1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2022 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
//
// GenX instruction baling is analyzed by this pass. See GenXBaling.h for more
// detailed comment.
//
//===----------------------------------------------------------------------===//
#include "GenXBaling.h"
#include "GenXConstants.h"
#include "GenXIntrinsics.h"
#include "GenXLiveness.h"
#include "GenXUtil.h"
#include "vc/Utils/GenX/GlobalVariable.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/GenXIntrinsics/GenXIntrinsics.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvmWrapper/IR/Instructions.h"
#include "llvmWrapper/IR/DerivedTypes.h"
#include "Probe/Assertion.h"
#define DEBUG_TYPE "GENX_INSTRUCTION_BALING"
// Part of the bodge to allow abs to bale in to sext/zext. This needs to be set
// to some arbitrary value that does not clash with any
// GenXIntrinsicInfo::MODIFIER_* value.
enum { MODIFIER_ABSONLY = 9000 };
using namespace llvm;
using namespace genx;
using namespace GenXIntrinsic::GenXRegion;
// set of debug options to switch off different baling types
static cl::opt<bool> BaleBinary("bale-binary", cl::init(true), cl::Hidden,
cl::desc("Bale binary operators"));
static cl::opt<bool> BaleCmp("bale-cmp", cl::init(true), cl::Hidden,
cl::desc("Bale comparisons"));
static cl::opt<bool> BaleCast("bale-cast", cl::init(true), cl::Hidden,
cl::desc("Bale casts"));
static cl::opt<bool> BaleSelect("bale-select", cl::init(true), cl::Hidden,
cl::desc("Bale selects"));
static cl::opt<bool> BaleFNeg("bale-fneg", cl::init(true), cl::Hidden,
cl::desc("Bale fneg"));
static cl::opt<bool>
DisableMemOrderCheck("dbgonly-disable-mem-order-check", cl::init(false),
cl::Hidden, cl::desc("Disable checking of memory ordering"));
//----------------------------------------------------------------------
// Administrivia for GenXFuncBaling pass
//
char GenXFuncBaling::ID = 0;
INITIALIZE_PASS_BEGIN(GenXFuncBaling, "GenXFuncBaling", "GenXFuncBaling", false,
false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(GenXFuncBaling, "GenXFuncBaling", "GenXFuncBaling", false,
false)
FunctionPass *llvm::createGenXFuncBalingPass(BalingKind Kind, GenXSubtarget *ST)
{
initializeGenXFuncBalingPass(*PassRegistry::getPassRegistry());
return new GenXFuncBaling(Kind, ST);
}
void GenXFuncBaling::getAnalysisUsage(AnalysisUsage &AU) const
{
FunctionPass::getAnalysisUsage(AU);
AU.addRequired<DominatorTreeWrapperPass>();
AU.setPreservesCFG();
}
//----------------------------------------------------------------------
// Administrivia for GenXGroupBaling pass
//
INITIALIZE_PASS_BEGIN(GenXGroupBalingWrapper, "GenXGroupBalingWrapper",
"GenXGroupBalingWrapper", false, false)
INITIALIZE_PASS_DEPENDENCY(GenXLivenessWrapper)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeGroupWrapperPassWrapper)
INITIALIZE_PASS_END(GenXGroupBalingWrapper, "GenXGroupBalingWrapper",
"GenXGroupBalingWrapper", false, false)
ModulePass *llvm::createGenXGroupBalingWrapperPass(BalingKind Kind,
GenXSubtarget *ST) {
initializeGenXGroupBalingWrapperPass(*PassRegistry::getPassRegistry());
return new GenXGroupBalingWrapper(Kind, ST);
}
void GenXGroupBaling::getAnalysisUsage(AnalysisUsage &AU) {
// FIXME: now use getAnalysisIfAvailable and error if nullptr
// if (GenXBaling::Kind == BK_CodeGen)
// AU.addRequired<GenXLivenessWrapper>();
AU.addRequired<DominatorTreeGroupWrapperPass>();
AU.setPreservesCFG();
AU.addPreserved<GenXModule>();
AU.addPreserved<GenXLiveness>();
}
/***********************************************************************
* GenXGroupBaling::runOnFunctionGroup : run second baling pass on function
* group
*/
bool GenXGroupBaling::runOnFunctionGroup(FunctionGroup &FG)
{
Liveness = getAnalysisIfAvailable<GenXLiveness>();
if (Kind == BK_CodeGen)
IGC_ASSERT_MESSAGE(Liveness, "expected not nullptr");
return processFunctionGroup(&FG);
}
/***********************************************************************
* processFunctionGroup : run instruction baling analysis on one
* function group
*/
bool GenXGroupBaling::processFunctionGroup(FunctionGroup *FG) {
bool Modified = false;
for (auto i = FG->begin(), e = FG->end(); i != e; ++i) {
DT = getAnalysis<DominatorTreeGroupWrapperPass>().getDomTree(*i);
Modified |= processFunction(*i);
}
return Modified;
}
/***********************************************************************
* processFunction : run instruction baling analysis on one function
*
* This does a preordered depth first traversal of the CFG to
* ensure that we see a def before its uses (ignoring phi node uses).
