1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
//
/// FunctionGroup
/// -------------
///
/// FunctionGroup is a generic mechanism for maintaining a group of Functions.
///
/// FunctionGroupAnalysis is a Module analysis that maintains all the
/// FunctionGroups in the Module. It is up to some other pass to use
/// FunctionGroupAnalysis to create and populate the FunctionGroups, and thus
/// attach some semantics to what a FunctionGroup represents.
///
/// FunctionGroupPass is a type of pass (with associated pass manager) that
/// runs a pass instance per FunctionGroup.
///
/// This file is currently in lib/Target/GenX, as that is the only place it
/// is used. It could be moved somewhere more general.
///
//===----------------------------------------------------------------------===//
#ifndef LIB_GENXCODEGEN_FUNCTIONGROUP_H
#define LIB_GENXCODEGEN_FUNCTIONGROUP_H
#include "vc/Utils/GenX/KernelInfo.h"
#include <llvm/ADT/SetVector.h>
#include <llvm/ADT/SmallVector.h>
#include <llvm/IR/Module.h>
#include <llvm/IR/ValueHandle.h>
#include <llvm/Pass.h>
#include "Probe/Assertion.h"
#include <functional>
#include <map>
#include <string>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
namespace llvm {
class FunctionGroupAnalysis;
class LLVMContext;
class PMStack;
ModulePass *createGenXGroupPrinterPass(raw_ostream &O,
const std::string &Banner);
namespace genx {
namespace fg {
inline bool isGroupHead(const Function &F) { return vc::isKernel(&F); }
inline bool isSubGroupHead(const Function &F) {
return vc::requiresStackCall(F);
}
inline bool isHead(const Function &F) {
return isGroupHead(F) || isSubGroupHead(F);
}
} // namespace fg
} // namespace genx
//----------------------------------------------------------------------
// FunctionGroup : a group of Functions
//
class FunctionGroup {
FunctionGroupAnalysis *FGA = nullptr;
// Vector of Functions in the FunctionGroup. Element 0 is the head.
// Elements are asserting value handles, so we spot when a Function
// in the group gets destroyed too early.
SmallVector<AssertingVH<Function>, 8> Functions;
// FunctionGroup can call the head function of another FunctionGroups with
// SUBGROUP type.
SetVector<const FunctionGroup *> Subgroups;
public:
FunctionGroup(FunctionGroupAnalysis *FGA) : FGA(FGA) {}
FunctionGroupAnalysis *getParent() const { return FGA; }
// push_back : push a Function into the group. The first time this is done,
// the Function is the head Function.
void push_back(Function *F) { Functions.push_back(AssertingVH<Function>(F)); }
// iterator and forwarders. The iterator iterates over the Functions in the
// group, starting with the head Function.
AssertingVH<Function> &at(unsigned i) { return Functions[i]; }
typedef SmallVectorImpl<AssertingVH<Function>>::iterator iterator;
typedef SmallVectorImpl<AssertingVH<Function>>::const_iterator const_iterator;
iterator begin() { return Functions.begin(); }
iterator end() { return Functions.end(); }
const_iterator begin() const { return Functions.begin(); }
const_iterator end() const { return Functions.end(); }
typedef SmallVectorImpl<AssertingVH<Function>>::reverse_iterator
reverse_iterator;
reverse_iterator rbegin() { return Functions.rbegin(); }
reverse_iterator rend() { return Functions.rend(); }
size_t size() const { return Functions.size(); }
// accessors
Function *getHead() const {
IGC_ASSERT(size());
return *begin();
}
StringRef getName() const { return getHead()->getName(); }
LLVMContext &getContext() const { return getHead()->getContext(); }
Module *getModule() const { return getHead()->getParent(); }
void addSubgroup(FunctionGroup *FG) {
IGC_ASSERT(FG);
IGC_ASSERT(FG->getHead());
IGC_ASSERT_MESSAGE(genx::fg::isSubGroupHead(*FG->getHead()),
"Provided function group has incorrect type");
Subgroups.insert(FG);
}
using subgroup_iterator = decltype(Subgroups)::iterator;
using const_subgroup_iterator = decltype(Subgroups)::const_iterator;
subgroup_iterator begin_subgroup() { return Subgroups.begin(); }
subgroup_iterator end_subgroup() { return Subgroups.end(); }
const_subgroup_iterator begin_subgroup() const { return Subgroups.begin(); }
const_subgroup_iterator end_subgroup() const { return Subgroups.end(); }
iterator_range<subgroup_iterator> subgroups() {
return make_range(begin_subgroup(), end_subgroup());
}
iterator_range<const_subgroup_iterator> subgroups() const {
return make_range(begin_subgroup(), end_subgroup());
}
bool verify() const;
void print(raw_ostream &OS) const;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void dump() const;
#endif // if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
};
//----------------------------------------------------------------------
// FunctionGroupAnalysis - a Module analysis that maintains all the
// FunctionGroups in the Module. It is up to some other pass to use
// FunctionGroupAnalysis to create the FunctionGroups and then populate them.
