1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2022 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
//
/// GenXAddressCommoning
/// --------------------
///
/// This pass spots when multiple address conversions use the same value and
/// are used in regions with the same base register (the same coalesced live
/// range), and commons up the address conversions.
///
/// It also handles cases where an llvm.genx.add.addr has an out of range offset
/// that is not encodable as the constant offset in an indirect operand. When
/// commoning up address conversions, it groups ones with nearby offsets such
/// that all uses of a commoned address conversion have in range offsets in
/// their llvm.genx.add.addr ops.
///
/// Before this pass, GenXCategoryConversion has ensured that each use of a
/// variable index in an element or region access (llvm.genx.rdregion etc
/// intrinsics) has its own separate address conversion (llvm.genx.convert.addr
/// intrinsic). Any constant add/sub between the address conversion
/// and the use of the variable index has been turned into an llvm.genx.add.addr
/// intrinsic.
///
/// This GenXAddressCommoning pass spots when multiple address conversions
/// use the same index value as input and are used in element/region accesses
/// with the same base register. These can then be commoned up.
///
/// In fact, rather than looking at an address conversion in isolation, it needs
/// to look at the whole bale containing the address conversion, which might have
/// a baled in rdregion and modifiers. It needs to do this because
/// GenXBaling cloned the rdregion and modifiers, so they need commoning up
/// again with the address conversion.
/// This situation is common because GenXLowering lowers a trunc (as often
/// found in an index calculation to convert the index to i16) into a bitcast
/// and a rdregion.
///
/// A second transformation in this pass is the "histogram optimization": If
/// there are multiple scalar address conversions for the same base reg where
/// each index is an extract (a scalar rdregion) from the same index vector, we
/// attempt to common them up into a vector address conversion, with an extract
/// from the result of the vector address conversion for each user of an
/// original scalar address conversion. The extract is baled in to the indirect
/// region, appearing as the "addr_offset" field (the index into the 8 wide
/// address register) in the generated vISA.
///
/// This histogram optimization uses the hasIndirectGRFCrossing feature from
/// GenXSubtarget to tell how big the combined vector address conversion can be,
/// in the case that it itself is an indirect region.
///
/// Both of the transformations in this pass are fiddly because the pass runs so
/// late. It has to run this late because we cannot tell whether address
/// conversions can be commoned up until GenXCoalescing has decided which vectors
/// are in the same register, but that then means that this pass has to update
/// live ranges and baling info for the code that it modifies.
///
/// **IR restriction**: After this pass, the restrictions on
/// ``llvm.genx.convert.addr`` and ``llvm.genx.add.addr`` having just a single
/// use are relaxed. Now, multiple uses of ``llvm.genx.convert.addr``, possibly
/// each via a single ``llvm.genx.add.addr``, must be in rdregions/wrregions
/// where the base register is provably the same because all the values that
/// appear as the "old value" input are coalesced together into the same
/// LiveRange.
///
//===----------------------------------------------------------------------===//
#include "FunctionGroup.h"
#include "GenX.h"
#include "GenXBaling.h"
#include "GenXGotoJoin.h"
#include "GenXLiveness.h"
#include "GenXModule.h"
#include "GenXNumbering.h"
#include "GenXUtil.h"
#include "vc/Utils/GenX/GlobalVariable.h"
#include "vc/Utils/GenX/RegCategory.h"
#include "llvm-c/Core.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/Debug.h"
#include "Probe/Assertion.h"
#include "llvmWrapper/IR/DerivedTypes.h"
#include "llvmWrapper/Support/TypeSize.h"
#define DEBUG_TYPE "GENX_ADDRESSCOMMONING"
using namespace llvm;
using namespace genx;
static cl::opt<bool> ConvertAfterWholeRegion("convert-after-whole", cl::init(true), cl::Hidden,
cl::desc("Convert addrs after whole region conversion attempt"));
namespace {
// Local function for testing one assertion statement. Tests if we do not have
// any duplicates and if they are all in the current function.
bool testDuplicates(const llvm::ArrayRef<llvm::Instruction *> &Addrs,
const llvm::Function *const F) {
IGC_ASSERT(F);
auto compareParent = [F](const llvm::Instruction *const I) {
IGC_ASSERT(I);
IGC_ASSERT(I->getParent());
IGC_ASSERT(I->getParent()->getParent());
const bool Result = (F == I->getParent()->getParent());
IGC_ASSERT(Result);
return Result;
};
llvm::ArrayRef<llvm::Instruction *>::const_iterator Begin = Addrs.begin();
llvm::ArrayRef<llvm::Instruction *>::const_iterator End = Addrs.end();
const std::set<llvm::Instruction *> UniqueSet(Begin, End);
const size_t UniqueCount = UniqueSet.size();
const size_t CurrentCount = Addrs.size();
const bool AllAreUnique = (CurrentCount == UniqueCount);
IGC_ASSERT(AllAreUnique);
const bool AllAreInCurrentFunction = std::all_of(Begin, End, compareParent);
IGC_ASSERT(AllAreInCurrentFunction);
const bool Result = (AllAreUnique && AllAreInCurrentFunction);
return Result;
}
// Bucket : a bucket for collecting address conversions with the same base reg
// and the same address calculation value, discarding duplicates.
struct Bucket {
SmallVector<Instruction *, 4> Addrs;
SmallSet<Instruction *, 4> AddrSet;
void add(Instruction *Addr) {
if (AddrSet.insert(Addr).second)
Addrs.push_back(Addr);
}
};
// ExtractBucket : a bucket for collecting address conversions with the same
// base reg that all use an extract (scalar rdregion) from the same vector,
// discarding duplicates.