* This is required when we see a constant add/sub used as a region or
* element variable index; if the add/sub has already been marked as
* baling in a modifier or rdregion then we cannot bale it in to the
* variable index region.
*
* This pass also clones any instruction that can be baled in but has
* multiple uses. A baled in instruction must have exactly one use.
*/
bool GenXBaling::processFunction(Function *F)
{
LLVM_DEBUG(llvm::dbgs() << "Baling function analysis for " << F->getName()
<< "\n");
bool Changed = prologue(F);
for (df_iterator<BasicBlock *> i = df_begin(&F->getEntryBlock()),
e = df_end(&F->getEntryBlock()); i != e; ++i) {
for (BasicBlock::iterator bi = i->begin(), be = i->end(); bi != be; ) {
Instruction *Inst = &*bi;
++bi; // increment here as Inst may be erased
processInst(Inst);
}
}
// Process any two addr sends we found.
for (auto i = TwoAddrSends.begin(), e = TwoAddrSends.end(); i != e; ++i)
processTwoAddrSend(*i);
TwoAddrSends.clear();
// Clone any instructions that we found in the pass that want to be baled in
// but have more than one use.
if (NeedCloneStack.size()) {
doClones();
Changed = true;
}
return Changed;
}
/***********************************************************************
* processInst : calculate baling for an instruction
*
* Usually this is called from runOnFunction above. However another pass
* can call this to recalculate the baling for an instruction, particularly
* for a new instruction it has just added. GenXLegalization does this.
*/
void GenXBaling::processInst(Instruction *Inst)
{
unsigned IntrinID = vc::getAnyIntrinsicID(Inst);
if (GenXIntrinsic::isWrRegion(IntrinID))
processWrRegion(Inst);
else if (IntrinID == GenXIntrinsic::genx_wrpredregion)
processWrPredRegion(Inst);
else if (IntrinID == GenXIntrinsic::genx_wrpredpredregion)
processWrPredPredRegion(Inst);
else if (IntrinID == GenXIntrinsic::genx_sat || GenXIntrinsic::isIntegerSat(IntrinID))
processSat(Inst);
else if (IntrinID == GenXIntrinsic::genx_faddr)
processFuncPointer(Inst);
else if (GenXIntrinsic::isReadWritePredefReg(IntrinID))
processRdWrPredefReg(Inst);
else if (GenXIntrinsic::isRdRegion(IntrinID))
processRdRegion(Inst);
else if (IntrinID == GenXIntrinsic::genx_rdpredregion)
processRdPredRegion(Inst);
else if (BranchInst *Branch = dyn_cast<BranchInst>(Inst))
processBranch(Branch);
else if (auto SI = dyn_cast<StoreInst>(Inst))
processStore(SI);
else if (isa<CallInst>(Inst) && cast<CallInst>(Inst)->isInlineAsm())
processInlineAsm(Inst);
else if(ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Inst))
processExtractValue(EV);
else {
// Try to bale a select into cmp's dst. If failed, continue to process
// select as a main instruction.
bool BaledSelect = processSelect(Inst);
if (!BaledSelect)
processMainInst(Inst, IntrinID);
}
}
/***********************************************************************
* isRegionOKForIntrinsic : check whether region is OK for an intrinsic arg
*
* Enter: ArgInfoBits = mask for the ArgInfo for the intrinsic arg (or return value)
* R = region itself
*
* This checks that the arg is general (rather than raw) and does not have
* any stride restrictions that are incompatible with the region.
*
* In the legalization pass of baling, we always return true when the main
* instruction can be splitted. Otherwise, a region that would be OK after
* being split by legalization might here appear not OK, and that would stop
* legalization considering splitting it. However, if the main instruction
* cannot be splitted, then we need to check the full restriction
* otherwise, if the region is considered baled and skip legalization,
* we may have illegal standalone read-region.
