGroupAnalysis::FGType Type) {
  switch (Type) {
  case FunctionGroupAnalysis::FGType::GROUP:
    return genx::FunctionMD::CMGenXMain;
  case FunctionGroupAnalysis::FGType::SUBGROUP:
    return genx::FunctionMD::CMStackCall;
  default:
    IGC_ASSERT_EXIT_MESSAGE(0, "Can't gen attribute for nox-existent FG type");
    break;
  }
  return "";
}

static FunctionGroupAnalysis::CallGraphTy buildCallGraph(Module &M) {
  FunctionGroupAnalysis::CallGraphTy CG;
  std::unordered_map<Function *, std::unordered_set<Function *>> Visited;
  for (auto &F : M) {
    CG[&F];
    for (auto *U : F.users()) {
      auto *Inst = dyn_cast<Instruction>(U);
      if (!Inst)
        continue;
      if (!F.empty() && Visited[Inst->getFunction()].count(&F) == 0) {
        CG[Inst->getFunction()].push_back(&F);
        Visited[Inst->getFunction()].insert(&F);
      }
      // Recursive functions must use stack.
      if (Inst->getFunction() == &F) {
        const bool UsesStack = vc::requiresStackCall(&F);
        IGC_ASSERT_MESSAGE(
            UsesStack,
            "Found recursive function without CMStackCall attribute");
        (void)UsesStack;
      }
    }
  }

  return CG;
}

// Depth-first traversal of all reachable functions from StartPoint in call
// graph CG. Does not visit functions for which Pred(Function *) returns false.
// Calls OnNode(Function *F) for each function F of the subgraph that is
// traversed. Calls OnEdge(Function *F, Function *Callee) for each
// function-callee pair of the subgraph that is traversed if both Pred(F) and
// Pred(Callee) return true.
template <typename CallbackOnNode, typename CallbackOnEdge,
          typename UnaryPredicate>
static void traverseCallGraph(const FunctionGroupAnalysis::CallGraphTy &CG,
                              Function *StartPoint, CallbackOnNode OnNode,
                              CallbackOnEdge OnEdge, UnaryPredicate Pred) {
  if (!Pred(StartPoint))
    return;
  std::vector<Function *> Stack = {StartPoint};
  std::unordered_set<Function *> Visited = {StartPoint};
  while (!Stack.empty()) {
    Function *F = Stack.back();
    Stack.pop_back();
    IGC_ASSERT_MESSAGE(CG.count(F), "Inconsistent call graph");

    OnNode(F);
    for (Function *Callee : CG.at(F)) {
      if (!Pred(Callee))
        continue;
      OnEdge(F, Callee);
      if (Visited.count(Callee))
        continue;
      Visited.insert(Callee);
      Stack.push_back(Callee);
    }
  }
}

template <typename CallbackOnNode, typename UnaryPredicate>
static void traverseCallGraphNodes(const FunctionGroupAnalysis::CallGraphTy &CG,
                                   Function *StartPoint, CallbackOnNode OnNode,
                                   UnaryPredicate Pred) {
  traverseCallGraph(
      CG, StartPoint, OnNode, [](Function *, Function *) {}, Pred);
}

template <typename CallbackOnEdge, typename UnaryPredicate>
static void traverseCallGraphEdges(const FunctionGroupAnalysis::CallGraphTy &CG,
                                   Function *StartPoint, CallbackOnEdge OnEdge,
                                   UnaryPredicate Pred) {
  traverseCallGraph(
      CG, StartPoint, [](Function *) {}, OnEdge, Pred);
}

using FGHead = Function;
// Maps the function to the heads of all function groups to which this function
// belongs.
using FuncToGroupsMapTy = std::unordered_map<Function *, std::vector<FGHead *>>;
// Maps the original function to this function in a specific function group, it
// can be the original function itself or its clone.
using FuncToClonesMapTy =
    std::unordered_map<Function *, std::unordered_map<FGHead *, Function *>>;