struct ExtractBucket {
SmallVector<Instruction *, 4> Addrs;
SmallSet<Instruction *, 4> AddrSet;
void add(Instruction *Addr) {
if (AddrSet.insert(Addr).second)
Addrs.push_back(Addr);
}
};
// Extract: address and offset for region conversion
struct Extract {
Instruction *Addr; // the address conversion instruction
int Offset; // the offset from the rdregion;
Extract(Instruction *Addr, int Offset) : Addr(Addr), Offset(Offset) {}
bool operator<(const Extract &Other) const { return Offset < Other.Offset; }
};
// GenX address conversion pass
class GenXAddressCommoning : public FGPassImplInterface,
public IDMixin<GenXAddressCommoning> {
GenXBaling *Baling = nullptr;
GenXLiveness *Liveness = nullptr;
GenXNumbering *Numbering = nullptr;
const GenXSubtarget *ST = nullptr;
Function *F = nullptr;
SmallSet<Value *, 8> AlreadyProcessed;
// Types and data structures used for gathering convert_addr ops that
// could be commoned up:
// InnerVec is a vector of convert_addr ops that have the same base register
// and bale hash. OuterVec is a vector of InnerVec. OuterMap provides a
// way of finding the element of OuterVec for a particular base register
// and bale hash. Using a vector and map together like this ensures that
// we process everything in the same order even as pointer values and hashes
// change from one compiler run to another.
typedef SmallVector<Instruction *, 4> InnerVec_t;
typedef SmallVector<InnerVec_t, 4> OuterVec_t;
OuterVec_t OuterVec;
struct BaseRegAndBaleHash {
LiveRange *BaseReg;
hash_code BaleHash;
BaseRegAndBaleHash(LiveRange *BaseReg, hash_code BaleHash)
: BaseReg(BaseReg), BaleHash(BaleHash) {}
static bool less(BaseRegAndBaleHash BRH1, BaseRegAndBaleHash BRH2)
{
if (BRH1.BaseReg != BRH2.BaseReg)
return BRH1.BaseReg < BRH2.BaseReg;
return BRH1.BaleHash < BRH2.BaleHash;
}
};
typedef std::map<BaseRegAndBaleHash, unsigned,
bool (*)(BaseRegAndBaleHash, BaseRegAndBaleHash)> OuterMap_t;
OuterMap_t OuterMap;
public:
explicit GenXAddressCommoning()
: OuterMap(OuterMap_t(BaseRegAndBaleHash::less)) {}
static StringRef getPassName() { return "GenX address commoning"; }
static void getAnalysisUsage(AnalysisUsage &AU) {
AU.addRequired<DominatorTreeGroupWrapperPass>();
AU.addRequired<GenXModule>();
AU.addRequired<GenXGroupBaling>();
AU.addRequired<GenXLiveness>();
AU.addRequired<GenXNumbering>();
AU.addPreserved<DominatorTreeGroupWrapperPass>();
AU.addPreserved<GenXGroupBaling>();
AU.addPreserved<GenXLiveness>();
AU.addPreserved<GenXModule>();
AU.addPreserved<GenXNumbering>();
AU.addPreserved<FunctionGroupAnalysis>();
AU.setPreservesCFG();
}
bool runOnFunctionGroup(FunctionGroup &FG) override;
private:
bool processFunction(Function *F);
bool processBaseReg(LiveRange *LR);
bool processCommonAddrs(ArrayRef<Instruction *> Addrs);
void processCommonAddrsWithValidOffsets(ArrayRef<Instruction *> Addrs);
bool vectorizeAddrs(LiveRange *LR);
void addAddrConvIfExtract(std::map<std::pair<Value *, int>, ExtractBucket> *ExtractBuckets, Value *Index);
bool tryConvertWholeRegion(SmallVector<Extract, 4> &Extracts,
Instruction *VecDef);
bool vectorizeAddrsFromOneVector(ArrayRef<Instruction *> Addrs);
DominatorTree *getDominatorTree();
bool isValueInCurrentFunc(Value *V);
unsigned getNumberElementsInAddrReg() const {
if (ST)
return ST->getNumElementsInAddrReg();
return 8;
}
};
} // end anonymous namespace
namespace llvm {
void initializeGenXAddressCommoningWrapperPass(PassRegistry &);
using GenXAddressCommoningWrapper =
FunctionGroupWrapperPass<GenXAddressCommoning>;
} // namespace llvm
INITIALIZE_PASS_BEGIN(GenXAddressCommoningWrapper,
"GenXAddressCommoningWrapper",
"GenXAddressCommoningWrapper", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeGroupWrapperPassWrapper)
INITIALIZE_PASS_DEPENDENCY(GenXGroupBalingWrapper)
INITIALIZE_PASS_DEPENDENCY(GenXLivenessWrapper)
INITIALIZE_PASS_DEPENDENCY(GenXNumberingWrapper)
INITIALIZE_PASS_END(GenXAddressCommoningWrapper, "GenXAddressCommoningWrapper",
"GenXAddressCommoningWrapper", false, false)
ModulePass *llvm::createGenXAddressCommoningWrapperPass() {
initializeGenXAddressCommoningWrapperPass(*PassRegistry::getPassRegistry());
return new GenXAddressCommoningWrapper();
}
/***********************************************************************
* runOnFunctionGroup : run the address commoning pass for this
* FunctionGroup
*/
bool GenXAddressCommoning::runOnFunctionGroup(FunctionGroup &FG)
{
Baling = &getAnalysis<GenXGroupBaling>();
Liveness = &getAnalysis<GenXLiveness>();
Numbering = &getAnalysis<GenXNumbering>();
ST = getAnalysis<GenXModule>().getSubtarget();
bool Modified = false;
for (auto fgi = FG.begin(), fge = FG.end(); fgi != fge; ++fgi) {
F = *fgi;
Modified |= processFunction(F);
}
return Modified;
}
/***********************************************************************
* processFunction : process one function in the address commoning pass
*/
bool GenXAddressCommoning::processFunction(Function *F)
{
// Build a list of base registers used in an indirect rdregion or wrregion.