//
class FunctionGroupAnalysis : public ModulePass {
public:
// FunctionGroup types:
// * GROUP - GENX_MAIN kernel and its underlying callgraph
// * SUBGROUP - GENX_STACKCALL function and its underlying callgraph including
// subroutines only
// Groups are necessary to perform cloning of subroutines
// called from different kernels and/or stack functions
enum class FGType { GROUP, SUBGROUP, MAX };
const FGType TypesToProcess[static_cast<size_t>(FGType::MAX)] = {
FGType::GROUP, FGType::SUBGROUP};
private:
Module *M = nullptr;
SmallVector<std::unique_ptr<FunctionGroup>, 8> Groups;
// storage for FunctionGroups that aren't of type GROUP,
// i.e. not necessarily GENX_MAIN headed
// TODO: mb increase 8 as there can be many stack funcs hence may subgroups
SmallVector<std::unique_ptr<FunctionGroup>, 8> NonMainGroups;
class FGMap {
using ElementType = std::map<const Function *, FunctionGroup *>;
std::array<ElementType, static_cast<size_t>(FGType::MAX)> data = {};
public:
ElementType &operator[](FGType type) {
auto index = static_cast<size_t>(type);
IGC_ASSERT(index < data.size());
return data[index];
}
const ElementType &operator[](FGType type) const {
auto index = static_cast<size_t>(type);
IGC_ASSERT(index < data.size());
return data[index];
}
};
FGMap GroupMap;
public:
static char ID;
explicit FunctionGroupAnalysis() : ModulePass(ID) {}
~FunctionGroupAnalysis() { clear(); }
StringRef getPassName() const override { return "function group analysis"; }
// runOnModule : does almost nothing
bool runOnModule(Module &ArgM) override {
clear();
M = &ArgM;
return false;
}
void releaseMemory() override {
clear();
}
// getModule : get the Module that this FunctionGroupAnalysis is for
Module *getModule() { return M; }
// clear : clear out the FunctionGroupAnalysis
void clear();
// getGroup : get the FunctionGroup containing Function F, else 0
FunctionGroup *getGroup(const Function *F, FGType Type) const;
FunctionGroup *getGroup(const Function *F) const;
FunctionGroup *getSubGroup(const Function *F) const;
// get group or subgroup depending on where the function is.
FunctionGroup *getAnyGroup(const Function *F) const;
// getGroupForHead : get the FunctionGroup for which Function F is the
// head, else 0
FunctionGroup *getGroupForHead(const Function *F) const;
// replaceFunction : replace a Function in a FunctionGroup
void replaceFunction(Function *OldF, Function *NewF);
// iterator for FunctionGroups in the analysis
typedef SmallVectorImpl<FunctionGroup *>::iterator iterator;
typedef SmallVectorImpl<FunctionGroup *>::const_iterator const_iterator;
using all_iterator = concat_iterator<FunctionGroup *, iterator, iterator>;
using const_all_iterator =
concat_iterator<FunctionGroup *const, const_iterator, const_iterator>;
iterator begin() { return iterator(Groups.begin()); }
iterator end() { return iterator(Groups.end()); }
const_iterator begin() const { return const_iterator(Groups.begin()); }
const_iterator end() const { return const_iterator(Groups.end()); }
iterator subgroup_begin() { return iterator(NonMainGroups.begin()); }
iterator subgroup_end() { return iterator(NonMainGroups.end()); }
const_iterator subgroup_begin() const {
return const_iterator(NonMainGroups.begin());
}
const_iterator subgroup_end() const {
return const_iterator(NonMainGroups.end());
}
iterator_range<iterator> subgroups() {
return make_range(subgroup_begin(), subgroup_end());
}
iterator_range<const_iterator> subgroups() const {
return make_range(subgroup_begin(), subgroup_end());
}
iterator_range<all_iterator> AllGroups() {
return concat<FunctionGroup *>(
make_range(begin(), end()),
make_range(subgroup_begin(), subgroup_end()));
}
iterator_range<const_all_iterator> AllGroups() const {
return concat<FunctionGroup *const>(
make_range(begin(), end()),
make_range(subgroup_begin(), subgroup_end()));
}
size_t size() const { return Groups.size(); }
bool legalizeGroups();
// addToFunctionGroup : add Function F to FunctionGroup FG
// Using this (rather than calling push_back directly on the FunctionGroup)
// means that the mapping from F to FG will be created, and getGroup() will
// work for this Function.