*/
bool GenXBaling::isRegionOKForIntrinsic(unsigned ArgInfoBits,
const vc::Region &R,
bool CanSplitBale) {
GenXIntrinsicInfo::ArgInfo AI(ArgInfoBits);
if (!AI.isGeneral())
return false;
if (Kind == BalingKind::BK_Legalization) {
if (CanSplitBale)
return true;
}
if (R.Indirect && (AI.isDirectOnly()))
return false;
unsigned Restriction = AI.getRestriction();
if (!Restriction)
return true;
unsigned GRFWidth = ST ? ST->getGRFByteSize() : defaultGRFByteSize;
unsigned ElementsPerGrf = GRFWidth / R.ElementBytes;
unsigned GRFLogAlign = Log2_32(GRFWidth);
if (AI.Info & GenXIntrinsicInfo::GRFALIGNED) {
if (R.Indirect) {
// Instructions that cannot be splitted also cannot allow indirect
if (!CanSplitBale)
return false;
Alignment AL = AlignInfo.get(R.Indirect);
if (AL.getLogAlign() < GRFLogAlign || AL.getExtraBits() != 0)
return false;
} else if (R.Offset & (GRFWidth - 1))
return false;
if (R.is2D() && (R.VStride & (ElementsPerGrf - 1)))
return false;
}
if (AI.Info & GenXIntrinsicInfo::OWALIGNED) {
// Instructions that cannot be splitted also cannot allow indirect
if (R.Indirect) {
if (!CanSplitBale)
return false;
Alignment AL = AlignInfo.get(R.Indirect);
if (AL.getLogAlign() < 4 || AL.getExtraBits() != 0)
return false;
}
if (R.Offset & 15)
return false;
if (R.is2D() && (R.VStride & ((ElementsPerGrf >> 1) - 1)))
return false;
}
switch (Restriction) {
case GenXIntrinsicInfo::SCALARORCONTIGUOUS:
if (!R.Stride && R.Width == R.NumElements)
break;
// fall through...
case GenXIntrinsicInfo::FIXED4:
case GenXIntrinsicInfo::CONTIGUOUS:
return R.isContiguous();
case GenXIntrinsicInfo::STRIDE1:
// For the dot product instructions, the vISA spec just says that the
// horizontal stride must be 1. It doesn't say anything about the
// width or the vertical stride. I am assuming that the width must also
// be at least 4, since the operation works on groups of 4 channels.
if (R.Stride != 1 || R.Width < 4)
return false;
break;
case GenXIntrinsicInfo::ONLY_LEGAL_REGION:
// Some instructions like umadw and smadw can't be splitted. It leads
// to problem in legalization. We have to not bale incorrect region with
// such instructions in order to split region independently.
return R.Width == R.NumElements && R.Stride == 1;
default:
break;
}
return true;
}
/***********************************************************************
* isSafeToMove : check if operation Op can be safely moved if it's placed
* on position From on position To
* If operation can write to memory, it's considered unsafe to sink it across
* any memory-related operation
* I operation is load-like, we don't sink it only through store-like operations
*/
bool GenXBaling::isSafeToMove(Instruction *Op, Instruction *From, Instruction *To) {
if (DisableMemOrderCheck || !Op->mayReadOrWriteMemory())
return true;
SmallVector<BasicBlock *, 4> Worklist;
SmallPtrSet<BasicBlock *, 4> Visited;
auto *FirstBB = From->getParent(),
*LastBB = To->getParent();
Worklist.push_back(LastBB);
// Do DFS traversal from LastBB until FirstBB is not reached.
while (!Worklist.empty()) {
auto *CurBB = Worklist.pop_back_val();
auto II = CurBB == FirstBB ? From->getNextNode()->getIterator() : CurBB->begin(),
EI = CurBB == LastBB ? To->getIterator() : CurBB->end();
for (; II != EI; ++II) {
auto *CurInst = &*II;
// Loads and stores to globals are not generated in any real memory operation
// so can be safely skipped.