// This does a preordered depth first traversal of the CFG to
// ensure that we see a def before its uses (ignoring phi node uses).
// Because an llvm.genx.convert.addr intrinsic can bale in a rdregion
// with a variable index that itself uses an llvm.genx.convert.addr,
// we want to process the code in forward order so that we can do as
// much commoning as possible.
SmallVector<LiveRange *, 8> BaseRegs;
std::set<LiveRange *> BaseRegsSet;
for (df_iterator<BasicBlock *> i = df_begin(&F->getEntryBlock()),
e = df_end(&F->getEntryBlock()); i != e; ++i) {
for (auto bi = i->begin(), be = i->end(); bi != be; ++bi) {
Instruction *Inst = &*bi;
LiveRange *LR = nullptr;
switch (GenXIntrinsic::getGenXIntrinsicID(Inst)) {
default:
continue;
case GenXIntrinsic::genx_rdregioni:
case GenXIntrinsic::genx_rdregionf:
if (isa<Constant>(Inst->getOperand(
GenXIntrinsic::GenXRegion::RdIndexOperandNum)))
continue;
LR = Liveness->getLiveRange(Inst->getOperand(0));
break;
case GenXIntrinsic::genx_wrregioni:
case GenXIntrinsic::genx_wrregionf:
if (isa<Constant>(Inst->getOperand(
GenXIntrinsic::GenXRegion::WrIndexOperandNum)))
continue;
// A write region may be baled into a g_store.
LR = Liveness->getLiveRangeOrNull(Inst);
if (!LR) {
IGC_ASSERT(Inst->hasOneUse());
auto SI = dyn_cast<StoreInst>(Inst->user_back());
if (!SI)
continue;
Value *GV =
vc::getUnderlyingGlobalVariable(SI->getPointerOperand());
if (!GV)
continue;
LR = Liveness->getLiveRange(GV);
}
break;
}
// Inst is rdregion or wrregion with non-constant index.
// Save the base register.
if (BaseRegsSet.insert(LR).second)
BaseRegs.push_back(LR); // not seen before
}
}
BaseRegsSet.clear();
// Process each base register.
bool Modified = false;
for (auto i = BaseRegs.begin(), e = BaseRegs.end(); i != e; ++i) {
Modified |= processBaseReg(*i);
Modified |= vectorizeAddrs(*i);
}
return Modified;
}
/***********************************************************************
* processBaseReg : process one base register
*
* Enter: LR = LiveRange with all the values for this base register
*
* We common up all address conversions with the same input that are used to
* address a region of this base register.
*/
bool GenXAddressCommoning::processBaseReg(LiveRange *LR)
{
// Gather the address conversions used by regions of this base register into
// buckets, one for each distinct input. A bucket discards duplicate address
// conversions.
llvm::MapVector<Bale, Bucket, std::unordered_map<Bale, unsigned>> Buckets;
auto processIndexOperand = [&](Value *Index) {
while (GenXIntrinsic::getGenXIntrinsicID(Index) ==
GenXIntrinsic::genx_add_addr)
Index = cast<Instruction>(Index)->getOperand(0);
if (GenXIntrinsic::getGenXIntrinsicID(Index) !=
GenXIntrinsic::genx_convert_addr)
return;
Bale B;
Baling->buildBale(cast<Instruction>(Index), &B);
B.hash();
Buckets[B].add(cast<Instruction>(Index));
};
for (auto vi = LR->value_begin(), ve = LR->value_end(); vi != ve; ++vi) {
Value *V = vi->getValue();
// Ignore the value if it is in the wrong function. That can happen because
// liveness information is shared between functions in the same group.
if (!isValueInCurrentFunc(V))
continue;
// First the def, if it is a wrregion.
if (GenXIntrinsic::isWrRegion(V))
processIndexOperand(cast<Instruction>(V)->getOperand(
GenXIntrinsic::GenXRegion::WrIndexOperandNum));
// Then each use that is a rdregion. (A use that is a wrregion will be
// handled when we look at that value, which must be coalesced into the
// same live range.)
for (auto ui = V->use_begin(), ue = V->use_end(); ui != ue; ++ui) {
if (ui->getOperandNo() != GenXIntrinsic::GenXRegion::OldValueOperandNum)
continue;
auto user = cast<Instruction>(ui->getUser());
auto isBaledWrr = [=]() {
if (!isa<LoadInst>(V) || !GenXIntrinsic::isWrRegion(user) || !user->hasOneUse())
return false;
StoreInst *SI = dyn_cast<StoreInst>(user->user_back());
GlobalVariable *GV =
SI ? vc::getUnderlyingGlobalVariable(SI->getPointerOperand())
: nullptr;
if (!GV)
return false;
// make sure the base is the right global variable.
return Liveness->getLiveRangeOrNull(GV) == LR;
};
// wrr may have been baled with a g_store.
if (isBaledWrr())
processIndexOperand(cast<Instruction>(user)->getOperand(
GenXIntrinsic::GenXRegion::WrIndexOperandNum));
if (!GenXIntrinsic::isRdRegion(user))
continue;
processIndexOperand(user->getOperand(
GenXIntrinsic::GenXRegion::RdIndexOperandNum));
}
}
// Common up each bucket with more than one address conversion.
bool Modified = false;
for (auto i = Buckets.begin(), e = Buckets.end(); i != e; ++i)
Modified |= processCommonAddrs(i->second.Addrs);
return Modified;
}
/***********************************************************************
* processCommonAddrs : common up some address conversions
*
* Enter: Addrs = one or more address conversion instructions that all have
* the same input and address the same base register, with no
* duplicates. Offsets (in add.addr intrinsics) are not known to
* be in range; this function fixes that.
