1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2022 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
//
// AlignmentInfo is a cache of information on the alignment of instruction
// values in a function. Alignment is stored as LogAlign and ExtraBits
// (ExtraBits < 1 << LogAlign) where a value is known to be
// A << LogAlign | ExtraBits.
//
// For a vector value, the alignment information is for element 0.
//
// The alignment of a value is computed as it is required, rather than all
// values in a function being computed in a separate analysis pass.
//
//===----------------------------------------------------------------------===//
#include "IGC/common/StringMacros.hpp"
#include "GenX.h"
#include "GenXAlignmentInfo.h"
#include "GenXRegionUtils.h"
#include "GenXBaling.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/Debug.h"
#include "Probe/Assertion.h"
#define DEBUG_TYPE "GENX_ALIGNMENT_INFO"
#include <algorithm>
#include <set>
using namespace llvm;
using namespace genx;
/***********************************************************************
* AlignmentInfo::get : get the aligmment of a Value
*
* Return: the Alignment
*/
Alignment AlignmentInfo::get(Value *V)
{
if (auto C = dyn_cast<Constant>(V))
return Alignment(C);
auto Inst = dyn_cast<Instruction>(V);
if (!Inst) {
// An Argument has unknown alignment.
// (FIXME: We may need to do better than this, tracing the value of the
// Argument at call sites, when arg indirection is introduced.)
return Alignment::getUnknown();
}
auto MapEntry = &InstMap[Inst];
if (!MapEntry->isUncomputed())
return *MapEntry; // already in cache
// Need to compute for this instruction.
LLVM_DEBUG(dbgs() << "AlignmentInfo::get: computing alignment for " << Inst->getName() << "\n");
// Get the web of instructions related to this one, including going through
// phi nodes, excluding ones that we already have alignment for.
std::set<Instruction *> InstWebSet;
SmallVector<Instruction *, 8> InstWeb;
InstWebSet.insert(Inst);
InstWeb.push_back(Inst);
for (unsigned i = 0; i != InstWeb.size(); ++i) {
auto WorkInst = InstWeb[i];
if (auto Phi = dyn_cast<PHINode>(WorkInst)) {
for (unsigned ii = 0, ie = Phi->getNumIncomingValues(); ii != ie; ++ii)
if (auto IncomingInst = dyn_cast<Instruction>(Phi->getIncomingValue(ii)))
if (InstMap.find(IncomingInst) == InstMap.end()
&& InstWebSet.insert(IncomingInst).second)
InstWeb.push_back(IncomingInst);
} else if (isa<BinaryOperator>(WorkInst) || isa<CastInst>(WorkInst)) {
for (unsigned oi = 0, oe = WorkInst->getNumOperands(); oi != oe; ++oi)
if (auto IncomingInst = dyn_cast<Instruction>(WorkInst->getOperand(oi)))
if (InstMap.find(IncomingInst) == InstMap.end()
&& InstWebSet.insert(IncomingInst).second)
InstWeb.push_back(IncomingInst);
} else if (CastInst *CI = dyn_cast<CastInst>(WorkInst)) {
if (auto IncomingInst = dyn_cast<Instruction>(WorkInst->getOperand(0)))
if (InstMap.find(IncomingInst) == InstMap.end()
&& InstWebSet.insert(IncomingInst).second)
InstWeb.push_back(IncomingInst);
} else
switch (GenXIntrinsic::getGenXIntrinsicID(WorkInst)) {
case GenXIntrinsic::genx_rdregioni:
case GenXIntrinsic::genx_rdregionf:
case GenXIntrinsic::genx_convert:
case GenXIntrinsic::genx_convert_addr:
if (auto IncomingInst = dyn_cast<Instruction>(WorkInst->getOperand(0)))
if (InstMap.find(IncomingInst) == InstMap.end()
&& InstWebSet.insert(IncomingInst).second)
InstWeb.push_back(IncomingInst);
break;
case GenXIntrinsic::genx_ssmad:
case GenXIntrinsic::genx_uumad:
case GenXIntrinsic::genx_add_addr:
for (unsigned oi = 0, oe = WorkInst->getNumOperands(); oi != oe; ++oi)
if (auto IncomingInst = dyn_cast<Instruction>(WorkInst->getOperand(oi)))
if (InstMap.find(IncomingInst) == InstMap.end()
&& InstWebSet.insert(IncomingInst).second)
InstWeb.push_back(IncomingInst);
break;
default:
break;
}
}
LLVM_DEBUG(dbgs() << "web:";
for (unsigned i = 0, e = InstWeb.size(); i != e; ++i)
dbgs() << " " << InstWeb[i]->getName();
dbgs() << "\n");
// Use a worklist algorithm where each instruction in the web is initially on
// the worklist.