void addToFunctionGroup(FunctionGroup *FG, Function *F, FGType Type);
// createFunctionGroup : create new FunctionGroup for which F is the head
FunctionGroup *createFunctionGroup(Function *F, FGType Type);
using CallGraphTy = std::unordered_map<Function *, std::vector<Function *>>;
void buildGroup(const CallGraphTy &CG, Function *Head,
FGType Type = FGType::GROUP);
void buildGroups();
bool verify() const;
void print(raw_ostream &OS, const Module *) const override;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void dump() const;
#endif // if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
};
ModulePass *createFunctionGroupAnalysisPass();
void initializeFunctionGroupAnalysisPass(PassRegistry &);
inline raw_ostream &operator<<(raw_ostream &OS,
const FunctionGroupAnalysis::FGType &T) {
switch (T) {
case FunctionGroupAnalysis::FGType::GROUP:
OS << "Group";
break;
case FunctionGroupAnalysis::FGType::SUBGROUP:
OS << "Subgroup";
break;
default:
IGC_ASSERT_EXIT_MESSAGE(0, "Invalid FG type");
break;
}
return OS;
}
template <typename FGPassImpl> struct IDMixin { inline static char ID = 0; };
// FunctionGroupWrapperPass - a type of pass that
// runs a pass instance per FunctionGroup, and for each FunctionGroup data holds
// separately
struct FunctionGroupWrapperMapComparator {
bool operator()(const FunctionGroup *Lhs, const FunctionGroup *Rhs) const {
return Lhs->getName() < Rhs->getName();
}
};
template <typename FGPassImpl>
class FunctionGroupWrapperPass : public IDMixin<FGPassImpl>, public ModulePass {
using StoreStruct =
std::map<FunctionGroup *, FGPassImpl, FunctionGroupWrapperMapComparator>;
StoreStruct Passes;
std::function<FGPassImpl &(FunctionGroup *, StoreStruct &)>
createPassImplForFunctionGroup;
public:
using IDMixin<FGPassImpl>::ID;
// NOTE: arguments are copied and used in construction during runOnModule, so
// MAKE SURE that all arguments are alive
template <typename... FGPassArgs>
explicit FunctionGroupWrapperPass(FGPassArgs... FGArgs)
: ModulePass(ID),
createPassImplForFunctionGroup(
[FGArgs...](FunctionGroup *FG,
StoreStruct &Passes) -> FGPassImpl & {
[[maybe_unused]] bool isEmplaced =
Passes.try_emplace(FG, FGArgs...).second;
IGC_ASSERT_MESSAGE(isEmplaced == true, "PassImpl not created");
return Passes.at(FG);
}) {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<FunctionGroupAnalysis>();
AU.addPreserved<FunctionGroupAnalysis>();
FGPassImpl::getAnalysisUsage(AU);
}
StringRef getPassName() const override { return FGPassImpl::getPassName(); }
// need to set up Passes that collect any data
void releaseMemory() override {
for (auto &[FG, PassImpl] : Passes)
PassImpl.releaseMemory();
Passes.clear();
}
void verifyAnalysis() const override {
for (auto &[FG, PassImpl] : Passes)
PassImpl.verifyAnalysis();
}
void print(raw_ostream &OS, const Module *M) const override {
auto PassName = FGPassImpl::getPassName();
const auto *PassInfo = Pass::lookupPassInfo(getPassID());
if (PassInfo)
PassName = PassInfo->getPassArgument();
for (auto &[FG, PassImpl] : Passes) {
OS << "Dump of <" << PassName << ">"
<< " for FunctionGroup: " << FG->getName() << " --start\n";
PassImpl.getAsFGPassImplInterface().print(OS, FG);
OS << "Dump of <" << PassName << ">"
<< " for FunctionGroup: " << FG->getName() << " --end\n";
OS << "\n";
}
}
// createPrinterPass : get a pass to print the IR, together with the GenX
// specific analyses
Pass *createPrinterPass(raw_ostream &O,
const std::string &Banner) const override {
return createGenXGroupPrinterPass(O, Banner);
}
bool runOnModule(Module &M) override {
bool Changed = false;
FunctionGroupAnalysis &FGA =
this->template getAnalysis<FunctionGroupAnalysis>();
for (auto *currentFG : FGA.AllGroups()) {
FGPassImpl &CurrentPass =
createPassImplForFunctionGroup(currentFG, Passes);
CurrentPass.Parent = this;
CurrentPass.AnalyzedFG = currentFG;
Changed |= CurrentPass.runOnFunctionGroup(*currentFG);
}
return Changed;
}
FGPassImpl &getFGPassImpl(FunctionGroup *FG) {