*
* Return: whether code modified
*
* This function relies on there being no duplicates in Addrs in the way that
* it erases the address conversions other than the one it uses as the common
* one.
*
* This processes a batch of address conversions with add.addr offsets close
* enough to each other that we can use constant offsets in the indirect
* operands. Then it recursively calls itself with what is left after removing
* that batch.
*
* This code relies on there only being one add.addr between a convert.addr and
* the use of the added address in a rdregion/wrregion. GenXCategory ensures
* that this is the case.
*/
bool GenXAddressCommoning::processCommonAddrs(ArrayRef<Instruction *> Addrs)
{
IGC_ASSERT(testDuplicates(Addrs, F));
bool Modified = false;
// Get the offsets. (Each address conversion has only one use; that is how
// GenXCategory set it up.)
SmallVector<int, 4> Offsets;
for (unsigned i = 0, e = Addrs.size(); i != e; ++i) {
int Offset = 0;
IGC_ASSERT(Addrs[i]->hasOneUse());
auto AddrUse = cast<Instruction>(Addrs[i]->use_begin()->getUser());
if (GenXIntrinsic::getGenXIntrinsicID(AddrUse) ==
GenXIntrinsic::genx_add_addr) {
// The offset is operand 1 of the add_addr, and it is either a constant
// int or a splat of a constant int.
auto C = cast<Constant>(AddrUse->getOperand(1));
if (isa<VectorType>(C->getType()))
C = C->getSplatValue();
Offset = cast<ConstantInt>(C)->getSExtValue();
}
Offsets.push_back(Offset);
}
// Get the min offset.
int MinOffset = INT_MAX;
for (unsigned i = 0, e = Offsets.size(); i != e; ++i)
MinOffset = std::min(MinOffset, Offsets[i]);
// Split the address conversions into ones used with an offset in
// [MinOffset,MinOffset+1023] and ones that are outside that range.
SmallVector<Instruction *, 4> InRangeAddrs;
SmallVector<Instruction *, 4> OutOfRangeAddrs;
int MaxOffset = INT_MIN;
for (unsigned i = 0, e = Offsets.size(); i != e; ++i) {
if (Offsets[i] < MinOffset + 1024) {
InRangeAddrs.push_back(Addrs[i]);
MaxOffset = std::max(MaxOffset, Offsets[i]);
} else
OutOfRangeAddrs.push_back(Addrs[i]);
}
// We handle the ones in range here.
// The address conversions are going to be commoned up. Decide what offset we
// are going to put on the commoned up one. We ensure that the offset is
// inside the range of offsets that we found in the uses of the address
// conversions, to try and avoid the situation where the address conversion
// generates an out-of-range value in the address register that is then
// brought back into range by the immediate offset in each use of the address
int CommonOffset = 0;
if (MinOffset < 0) {
if (MaxOffset < 0) {
// All offsets are negative. Use 0 if that is in range, else as close to
// the max end of the offset range as we can get, rounded down to a
// multiple of 32.
if (MinOffset < G4_MIN_ADDR_IMM)
CommonOffset = std::min(MinOffset + 512, MaxOffset) & -32;
} else {
// Some negative and some non-negative. Common offset can be 0.
CommonOffset = 0;
}
} else {
// All offsets are non-negative. Use 0 if that is in range, else as close
// to the min end of the offsets range as we can get, rounded up to a
// multiple of 32.
if (MaxOffset >= 512)
CommonOffset = (std::max(MaxOffset - 511, MinOffset) + 31) & -32;
}
if (CommonOffset) {
Modified = true;
// Modify the address conversions to use the common offset, and adjust the
// address adds accordingly.
auto CommonOffsetVal = ConstantInt::get(InRangeAddrs[0]->getType()
->getScalarType(), CommonOffset);
for (unsigned i = 0, e = InRangeAddrs.size(); i != e; ++i) {
Instruction *Addr = InRangeAddrs[i];
Addr->setOperand(1, CommonOffsetVal);
Use *U = &*Addr->use_begin();
auto *AddAddr = cast<Instruction>(U->getUser());
int AdjustedOffset = -CommonOffset;
if (GenXIntrinsic::getGenXIntrinsicID(AddAddr) ==
GenXIntrinsic::genx_add_addr) {
auto ThisOffsetC = cast<Constant>(AddAddr->getOperand(1));
if (isa<VectorType>(ThisOffsetC->getType()))
ThisOffsetC = ThisOffsetC->getSplatValue();
AdjustedOffset += cast<ConstantInt>(ThisOffsetC) ->getSExtValue();
} else if (AdjustedOffset) {
// We don't have an add_addr. We need to insert one.
Constant *C = ConstantInt::get(CommonOffsetVal->getType(),
AdjustedOffset);
if (auto *VT = dyn_cast<IGCLLVM::FixedVectorType>(Addr->getType()))
C = ConstantVector::getSplat(
IGCLLVM::getElementCount(VT->getNumElements()), C);
auto CI = createAddAddr(Addr, C,
Addr->getName() + ".addaddr", AddAddr);
*U = CI;
AddAddr = CI;
} else
AddAddr = nullptr;
if (AddAddr) {
// Adjust the offset on the add_addr. The offset is operand 1 of the
// add_addr, and it is either a constant int or a splat of a constant
// int.