std::set<Instruction *> WorkSet;
for (auto i = InstWeb.begin(), e = InstWeb.end(); i != e; ++i)
WorkSet.insert(*i);
while (!InstWeb.empty()) {
Instruction *WorkInst = InstWeb.back();
InstWeb.pop_back();
WorkSet.erase(WorkInst);
LLVM_DEBUG(dbgs() << " processing " << WorkInst->getName() << "\n");
Alignment A(0, 0); // assume unknown
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(WorkInst)) {
A = Alignment(); // assume uncomputed
auto *Op0 = BO->getOperand(0);
auto *Op1 = BO->getOperand(1);
Alignment A0 = getFromInstMap(Op0);
Alignment A1 = getFromInstMap(Op1);
if (!A0.isUncomputed() && !A1.isUncomputed()) {
switch (BO->getOpcode()) {
case Instruction::Add:
A = A0.add(A1);
break;
case Instruction::Sub:
if (A1.isConstant())
A = A0.add(-(A1.getConstBits()));
else
A = Alignment::getUnknown();
break;
case Instruction::Mul:
A = A0.mul(A1);
break;
case Instruction::Shl:
if (A1.isConstant()) {
A1 = Alignment(A1.getConstBits(), 0);
A = A0.mul(A1);
} else
A = Alignment::getUnknown();
break;
case Instruction::And:
if (auto *CI0 = dyn_cast<ConstantInt>(Op0)) {
A = A1.logicalAnd(CI0);
} else if (auto *CI1 = dyn_cast<ConstantInt>(Op1)) {
A = A0.logicalAnd(CI1);
} else
A = Alignment::getUnknown();
break;
case Instruction::Or:
if (auto *CI0 = dyn_cast<ConstantInt>(Op0)) {
A = A1.logicalOr(CI0);
} else if (auto *CI1 = dyn_cast<ConstantInt>(Op1)) {
A = A0.logicalOr(CI1);
} else
A = Alignment::getUnknown();
break;
default:
A = Alignment::getUnknown();
break;
}
}
} else if (CastInst *CI = dyn_cast<CastInst>(WorkInst)) {
// Handle a bitcast for the same reason as above. This also handles
// trunc, sext, zext.
A = getFromInstMap(CI->getOperand(0));
if (!A.isUncomputed()) {
unsigned LogAlign = A.getLogAlign(), ExtraBits = A.getExtraBits();
LogAlign = std::min(
LogAlign,
static_cast<unsigned>(
CI->getType()->getScalarType()->getPrimitiveSizeInBits()));
if (LogAlign < 32)
ExtraBits &= (1 << LogAlign) - 1;
A = Alignment(LogAlign, ExtraBits);
} else if (!CI->isIntegerCast()) {
// For no-only-integer cast instructions - FPToUI, FPToSI
A = Alignment::getUnknown();
}
} else if (auto Phi = dyn_cast<PHINode>(WorkInst)) {
// For a phi node, ignore uncomputed incomings so we have an initial
// guess at alignment value to propagate round a loop and refine in
// a later visit to this same phi node.
A = Alignment(); // initialize to uncomputed
for (unsigned ii = 0, ie = Phi->getNumIncomingValues(); ii != ie; ++ii) {
LLVM_DEBUG(dbgs() << " incoming: " << *Phi->getIncomingValue(ii) << "\n");
LLVM_DEBUG(dbgs() << " merging " << A << " and " << getFromInstMap(Phi->getIncomingValue(ii)) << "\n");
A = A.merge(getFromInstMap(Phi->getIncomingValue(ii)));
LLVM_DEBUG(dbgs() << " giving " << A << "\n");
}
} else {
switch (GenXIntrinsic::getGenXIntrinsicID(WorkInst)) {
case GenXIntrinsic::genx_rdregioni:
case GenXIntrinsic::genx_rdregionf: {
// Handle the case of reading a scalar from element of a vector, as
// a trunc from i32 to i16 is lowered to a bitcast to v2i16 then a
// rdregion.