static FuncToGroupsMapTy
buildFuncToGroupsMap(const FunctionGroupAnalysis::CallGraphTy &CG,
                     const std::vector<Function *> &Heads) {
  FuncToGroupsMapTy FuncToGroupsMap;
  for (Function *Head : Heads) {
    traverseCallGraphNodes(
        CG, Head,
        [&FuncToGroupsMap, Head](Function *F) {
          FuncToGroupsMap[F].push_back(Head);
        },
        // Do not process stack calls, except for heads of subgroups.
        [Head](Function *F) { return F == Head || !vc::requiresStackCall(F); });
  }
  return FuncToGroupsMap;
}

// Clones each function for each function group (except for one) to which it
// belongs. The second return value is whether the module has been changed.
static std::pair<FuncToClonesMapTy, bool>
cloneFunctions(const FuncToGroupsMapTy &FuncToGroupsMap) {
  FuncToClonesMapTy FuncToClonesMap;
  bool ModuleModified = false;
  for (const auto &[F, FGs] : FuncToGroupsMap) {
    IGC_ASSERT(!FGs.empty());
    FuncToClonesMap[F][FGs.front()] = F;
    for (Function *FG : drop_begin(FGs, 1)) {
      ModuleModified = true;
      ValueToValueMapTy VMap;
      Function *ClonedFunc = CloneFunction(F, VMap);
      FuncToClonesMap[F][FG] = ClonedFunc;
    }
    // Rename clones if the function belongs to several function groups
    if (FGs.size() > 1) {
      auto FuncName = F->getName();
      for (auto [FG, ActualFunc] : FuncToClonesMap[F])
        ActualFunc->setName(FuncName + "." + FG->getName());
    }
  }
  return {std::move(FuncToClonesMap), ModuleModified};
}

// Restores correct uses between functions clones. The CG itself is not
// modified.
//
// Let's name actual clones of F and Callee in the current function group as
// ActualF and ActualCallee. When the clones were created the uses remained the
// same, so ActualF uses Callee. But we need to make ActualF use ActualCallee,
// and so for each function-callee pair in the original CG and for each FG.
// --------------------------------------
// | Original CG |    Functions uses    |
// --------------------------------------
// |             |                      |
// |   Callee    | Callee  ActualCallee |
// |     ^       |      ^      ^        |
// |     |       |       \     |        |
// |     |       |        X    |        |
// |     |       |         \   |        |
// |     F       |         ActualF      |
// |             |                      |
// --------------------------------------
// Callee may coincide with ActualCallee.
static void recoverEdges(const FunctionGroupAnalysis::CallGraphTy &CG,
                         const std::vector<Function *> &Heads,
                         const FuncToClonesMapTy &FuncToClonesMap) {
  for (Function *Head : Heads) {
    // The original graph is traversed, but edges are constructed between the
    // actual functions of the current function group.
    traverseCallGraphEdges(
        CG, Head,
        [&FuncToClonesMap, Head](Function *F, Function *Callee) {
          Function *ActualF = FuncToClonesMap.at(F).at(Head);
          Function *ActualCallee = FuncToClonesMap.at(Callee).at(Head);
          IGCLLVM::replaceUsesWithIf(Callee, ActualCallee, [ActualF](Use &U) {
            auto *CI = dyn_cast<CallInst>(U.getUser());
            IGC_ASSERT(CI);
            // Callee use should be replaced only if it is called from ActualF,
            // i.e. in the current function group.
            return CI->getFunction() == ActualF;
          });
        },
        // Do not process stack calls, except for heads of subgroups.
        [Head](Function *F) { return F == Head || !vc::requiresStackCall(F); });
  }
}