Constant *C = ConstantInt::get(CommonOffsetVal->getType(),
AdjustedOffset);
if (auto *VT = dyn_cast<IGCLLVM::FixedVectorType>(
AddAddr->getOperand(1)->getType()))
C = ConstantVector::getSplat(
IGCLLVM::getElementCount(VT->getNumElements()), C);
AddAddr->setOperand(1, C);
// Ensure the add_addr is baled in to the rdregion/wrregion that uses
// it. (It was not if we have just created it, or if its offset was out
// of range.) Also remove its live range.
IGC_ASSERT(AddAddr->hasOneUse());
auto User = cast<Instruction>(AddAddr->use_begin()->getUser());
IGC_ASSERT(GenXIntrinsic::isRdRegion(User) || GenXIntrinsic::isWrRegion(User));
auto BI = Baling->getBaleInfo(User);
BI.setOperandBaled(AddAddr->use_begin()->getOperandNo());
Baling->setBaleInfo(User, BI);
Liveness->eraseLiveRange(AddAddr);
}
}
}
// Now we can actually common up the in range addresses, if more than one of
// them.
if (InRangeAddrs.size() > 1) {
Modified = true;
processCommonAddrsWithValidOffsets(InRangeAddrs);
}
// Call recursively to process the remaining (out of range) ones.
if (!OutOfRangeAddrs.empty())
Modified |= processCommonAddrs(OutOfRangeAddrs);
return Modified;
}
/***********************************************************************
* processCommonAddrsWithValidOffsets : common up some address conversions
*
* Enter: Addrs = two or more address conversion instructions that all have
* the same input and address the same base register, with no
* duplicates, and all have valid in range offsets (add.addr intrinsics)
*
* This function relies on there being no duplicates in Addrs in the way that
* it erases the address conversions other than the one it uses as the common
* one.
*/
void GenXAddressCommoning::processCommonAddrsWithValidOffsets(
ArrayRef<Instruction *> Addrs)
{
// Find the address conversion that dominates all the others.
Instruction *DominatingAddr = findClosestCommonDominator(
getDominatorTree(), Addrs);
if (DominatingAddr && DominatingAddr->isTerminator()) {
// Ensure we have a legal insertion point in the presence of SIMD CF.
auto InsertBefore = GotoJoin::getLegalInsertionPoint(DominatingAddr,
getDominatorTree());
// We did not find one address conversion that dominates all of them. Move
// an arbitrarily chosen one to the end of the dominating basic block.
// This position dominates the other address conversions, and is dominated
// by the index input value.
// We need to move the entire bale, not just the address conversion
// instruction itself. The whole bale is given an instruction number the
// same as the terminator of the closest common dominator block that it is
// being inserted before. Doing this is a bit dodgy because the result of
// the address conversion does not appear to interfere with the operands
// of a cmp baled into a conditional branch, but in practice this is not
// a problem because the result of an address conversion is an address
// register and the
unsigned Num = Numbering->getNumber(InsertBefore);
Bale B;
Baling->buildBale(Addrs[0], &B);
for (auto i = B.begin(), e = B.end(); i != e; ++i) {
Instruction *Inst = i->Inst;
DominatingAddr = Inst;
Inst->removeFromParent();
Inst->insertBefore(InsertBefore);
Numbering->setNumber(Inst, Num);
}
}
// Use the dominating one instead of all the others.
for (auto i = Addrs.begin(), e = Addrs.end(); i != e; ++i) {
Instruction *Addr = *i;
if (Addr == DominatingAddr)
continue;
Addr->replaceAllUsesWith(DominatingAddr);
do {
auto Next = dyn_cast<Instruction>(Addr->getOperand(0));
Liveness->removeValue(Addr);
// It happens that after commoning there are unused dangling instructions
// in some cases and vISA writer asserts.
bool EraseAddr = true;
if (GenXIntrinsic::getGenXIntrinsicID(Addr) ==
GenXIntrinsic::genx_rdregioni ||
GenXIntrinsic::getGenXIntrinsicID(Addr) ==
GenXIntrinsic::genx_rdregionf) {
Value *Idx = Addr->getOperand(GenXIntrinsic::GenXRegion::RdIndexOperandNum);
auto II = dyn_cast<Instruction>(Idx);
if (II && II->hasOneUse()) {
Addr->eraseFromParent();
EraseAddr = false;
IGC_ASSERT(II->use_empty());
Liveness->removeValue(II);
II->eraseFromParent();
}
}
if (EraseAddr)
Addr->eraseFromParent();
Addr = Next;
} while (Addr && Addr->use_empty());
}
// Rebuild the live range for the common address calculation.
// Note that we do not rebuild the live ranges for the input(s) to the
// common address calculation bale; this is conservative.
Liveness->rebuildLiveRange(Liveness->getLiveRange(DominatingAddr));
}
/***********************************************************************
* vectorizeAddrs : attempt to vectorize address conversions for one base reg
*
* Enter: LR = LiveRange with all the values for this base register
*
* If there are multiple scalar address conversions for this base reg where
* the index is an extract from the same vector, we attempt to common them up
* into a vector address conversion with extracts from the result. This is the
* histogram optimization.