if (genx::isGlobalLoad(CurInst) || genx::isGlobalStore(CurInst))
continue;
if (CurInst->mayWriteToMemory() ||
(Op->mayWriteToMemory() && CurInst->mayReadFromMemory())) {
LLVM_DEBUG(llvm::dbgs() << "Operation " << *Op << " can't be sinked through "
<< *CurInst << "\n");
return false;
}
}
if (CurBB != FirstBB) {
Visited.insert(CurBB);
for (auto *PredBB : predecessors(CurBB))
if (!Visited.count(PredBB))
Worklist.push_back(PredBB);
}
}
return true;
}
/***********************************************************************
* canSplitBale : check if instruction can be splitted
*/
bool GenXBaling::canSplitBale(Instruction *Inst) const {
auto IID = GenXIntrinsic::getGenXIntrinsicID(Inst);
if ((IID == GenXIntrinsic::genx_dpas) || (IID == GenXIntrinsic::genx_dpas2) ||
(IID == GenXIntrinsic::genx_dpasw) ||
(IID == GenXIntrinsic::genx_dpas_nosrc0) ||
(IID == GenXIntrinsic::genx_dpasw_nosrc0) ||
(IID == GenXIntrinsic::genx_umadw) ||
(IID == GenXIntrinsic::genx_smadw))
return false;
return true;
}
/***********************************************************************
* checkModifier : check whether instruction is a source modifier
*
* Enter: Inst = instruction to check
*
* Return: ABSMOD, NEGMOD, NOTMOD, ZEXT, SEXT or MAININST (0) if not modifier
*/
static int checkModifier(Instruction *Inst)
{
switch (Inst->getOpcode()) {
case Instruction::FNeg:
LLVM_DEBUG(llvm::dbgs()
<< "Instruction " << *Inst << " detected as NEGMOD\n");
return BaleInfo::NEGMOD;
case Instruction::Sub:
case Instruction::FSub:
// Negate is represented in LLVM IR by subtract from 0.
if (Constant *Lhs = dyn_cast<Constant>(Inst->getOperand(0))) {
// Canonicalize splats as well
if (isa<VectorType>(Lhs->getType()))
if (auto splat = Lhs->getSplatValue())
Lhs = splat;
// Usage of negative modifier on unsigned value can lead
// to unexpected behaviour if baled into another instruction.
if (Lhs->isZeroValue() &&
std::none_of(
Inst->use_begin(), Inst->use_end(),
[](Use &UseOp) { return isa<UIToFPInst>(UseOp.getUser()); }) &&
std::none_of(Inst->op_begin(), Inst->op_end(),
[](Value *Val) { return isa<FPToUIInst>(Val); })) {
LLVM_DEBUG(llvm::dbgs()
<< "Instruction " << *Inst << " detected as NEGMOD\n");
return BaleInfo::NEGMOD;
}
}
break;
case Instruction::Xor:
if (isIntNot(Inst)) {
LLVM_DEBUG(llvm::dbgs()
<< "Instruction " << *Inst << " detected as NOTMOD\n");
return BaleInfo::NOTMOD;
}
break;
case Instruction::ZExt:
if (!Inst->getOperand(0)->getType()->getScalarType()->isIntegerTy(1)) {
LLVM_DEBUG(llvm::dbgs()
<< "Instruction " << *Inst << " detected as ZEXT\n");
return BaleInfo::ZEXT;
}
break;
case Instruction::SExt:
if (!Inst->getOperand(0)->getType()->getScalarType()->isIntegerTy(1)) {
LLVM_DEBUG(llvm::dbgs()
<< "Instruction " << *Inst << " detected as SEXT\n");
return BaleInfo::SEXT;
}
break;
default:
switch (GenXIntrinsic::getGenXIntrinsicID(Inst)) {
case GenXIntrinsic::genx_absi:
case GenXIntrinsic::genx_absf:
LLVM_DEBUG(llvm::dbgs()
<< "Instruction " << *Inst << " detected as ABSMOD\n");
return BaleInfo::ABSMOD;
default:
break;
}
break;
}
LLVM_DEBUG(llvm::dbgs() << "Instruction " << *Inst
<< " detected as MAININST\n");
return BaleInfo::MAININST;
}
/***********************************************************************
* operandCanBeBaled : check if a operand in main inst can be baled
*
* Enter: Inst = the main inst
* OperandNum = operand number to look at
* ModType = what type of modifier (arith/logic/extonly/none) this
* operand accepts
* AI = GenXIntrinsicInfo::ArgInfo, so we can see any stride
* restrictions, omitted if Inst is not an intrinsic
*/
bool GenXBaling::operandCanBeBaled(
Instruction *Inst, unsigned OperandNum, int ModType,
unsigned ArgInfoBits = GenXIntrinsicInfo::GENERAL) {
GenXIntrinsicInfo::ArgInfo AI(ArgInfoBits);
Instruction *Opnd = dyn_cast<Instruction>(Inst->getOperand(OperandNum));
if (!Opnd)
return false;
// Check for source operand modifier.