// Makes each function of the module belong to only one function group. If a
// function belongs to several function groups, it is copied.
bool FunctionGroupAnalysis::legalizeGroups() {
  const CallGraphTy CG = buildCallGraph(*M);

  std::vector<Function *> Heads;
  auto HeadsRange =
      make_filter_range(*M, [](Function &F) { return genx::fg::isHead(F); });
  transform(HeadsRange, std::back_inserter(Heads),
            [](Function &F) { return &F; });

  auto FuncToGroupsMap = buildFuncToGroupsMap(CG, Heads);
  auto [FuncToClonesMap, ModuleModified] = cloneFunctions(FuncToGroupsMap);
  if (!ModuleModified)
    return false;
  recoverEdges(CG, Heads, FuncToClonesMap);
  return true;
}

void FunctionGroupAnalysis::buildGroup(const CallGraphTy &CG, Function *Head,
                                       FGType Type) {
  FunctionGroup *FG = createFunctionGroup(Head, Type);
  traverseCallGraphNodes(
      CG, Head,
      [this, Head, FG, Type](Function *F) {
        if (F == Head)
          return;
        addToFunctionGroup(FG, F, Type);
      },
      [Head](Function *F) { return F == Head || !vc::requiresStackCall(F); });
}

bool FunctionGroupAnalysis::verify() const {
  return llvm::all_of(AllGroups(), [](const auto &GR) { return GR->verify(); });
}

// Fills in Groups and NonMainGroups. It is assumed that all function groups
// have already been legalized, i.e. no function of a module is called from
// two different heads.
void FunctionGroupAnalysis::buildGroups() {
  const CallGraphTy CG = buildCallGraph(*M);
  for (auto T : TypesToProcess) {
    for (auto &F : *M) {
      if (F.isDeclaration())
        continue;
      if (!genx::fg::isHead(F))
        continue;
      // Do not process kernels at subgroup level.
      if (genx::fg::isGroupHead(F) &&
          T == FunctionGroupAnalysis::FGType::SUBGROUP)
        continue;
      // Do not process stack calls at group level.
      if (genx::fg::isSubGroupHead(F) &&
          T == FunctionGroupAnalysis::FGType::GROUP)
        continue;
      buildGroup(CG, &F, T);
    }
  }

  for (auto SubFG : subgroups()) {
    const Function *Head = SubFG->getHead();
    IGC_ASSERT(Head);

    for (auto U : Head->users()) {
      const auto *UserInst = dyn_cast<CallInst>(U);
      if (!UserInst)
        continue;

      const Function *UserFunction = UserInst->getFunction();
      IGC_ASSERT(UserFunction);
      FunctionGroup *UserFG = getAnyGroup(UserFunction);
      IGC_ASSERT(UserFG);

      UserFG->addSubgroup(SubFG);
    }
  }

  IGC_ASSERT(verify());
}

void FunctionGroupAnalysis::print(raw_ostream &OS, const Module *) const {
  OS << "Number of Groups = " << Groups.size() << "\n";
  for (const auto &X : enumerate(Groups)) {
    OS << "GR[" << X.index() << "] = <\n";
    X.value()->print(OS);
    OS << ">\n";
  }
  OS << "Number of SubGroups = " << NonMainGroups.size() << "\n";
  for (const auto &X : enumerate(NonMainGroups)) {
    OS << "SGR[" << X.index() << "] = <\n";
    X.value()->print(OS);
    OS << ">\n";
  }
  if (!PrintFunctionsUsers)
    return;

  for (auto T : TypesToProcess) {
    std::map<StringRef, std::set<StringRef>> FuncUsers;
    for (auto [F, FG] : GroupMap[T]) {
      FuncUsers[F->getName()];
      for (auto *U : F->users()) {
        auto *CI = genx::checkFunctionCall(U, F);
        if (!CI)
          continue;
        const Function *Caller = CI->getFunction();
        FuncUsers[F->getName()].insert(Caller->getName());
      }
    }
    for (const auto &[FuncName, UsersNames] : FuncUsers) {
      OS << "Users of " << FuncName << ":";
      for (const auto &UserName : UsersNames) {
        OS << " " << UserName;
      }
      OS << "\n";
    }
  }
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void FunctionGroupAnalysis::dump() const { print(dbgs(), nullptr); }
#endif // if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)