*/
bool GenXAddressCommoning::vectorizeAddrs(LiveRange *LR)
{
// Gather the address conversions from an extract from a vector used by
// regions of this base register into buckets, one for each distinct vector
// being extracted from and each distinct address conversion offset.
std::map<std::pair<Value *, int>, ExtractBucket> ExtractBuckets;
for (auto vi = LR->value_begin(), ve = LR->value_end(); vi != ve; ++vi) {
Value *V = vi->getValue();
// Ignore the value if it is in the wrong function. That can happen because
// liveness information is shared between functions in the same group.
if (!isValueInCurrentFunc(V))
continue;
// First the def, if it is a wrregion.
if (GenXIntrinsic::isWrRegion(V)) {
Value *Index = cast<Instruction>(V)->getOperand(
GenXIntrinsic::GenXRegion::WrIndexOperandNum);
addAddrConvIfExtract(&ExtractBuckets, Index);
}
// Then each use that is a rdregion. (A use that is a wrregion will be
// handled when we look at that value, which must be coalesced into the
// same live range.)
for (auto ui = V->use_begin(), ue = V->use_end(); ui != ue; ++ui) {
if (ui->getOperandNo() != GenXIntrinsic::GenXRegion::OldValueOperandNum)
continue;
auto user = cast<Instruction>(ui->getUser());
if (!GenXIntrinsic::isRdRegion(user))
continue;
Value *Index = user->getOperand(GenXIntrinsic::GenXRegion::RdIndexOperandNum);
addAddrConvIfExtract(&ExtractBuckets, Index);
}
}
// Process each bucket of address calculations that extract from the
// same vector.
bool Modified = false;
for (auto i = ExtractBuckets.begin(), e = ExtractBuckets.end(); i != e; ++i)
if (i->second.Addrs.size() >= 2)
Modified |= vectorizeAddrsFromOneVector(i->second.Addrs);
return Modified;
}
/***********************************************************************
* addAddrConvIfExtract : add an address conversion to the appropriate
* bucket if the address is an extract from a vector
*
* Enter: ExtractBuckets = map of buckets
* Index = index operand from rdregion/wrregion
*
* Possibly after traversing some add_addr ops, Index is a constant or a
* convert_addr. If it is a convert_addr whose input is an extract (a scalar
* rdregion) with a single use, add the convert_addr to the bucket for the
* vector that the extract is extracted from.
*/
void GenXAddressCommoning::addAddrConvIfExtract(
std::map<std::pair<Value *, int>, ExtractBucket> *ExtractBuckets, Value *Index)
{
while (GenXIntrinsic::getGenXIntrinsicID(Index) ==
GenXIntrinsic::genx_add_addr)
Index = cast<Instruction>(Index)->getOperand(0);
if (isa<Constant>(Index))
return;
IGC_ASSERT(GenXIntrinsic::getGenXIntrinsicID(Index) ==
GenXIntrinsic::genx_convert_addr);
auto RdR = dyn_cast<Instruction>(cast<Instruction>(Index)->getOperand(0));
if (!GenXIntrinsic::isRdRegion(RdR))
return;
IGC_ASSERT(RdR);
if (!isa<Constant>(RdR->getOperand(GenXIntrinsic::GenXRegion::RdIndexOperandNum)))
return;
if (!RdR->hasOneUse())
return;
auto AddrConv = cast<Instruction>(Index);
int AddrConvOffset = cast<ConstantInt>(AddrConv->getOperand(1))->getSExtValue();
(*ExtractBuckets)[std::pair<Value *, int>(RdR->getOperand(0), AddrConvOffset)]
.add(AddrConv);
}
/***********************************************************************
* tryConvertWholeRegion : attempt to convert whole region
*
* Enter: Extracts -- array of address conversions, extracted from
* inputs to vectorizeAddrsFromOneVector,
* combined with corresponding region offset
* VecDef -- instruction definition from first extract
*
* This is subroutine of vectorizeAddrsFromOneVector, see more comments
* in parent function. Idea of this subroutine is to convert whole
* region if possible
*/
bool GenXAddressCommoning::tryConvertWholeRegion(SmallVector<Extract, 4> &Extracts, Instruction *VecDef) {
Instruction *InsertBefore = Extracts[0].Addr;
unsigned int MinNum, MaxNum;
// maximal difference between MinNum and MaxNum to accept region
// TODO: to be tuned?
const int SIZE_THRESHOLD = 48;
MinNum = MaxNum = Numbering->getNumber(InsertBefore);
// check every extract
for (unsigned Idx = 0, End = Extracts.size(); Idx < End; ++Idx) {
Instruction *RdR = cast<Instruction>(Extracts[Idx].Addr->getOperand(0));
vc::Region R = makeRegionFromBaleInfo(RdR, BaleInfo());
if (R.NumElements > 1 && R.Stride > 1)
return false;
// all address-conv must be in the same basic block
if (Extracts[Idx].Addr != InsertBefore &&
Extracts[Idx].Addr->getParent() != InsertBefore->getParent()) {
LLVM_DEBUG(errs() << "tryConvertWholeRegion: not all in the same block\n");
return false;
}
// test to update the insertion-point
unsigned int ThisNum = Numbering->getNumber(Extracts[Idx].Addr);
if (ThisNum < MinNum) {
InsertBefore = Extracts[Idx].Addr;
MinNum = ThisNum;
}
if (ThisNum > MaxNum)
MaxNum = ThisNum;
}
if ((MaxNum - MinNum) > SIZE_THRESHOLD)
return false;
// Create a vectorized address conversion and bale the new rdregion (if
// any) into it. Give the new vectorized address conversion, and the new
// rdregion (if any), the number of one less than the insert point.
int AddrConvOffset =
cast<ConstantInt>(Extracts[0].Addr->getOperand(1))->getSExtValue();
auto NewConv = createConvertAddr(VecDef, AddrConvOffset,
Extracts[0].Addr->getName() + ".monted", InsertBefore);
NewConv->setDebugLoc(VecDef->getDebugLoc());
Numbering->setNumber(NewConv, Numbering->getNumber(VecDef) + 1);
// For each original address conversion, replace it with an
// extract from the vectorized convert, and bale the extract into
// its use. If it has more than one use, create an extract per use
// (because a baled in instruction must be single use).