vc::Region R = makeRegionFromBaleInfo(WorkInst, BaleInfo());
if (!R.Indirect && (R.NumElements == 1))
A = getFromInstMap(WorkInst->getOperand(0));
else
A = Alignment(0, 0);
break;
}
case GenXIntrinsic::genx_constanti:
A = Alignment(cast<Constant>(WorkInst->getOperand(0)));
break;
case GenXIntrinsic::genx_convert:
case GenXIntrinsic::genx_convert_addr:
A = getFromInstMap(WorkInst->getOperand(0));
break;
case GenXIntrinsic::genx_add_addr: {
Alignment AA[2];
for (unsigned oi = 0, oe = WorkInst->getNumOperands(); oi != oe && oi < 2; ++oi)
AA[oi] = getFromInstMap(WorkInst->getOperand(oi));
if (!AA[0].isUncomputed() && !AA[1].isUncomputed())
A = AA[0].add(AA[1]);
else
A = Alignment(0, 0);
break;
}
case GenXIntrinsic::genx_ssmad:
case GenXIntrinsic::genx_uumad: {
A = Alignment(); // assume uncomputed
// every source operand should be computed or constant
Alignment SA[3];
for (unsigned oi = 0, oe = WorkInst->getNumOperands(); oi != oe && oi < 3; ++oi)
SA[oi] = getFromInstMap(WorkInst->getOperand(oi));
if (!SA[0].isUncomputed() && !SA[1].isUncomputed() && !SA[2].isUncomputed())
A = SA[0].mul(SA[1]).add(SA[2]);
else
A = Alignment(0, 0);
break;
}
default:
A = Alignment(0, 0); // no alignment info
break;
}
}
// See if the alignment has changed for WorkInst.
auto MapEntry = &InstMap[WorkInst];
if (*MapEntry == A)
continue; // no change
*MapEntry = A;
LLVM_DEBUG(dbgs() << " " << WorkInst->getName() << " updated to " << A << "\n");
// Add all users that are in the original web to the worklist, if
// not already in the worklist.
for (auto ui = WorkInst->use_begin(), ue = WorkInst->use_end();
ui != ue; ++ui) {
auto user = cast<Instruction>(ui->getUser());
if (InstWebSet.find(user) != InstWebSet.end()
&& WorkSet.insert(user).second)
InstWeb.push_back(user);
}
}
MapEntry = &InstMap[Inst];
IGC_ASSERT(!MapEntry->isUncomputed());
LLVM_DEBUG(dbgs() << "AlignmentInfo::get: returning " << *MapEntry << "\n");
return *MapEntry;
}
/***********************************************************************
* Alignment constructor given literal value
*/
Alignment::Alignment(unsigned C)
{
LogAlign = countTrailingZeros(C);
ExtraBits = 0;
ConstBits = (C < MaskForUnknown) ? C : MaskForUnknown;
}
Alignment Alignment::getAlignmentForConstant(Constant *C) {
IGC_ASSERT(!isa<VectorType>(C->getType()));
Alignment A;
A.setUncomputed();
if (isa<UndefValue>(C)) {
A.LogAlign = 31;
A.ExtraBits = 0;
A.ConstBits = MaskForUnknown;
} else if (auto CI = dyn_cast<ConstantInt>(C)) {
int64_t SVal = CI->getSExtValue();
// Get least significant bits to count LogAlign
unsigned LSBBits = SVal & UnsignedAllOnes;
A.LogAlign = countTrailingZeros(LSBBits);
A.ExtraBits = 0;
A.ConstBits = MaskForUnknown;
if (SVal < MaskForUnknown && SVal >= 0 &&
SVal <= std::numeric_limits<unsigned>::max())
A.ConstBits = static_cast<unsigned>(SVal);
}
return A;
}
/***********************************************************************
* Alignment constructor given Constant
*/
Alignment::Alignment(Constant *C)
{
setUncomputed();
if (auto *VT = dyn_cast<VectorType>(C->getType())) {
// Take splat if exists
if (auto *SplatVal = C->getSplatValue())
C = SplatVal;
else {
// Otherwise be conservative and pretend alignment
// unknown for non-splat vectors
*this = Alignment::getUnknown();
return;
}
}
*this = getAlignmentForConstant(C);
}
/***********************************************************************
* merge : merge two alignments
*/
Alignment Alignment::merge(Alignment Other) const
{
// If either is uncomputed, result is the other one.
if (isUncomputed())
return Other;
if (Other.isUncomputed())
return *this;
// Take the minimum of the two logaligns, then chop off some more for
// disagreeing extrabits.