if (ModType != GenXIntrinsicInfo::MODIFIER_DEFAULT) {
int Mod = checkModifier(Opnd);
switch (Mod) {
case BaleInfo::MAININST:
break;
case BaleInfo::ZEXT:
case BaleInfo::SEXT: {
if (CmpInst *CmpI = dyn_cast<CmpInst>(Inst)) {
if ((Mod == BaleInfo::SEXT) != CmpI->isSigned())
return false;
}
// NOTE: mulh does not allow sext/zext bailing, as it allows only
// D/UD operands
auto IID = GenXIntrinsic::getGenXIntrinsicID(Inst);
if (IID == GenXIntrinsic::genx_smulh ||
IID == GenXIntrinsic::genx_umulh)
return false;
if (ModType != GenXIntrinsicInfo::MODIFIER_DEFAULT)
return true;
} break;
case BaleInfo::NOTMOD:
if (ModType == GenXIntrinsicInfo::MODIFIER_LOGIC)
return true;
break;
case BaleInfo::ABSMOD:
// Part of the bodge to allow abs to be baled in to zext/sext.
if (ModType == MODIFIER_ABSONLY)
return true;
// fall through...
default:
if (ModType == GenXIntrinsicInfo::MODIFIER_ARITH)
return true;
break;
}
}
if (GenXIntrinsic::isRdRegion(Opnd)) {
// The operand is a rdregion. Check any restrictions.
// (Note we call isRegionOKForIntrinsic even when Inst is not an
// intrinsic, since in that case AI is initialized to a state
// where there are no region restrictions.)
Region RdR = makeRegionFromBaleInfo(Opnd, BaleInfo());
if (!isRegionOKForIntrinsic(AI.Info, RdR, canSplitBale(Inst)))
return false;
// Do not bale in a region read with multiple uses if
// - any use is bitcast, or
// - it is indirect.
// as bitcast will not bale its operands and indirect multiple-use region
// reads often lead to narrow simd width after legalization.
if (Opnd->hasNUsesOrMore(2) && (Kind == BalingKind::BK_Legalization ||
Kind == BalingKind::BK_Analysis)) {
for (auto U : Opnd->users())
if (isa<BitCastInst>(U))
return false;
Region R = makeRegionFromBaleInfo(cast<CallInst>(Opnd), BaleInfo());
if (R.Indirect)
return false;
}
return true;
}
return false;
}
/***********************************************************************
* processWrPredRegion : set up baling info for wrpredregion
*
* The input to wrpredregion may be the following:
* 1) icmp or fcmp, in which case it is always baled.
* 2) constant, which may resulted from region simplification.
*/
void GenXBaling::processWrPredRegion(Instruction *Inst)
{
Value *V = Inst->getOperand(GenXIntrinsic::GenXRegion::NewValueOperandNum);
BaleInfo BI(BaleInfo::WRPREDREGION);
bool isRdPredR =
vc::getAnyIntrinsicID(V) == GenXIntrinsic::genx_rdpredregion;
if (isa<CmpInst>(V) || isRdPredR) {
LLVM_DEBUG(llvm::dbgs() << __FUNCTION__ << " setting operand #"
<< GenXIntrinsic::GenXRegion::NewValueOperandNum
<< " to bale in instruction " << *Inst << "\n");
if (isRdPredR)
setBaleInfo(cast<Instruction>(V), BaleInfo(BaleInfo::RDPREDREGION));
setOperandBaled(Inst, GenXIntrinsic::GenXRegion::NewValueOperandNum, &BI);
}
setBaleInfo(Inst, BI);
}
/***********************************************************************
* processRdPredRegion : set up baling info for rdpredregion
*
*/
void GenXBaling::processRdPredRegion(Instruction *Inst) {
BaleInfo BI(BaleInfo::RDPREDREGION);
setBaleInfo(Inst, BI);
}
/***********************************************************************
* processWrPredPredRegion : set up baling info for wrpredpredregion
*
* The "new value" input to wrpredregion must be icmp or fcmp, and it is always
* baled.
*
* The condition input is assumed to be EM. But it might be an rdpredregion
* out of EM, in which case the rdpredregion is baled. The rdpredregion must
* have offset 0.