for (unsigned Idx2 = 0, End2 = Extracts.size(); Idx2 < End2; ++Idx2) {
auto OldConv = Extracts[Idx2].Addr;
Instruction *OldExtract = cast<Instruction>(OldConv->getOperand(0));
vc::Region R2 = makeRegionFromBaleInfo(OldExtract, BaleInfo());
while (!OldConv->use_empty()) {
auto ui = OldConv->use_begin();
auto user = cast<Instruction>(ui->getUser());
auto NewExtract = R2.createRdRegion(NewConv, OldConv->getName(), user,
user->getDebugLoc(), /*ScalarAllowed=*/!OldConv->getType()->isVectorTy());
Numbering->setNumber(NewExtract, Numbering->getNumber(user));
// At this late stage, I believe nothing relies on the baling type for
// this instruction being set to RDREGION, but we set it anyway for
// completeness.
Baling->setBaleInfo(NewExtract, BaleInfo(BaleInfo::RDREGION));
BaleInfo BI = Baling->getBaleInfo(user);
BI.setOperandBaled(ui->getOperandNo());
Baling->setBaleInfo(user, BI);
*ui = NewExtract;
}
Liveness->removeValue(OldConv);
IGC_ASSERT_MESSAGE(!Liveness->getLiveRangeOrNull(OldExtract),
"expected extract to be baled in");
OldConv->eraseFromParent();
OldExtract->eraseFromParent();
}
// Give the new vectorized address conversion a live range.
auto LR = Liveness->getOrCreateLiveRange(NewConv);
LR->setCategory(vc::RegCategory::Address);
Liveness->rebuildLiveRange(LR);
return true;
}
/***********************************************************************
* vectorizeAddrsFromOneVector : attempt to vectorize address conversions
*
* Enter: Addrs = address conversions for the same base reg with the same
* offset that are all scalar rdregion (constant offset) from
* the same vector, at least two of them
*
* If there are multiple scalar address conversions for this base reg where the
* index is an extract from the same vector, we attempt to common them up into
* a vector address conversion with extracts from the result. This is the
* histogram optimization.
*/
bool GenXAddressCommoning::vectorizeAddrsFromOneVector(
ArrayRef<Instruction *> Addrs)
{
bool Modified = false;
SmallVector<Extract, 4> Extracts;
bool HasVector = false;
std::set<int> OffsetSet;
LLVM_DEBUG(dbgs() << "Collecting addrs: " << Addrs.size() << "\n");
for (auto i = Addrs.begin(), e = Addrs.end(); i != e; ++i) {
Instruction *Addr = *i;
LLVM_DEBUG(Addr->dump());
vc::Region R = makeRegionFromBaleInfo(
cast<Instruction>(Addr->getOperand(0)), BaleInfo());
LLVM_DEBUG(dbgs() << " [" << R.Offset << "]\n");
Extracts.push_back(Extract(Addr, R.Offset));
OffsetSet.insert(R.Offset);
if (isa<VectorType>(Addr->getType()))
HasVector = true;
}
bool ConvertWholeRegion = false;
Instruction *FirstRdR = cast<Instruction>(Extracts[0].Addr->getOperand(0));
IGC_ASSERT(FirstRdR);
Instruction *VecDef = cast<Instruction>(FirstRdR->getOperand(0));
IGC_ASSERT(VecDef);
unsigned InputNumElements =
cast<IGCLLVM::FixedVectorType>(VecDef->getType())->getNumElements();
if (HasVector) {
if (InputNumElements == 2 || InputNumElements == 4 ||
InputNumElements == 8 || InputNumElements == 16)
ConvertWholeRegion = true;
else
return Modified;
}
else if (OffsetSet.size()*3 >= InputNumElements*2 &&
(InputNumElements == 2 || InputNumElements == 4 ||
InputNumElements == 8 || InputNumElements == 16))
ConvertWholeRegion = true;
// Sort into offset order.
std::sort(Extracts.begin(), Extracts.end());
if (ConvertWholeRegion) {
bool Success = tryConvertWholeRegion(Extracts, VecDef);
if (Success) {
LLVM_DEBUG(dbgs() << "Succesfully converted whole region\n");
return true;
}
LLVM_DEBUG(dbgs() << "Failed to convert whole region\n");
if (!ConvertAfterWholeRegion)
return false;
}
// if we tried to convert whole region and failed
// we shall check that we will try to optimize further
// correct extract set
IGC_ASSERT(Extracts.size() > 0);
Type *FirstType = Extracts[0].Addr->getOperand(0)->getType();
IGC_ASSERT(FirstType);
for (auto e : Extracts) {
Type *Tp = e.Addr->getOperand(0)->getType();
if (ConvertWholeRegion && (Tp != FirstType))
return false;
}
// Scan through the address conversions...
for (unsigned Idx = 0, Num = 1, End = Extracts.size();
Idx < End - 2; Idx += Num) {
// See how many extracts we can take in one go that have evenly spaced
// offsets, max is the number of elements in address register.
int Diff = Extracts[Idx + 1].Offset - Extracts[Idx].Offset;
for (Num = 2; Num != getNumberElementsInAddrReg() && Num != End - Idx; ++Num)
if (Extracts[Idx + Num].Offset - Extracts[Idx + Num - 1].Offset != Diff)
break;
if (Num == 1)
continue;
// We have a sequence of more than one extract. Construct the region
// parameters for it.