IGC_ASSERT_MESSAGE(FG, "Nullptr input in getFGPassImpl");
IGC_ASSERT_MESSAGE(
Passes.count(FG) == 1,
"Wrapper does not have PassImpl, associated with this FunctionGroup");
return Passes[FG];
}
};
struct FGAnalysisGetter {
ModulePass *Parent = nullptr;
FunctionGroup *AnalyzedFG = nullptr;
template <typename AnalysisPass>
typename std::enable_if_t<std::is_base_of_v<FGAnalysisGetter, AnalysisPass>,
AnalysisPass &>
getAnalysis() const {
return Parent->getAnalysis<FunctionGroupWrapperPass<AnalysisPass>>()
.getFGPassImpl(AnalyzedFG);
}
template <typename AnalysisPass>
typename std::enable_if_t<!std::is_base_of_v<FGAnalysisGetter, AnalysisPass>,
AnalysisPass &>
getAnalysis() const {
return Parent->getAnalysis<AnalysisPass>();
}
template <typename AnalysisPass>
typename std::enable_if_t<std::is_base_of_v<FGAnalysisGetter, AnalysisPass>,
AnalysisPass *>
getAnalysisIfAvailable() const {
using WrapperT = FunctionGroupWrapperPass<AnalysisPass>;
WrapperT *WrapperPtr = Parent->getAnalysisIfAvailable<WrapperT>();
if (WrapperPtr)
return &(WrapperPtr->getFGPassImpl(AnalyzedFG));
return nullptr;
}
template <typename AnalysisPass>
typename std::enable_if_t<!std::is_base_of_v<FGAnalysisGetter, AnalysisPass>,
AnalysisPass *>
getAnalysisIfAvailable() const {
return Parent->getAnalysisIfAvailable<AnalysisPass>();
}
};
struct FGPassImplInterface : public FGAnalysisGetter {
virtual void releaseMemory() {}
virtual void print(raw_ostream &OS, const FunctionGroup *FG) const {}
virtual bool runOnFunctionGroup(FunctionGroup &FG) = 0;
virtual void verifyAnalysis() const {}
const FGPassImplInterface &getAsFGPassImplInterface() const { return *this; }
// Please define those static function members too:
// static getAnalysisUsage(AnalysisUsage& AU)
// static getPassName()
};
//----------------------------------------------------------------------
// DominatorTreeGroupWrapperPass : Analysis pass which computes a DominatorTree
// per Function in the FunctionGroup.
class DominatorTree;
class DominatorTreeGroupWrapperPass
: public FGPassImplInterface,
public IDMixin<DominatorTreeGroupWrapperPass> {
std::map<Function *, DominatorTree *> DTs;
public:
DominatorTreeGroupWrapperPass() {}
~DominatorTreeGroupWrapperPass() { releaseMemory(); }
DominatorTree *getDomTree(Function *F) { return DTs[F]; }
bool runOnFunctionGroup(FunctionGroup &FG) override;
void verifyAnalysis() const override;
static void getAnalysisUsage(AnalysisUsage &AU) { AU.setPreservesAll(); }
static StringRef getPassName() {
return "DominatorTreeGroupWrapperPassWrapper";
}
void releaseMemory() override;
void print(raw_ostream &OS, const FunctionGroup *FG = nullptr) const override;
};
using DominatorTreeGroupWrapperPassWrapper =
FunctionGroupWrapperPass<DominatorTreeGroupWrapperPass>;
void initializeDominatorTreeGroupWrapperPassWrapperPass(PassRegistry &);
//----------------------------------------------------------------------
// LoopInfoGroupWrapperPass : Analysis pass which computes a LoopInfo
// per Function in the FunctionGroup.
class LoopInfo;
class LoopInfoGroupWrapperPass : public FGPassImplInterface,
public IDMixin<LoopInfoGroupWrapperPass> {
std::map<Function *, LoopInfo *> LIs;
public:
LoopInfoGroupWrapperPass() {}
~LoopInfoGroupWrapperPass() { releaseMemory(); }
LoopInfo *getLoopInfo(Function *F) { return LIs[F]; }
const DominatorTree &getDomTree();
bool runOnFunctionGroup(FunctionGroup &FG) override;
void verifyAnalysis() const override;
static void getAnalysisUsage(AnalysisUsage &AU) {
AU.addRequired<DominatorTreeGroupWrapperPass>();
AU.setPreservesAll();
}
static StringRef getPassName() { return "LoopInfoGroupWrapperPassWrapper"; }
void releaseMemory() override;
void print(raw_ostream &OS, const FunctionGroup *FG = nullptr) const override;
};
using LoopInfoGroupWrapperPassWrapper =
FunctionGroupWrapperPass<LoopInfoGroupWrapperPass>;
void initializeLoopInfoGroupWrapperPassWrapperPass(PassRegistry &);
} // end namespace llvm
#endif // LIB_GENXCODEGEN_FUNCTIONGROUP_H
|