//===----------------------------------------------------------------------===//
//  DominatorTreeGroupWrapperPass Implementation
//===----------------------------------------------------------------------===//
//
// The implementation details of the wrapper pass that holds a DominatorTree
// per Function in a FunctionGroup.
//
//===----------------------------------------------------------------------===//
INITIALIZE_PASS_BEGIN(DominatorTreeGroupWrapperPassWrapper,
                      "groupdomtreeWrapper",
                      "Group Dominator Tree Construction Wrapper", true, true)
INITIALIZE_PASS_END(DominatorTreeGroupWrapperPassWrapper, "groupdomtreeWrapper",
                    "Group Dominator Tree Construction", true, true)

void DominatorTreeGroupWrapperPass::releaseMemory() {
  for (auto i = DTs.begin(), e = DTs.end(); i != e; ++i)
    delete i->second;
  DTs.clear();
}

bool DominatorTreeGroupWrapperPass::runOnFunctionGroup(FunctionGroup &FG) {
  for (auto fgi = FG.begin(), fge = FG.end(); fgi != fge; ++fgi) {
    Function *F = *fgi;
    auto DT = new DominatorTree;
    DT->recalculate(*F);
    DTs[F] = DT;
  }
  return false;
}

void DominatorTreeGroupWrapperPass::verifyAnalysis() const {
  for (auto i = DTs.begin(), e = DTs.end(); i != e; ++i)
    i->second->verify();
}

void DominatorTreeGroupWrapperPass::print(raw_ostream &OS,
                                          const FunctionGroup *) const {
  for (auto i = DTs.begin(), e = DTs.end(); i != e; ++i)
    i->second->print(OS);
}

//===----------------------------------------------------------------------===//
//  LoopInfoGroupWrapperPass Implementation
//===----------------------------------------------------------------------===//
//
// The implementation details of the wrapper pass that holds a LoopInfo
// per Function in a FunctionGroup.
//
//===----------------------------------------------------------------------===//
INITIALIZE_PASS_BEGIN(LoopInfoGroupWrapperPassWrapper, "grouploopinfoWrapper",
                      "Group Loop Info Construction Wrapper", true, true)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeGroupWrapperPassWrapper)
INITIALIZE_PASS_END(LoopInfoGroupWrapperPassWrapper, "grouploopinfoWrapper",
                    "Group Loop Info Construction Wrapper", true, true)

void LoopInfoGroupWrapperPass::releaseMemory() {
  for (auto i = LIs.begin(), e = LIs.end(); i != e; ++i)
    delete i->second;
  LIs.clear();
}

bool LoopInfoGroupWrapperPass::runOnFunctionGroup(FunctionGroup &FG) {
  auto &DTs = getAnalysis<DominatorTreeGroupWrapperPass>();
  for (auto fgi = FG.begin(), fge = FG.end(); fgi != fge; ++fgi) {
    Function *F = *fgi;
    auto LI = new LoopInfo;
    LI->analyze(*DTs.getDomTree(F));
    LIs[F] = LI;
  }
  return false;
}

void LoopInfoGroupWrapperPass::verifyAnalysis() const {
  auto &DTs = getAnalysis<DominatorTreeGroupWrapperPass>();
  for (auto i = LIs.begin(), e = LIs.end(); i != e; ++i)
    i->second->verify(*DTs.getDomTree(i->first));
}

void LoopInfoGroupWrapperPass::print(raw_ostream &OS,
                                     const FunctionGroup *) const {
  for (auto i = LIs.begin(), e = LIs.end(); i != e; ++i)
    i->second->print(OS);
}