Instruction *FirstRdR = cast<Instruction>(Extracts[Idx].Addr->getOperand(0));
LLVM_DEBUG(dbgs() << "Sequence of " << Num << " instructions found. First one is:\n");
LLVM_DEBUG(FirstRdR->dump());
LLVM_DEBUG(dbgs() << "\n");
vc::Region R = makeRegionFromBaleInfo(FirstRdR, BaleInfo());
R.NumElements = R.Width = Num;
R.Stride = Diff / R.ElementBytes;
// See how big we can legally make the region.
unsigned InputNumElements =
cast<IGCLLVM::FixedVectorType>(FirstRdR->getOperand(0)->getType())
->getNumElements();
IGC_ASSERT(ST);
Num = getLegalRegionSizeForTarget(*ST, R, 0, true /*Allow2D*/,
InputNumElements);
if (Num == 1)
continue;
// Even after legalizing the region, we can still vectorize to more than
// one element.
R.getSubregion(0, Num);
// Determine where to insert the new rdregion (if any) and vectorized
// address conversion.
SmallVector<Instruction *, 4> Addrs;
for (unsigned i = 0; i != Num; ++i)
Addrs.push_back(Extracts[Idx + i].Addr);
auto InsertBefore = findClosestCommonDominator(getDominatorTree(), Addrs);
// Ensure we have a legal insertion point in the presence of SIMD CF.
InsertBefore = GotoJoin::getLegalInsertionPoint(InsertBefore,
getDominatorTree());
// Read the region containing all the scalar indices we are commoning
// up. (If R is the identity region, just use the whole original vector
// instead.)
Value *NewRdR = cast<Instruction>(Extracts[Idx].Addr->getOperand(0))
->getOperand(0);
Instruction *NewRdRInst = nullptr;
if (InputNumElements != R.NumElements) {
// Not identity region.
NewRdR = NewRdRInst = R.createRdRegion(NewRdR,
Extracts[Idx].Addr->getName(), InsertBefore,
Extracts[Idx].Addr->getDebugLoc(), false);
Baling->setBaleInfo(NewRdRInst, BaleInfo(BaleInfo::RDREGION));
}
// Create a vectorized address conversion and bale the new rdregion (if
// any) into it. Give the new vectorized address conversion, and the new
// rdregion (if any), the number of one less than the insert point.
int AddrConvOffset = cast<ConstantInt>(Addrs[0]->getOperand(1))->getSExtValue();
auto NewConv = createConvertAddr(NewRdR, AddrConvOffset,
Extracts[Idx].Addr->getName() + ".histogrammed", InsertBefore);
NewConv->setDebugLoc(Extracts[Idx].Addr->getDebugLoc());
Numbering->setNumber(NewConv, Numbering->getNumber(InsertBefore) - 1);
if (NewRdRInst) {
Numbering->setNumber(NewRdRInst, Numbering->getNumber(InsertBefore) - 1);
BaleInfo BI(BaleInfo::MAININST);
BI.setOperandBaled(0);
Baling->setBaleInfo(NewConv, BI);
}
// For each original scalar address conversion, replace it with an
// extract from the vectorized convert, and bale the extract in to
// its use. If it has more than one use, create an extract per use
// (because a baled in instruction must be single use).
for (unsigned Idx2 = 0; Idx2 != Num; ++Idx2) {
auto OldConv = Extracts[Idx + Idx2].Addr;
Region R2(NewConv);
R2.getSubregion(Idx2, 1);
while (!OldConv->use_empty()) {
auto ui = OldConv->use_begin();
auto user = cast<Instruction>(ui->getUser());
auto NewExtract = R2.createRdRegion(NewConv, OldConv->getName(), user,
user->getDebugLoc(), /*ScalarAllowed=*/true);
Numbering->setNumber(NewExtract, Numbering->getNumber(user));
// At this late stage, I believe nothing relies on the baling type for
// this instruction being set to RDREGION, but we set it anyway for
// completeness.
Baling->setBaleInfo(NewExtract, BaleInfo(BaleInfo::RDREGION));
BaleInfo BI = Baling->getBaleInfo(user);
BI.setOperandBaled(ui->getOperandNo());
Baling->setBaleInfo(user, BI);
*ui = NewExtract;
}
Liveness->removeValue(OldConv);
auto OldExtract = cast<Instruction>(OldConv->getOperand(0));
IGC_ASSERT_MESSAGE(!Liveness->getLiveRangeOrNull(OldExtract),
"expected extract to be baled in");
OldConv->eraseFromParent();
OldExtract->eraseFromParent();
}
// Give the new vectorized address conversion a live range.
auto LR = Liveness->getOrCreateLiveRange(NewConv);
LR->setCategory(vc::RegCategory::Address);
Liveness->rebuildLiveRange(LR);
Modified = true;
}
return Modified;
}
/***********************************************************************
* getDominatorTree : get dominator tree for current function
*/
DominatorTree *GenXAddressCommoning::getDominatorTree()
{
return getAnalysis<DominatorTreeGroupWrapperPass>().getDomTree(F);
}
/***********************************************************************
* isValueInCurrentFunc : determine whether V is in the current function
*
* Enter: V = value from a LiveRange (therefore it is an Instruction
* or an Argument)
*
* Return: true if it is in the current function
*/
bool GenXAddressCommoning::isValueInCurrentFunc(Value *V)
{
if (auto Inst = dyn_cast<Instruction>(V)) {
auto BB = Inst->getParent();
if (!BB)
return false;; // unified return value
return BB->getParent() == F;
}
if (isa<GlobalVariable>(V))
return false;
return cast<Argument>(V)->getParent() == F;
}
|