unsigned MinLogAlign = std::min(LogAlign, Other.LogAlign);
if (MinLogAlign) {
unsigned DisagreeExtraBits = (ExtraBits ^ Other.ExtraBits)
& ((1 << MinLogAlign) - 1);
MinLogAlign = std::min(MinLogAlign,
(unsigned)countTrailingZeros(DisagreeExtraBits, ZB_Width));
}
return Alignment(MinLogAlign, ExtraBits & ((1 << MinLogAlign) - 1));
}
/***********************************************************************
* merge : add two alignments
*/
Alignment Alignment::add(Alignment Other) const
{
IGC_ASSERT(!isUncomputed() && !Other.isUncomputed());
// Take the minimum of the two logaligns, then chop off some more for
// disagreeing extrabits.
unsigned MinLogAlign = std::min(LogAlign, Other.LogAlign);
unsigned ExtraBits2 = 0;
if (MinLogAlign) {
ExtraBits2 = (ExtraBits + Other.ExtraBits)
& ((1 << MinLogAlign) - 1);
MinLogAlign = std::min(MinLogAlign,
(unsigned)countTrailingZeros(ExtraBits2, ZB_Width));
}
return Alignment(MinLogAlign, ExtraBits2 & ((1 << MinLogAlign) - 1));
}
/***********************************************************************
* merge : mul two alignments
*/
Alignment Alignment::mul(Alignment Other) const
{
IGC_ASSERT(!isUncomputed() && !Other.isUncomputed());
// Take the minimum of the two logaligns, then chop off some more for
// disagreeing extrabits.
unsigned MinLogAlign = std::min(LogAlign, Other.LogAlign);
if (ExtraBits == 0 && Other.ExtraBits == 0)
MinLogAlign = LogAlign + Other.LogAlign;
else if (ExtraBits == 0)
MinLogAlign = LogAlign;
else if (Other.ExtraBits == 0)
MinLogAlign = Other.LogAlign;
unsigned ExtraBits2 = 0;
if (MinLogAlign) {
ExtraBits2 = (ExtraBits * Other.ExtraBits)
& ((1 << MinLogAlign) - 1);
MinLogAlign = std::min(MinLogAlign,
(unsigned)countTrailingZeros(ExtraBits2, ZB_Width));
}
return Alignment(MinLogAlign, ExtraBits2 & ((1 << MinLogAlign) - 1));
}
/***********************************************************************
* logicalOp : Helped Function for alignment calculating of logical
* 'AND' and 'OR'.
*/
Alignment Alignment::logicalOp(ConstantInt *CI, SelectFunction F) const {
IGC_ASSERT(!isUncomputed() && CI);
// If value doesn't fit into unsigned then be conservative and pretend
// that alignement is unknown
int64_t Val = CI->getSExtValue();
if (Val < std::numeric_limits<int>::min() ||
Val > std::numeric_limits<int>::max())
return Alignment::getUnknown();
unsigned UVal = static_cast<unsigned>(std::abs(Val));
unsigned ValLSB = countTrailingZeros(UVal, ZB_Width);
// Chop off constant bits according to log align
unsigned NewLogAlign = F(ValLSB, LogAlign);
return Alignment(NewLogAlign, UVal & ((1 << NewLogAlign) - 1));
}
/***********************************************************************
* logicalAnd : logical and two alignments. Only constant int supported.
*/
Alignment Alignment::logicalAnd(ConstantInt *CI) const {
return logicalOp(CI, std::max<unsigned>);
}
/***********************************************************************
* logicalOr : logical or two alignments. Only constant int supported.
*/
Alignment Alignment::logicalOr(ConstantInt *CI) const {
return logicalOp(CI, std::min<unsigned>);
}
/***********************************************************************
* getFromInstMap : get the alignment of a value, direct from InstMap if
* found else return Unknown, Alignment(0, 0)
*/
Alignment AlignmentInfo::getFromInstMap(Value *V)
{
if (auto C = dyn_cast<Constant>(V))
return Alignment(C);
if (auto Inst = dyn_cast<Instruction>(V)) {
return InstMap[V];
}
return Alignment::getUnknown();
}
/***********************************************************************
* Alignment debug dump/print
*/
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void Alignment::dump() const
{
errs() << *this << "\n";
}
#endif
void Alignment::print(raw_ostream &OS) const
{
if (isUncomputed())
OS << "uncomputed";
else if (isUnknown())
OS << "unknown";
else if (isConstant())
OS << "const=" << ConstBits;
else
OS << "n<<" << LogAlign << "+" << ExtraBits;
}
|