*/
void GenXBaling::processWrPredPredRegion(Instruction *Inst)
{
IGC_ASSERT(isa<CmpInst>(Inst->getOperand(GenXIntrinsic::GenXRegion::NewValueOperandNum)));
BaleInfo BI(BaleInfo::WRPREDPREDREGION);
setOperandBaled(Inst, GenXIntrinsic::GenXRegion::NewValueOperandNum, &BI);
Value *Cond = Inst->getOperand(3);
if (GenXIntrinsic::getGenXIntrinsicID(Cond) == GenXIntrinsic::genx_rdpredregion) {
IGC_ASSERT(cast<Constant>(cast<CallInst>(Cond)->getOperand(1))->isNullValue());
setOperandBaled(Inst, 3, &BI);
}
setBaleInfo(Inst, BI);
}
/***********************************************************************
* processWrRegion : set up baling info for wrregion
*/
void GenXBaling::processWrRegion(Instruction *Inst)
{
BaleInfo BI(BaleInfo::WRREGION);
// Get the instruction (if any) that creates the element/subregion to write.
unsigned OperandNum = GenXIntrinsic::GenXRegion::NewValueOperandNum;
Instruction *V = dyn_cast<Instruction>(Inst->getOperand(OperandNum));
if (V && !V->hasOneUse()) {
// The instruction has multiple uses.
// We don't want to bale in the following cases, as they seem to make the
// code worse, unless this is load from a global variable.
if (V->getParent() == Inst->getParent()) {
// 1. The maininst is a select.
Bale B;
buildBale(V, &B);
if (auto MainInst = B.getMainInst()) {
if (isa<SelectInst>(MainInst->Inst) ||
isHighCostBaling(BaleInfo::WRREGION, MainInst->Inst))
V = nullptr;
}
} else {
// 2. It is in a different basic block to the wrregion.
if (!genx::isRdRFromGlobalLoad(V))
V = nullptr;
}
// FIXME: Baling on WRREGION is not the right way to reduce the overhead
// from `wrregion`. Instead, register coalescing should be applied to
// enable direct defining of the WRREGION and minimize the value
// duplication.
}
// Do not bale rdregion into wrregion if they access the same global
// and there is a store in between
if (V && genx::isRdRFromGlobalLoad(V) && genx::isWrRToGlobalLoad(Inst)) {
auto *LI1 = cast<LoadInst>(
Inst->getOperand(GenXIntrinsic::GenXRegion::OldValueOperandNum));
auto *LI2 = cast<LoadInst>(cast<Instruction>(V)->getOperand(
GenXIntrinsic::GenXRegion::OldValueOperandNum));
auto *GV1 = vc::getUnderlyingGlobalVariable(LI1);
auto *GV2 = vc::getUnderlyingGlobalVariable(LI2);
if ((GV1 == GV2) && genx::hasMemoryDeps(LI1, LI2, GV1, DT))
V = nullptr;
}
// Do not bale if NewValue is raw operand and wrr is used in predef reg.
if (std::any_of(Inst->user_begin(), Inst->user_end(), [](User *U) {
return GenXIntrinsic::isReadWritePredefReg(U);
})) {
unsigned ValIntrinID = vc::getAnyIntrinsicID(V);
GenXIntrinsicInfo II(ValIntrinID);
if (GenXIntrinsic::isGenXIntrinsic(ValIntrinID) &&
(II.getRetInfo().getCategory() == GenXIntrinsicInfo::RAW)) {
V = nullptr;
}
}
if (V &&
isBalableNewValueIntoWrr(V, makeRegionFromBaleInfo(Inst, BaleInfo())) &&
isSafeToMove(V, V, Inst)) {
LLVM_DEBUG(llvm::dbgs()
<< __FUNCTION__ << " setting operand #" << OperandNum
<< " to bale in instruction " << *Inst << "\n");
setOperandBaled(Inst, OperandNum, &BI);
if (Liveness) {
// Ensure the wrregion's result has an
// alignment of 32 if intrinsic with
// raw result was baled into
unsigned ValIntrinID = vc::getAnyIntrinsicID(V);
GenXIntrinsicInfo II(ValIntrinID);
if (GenXIntrinsic::isGenXIntrinsic(ValIntrinID) &&
(ValIntrinID != GenXIntrinsic::genx_sat) &&
!GenXIntrinsic::isRdRegion(V) && !GenXIntrinsic::isWrRegion(V) &&
(II.getRetInfo().getCategory() == GenXIntrinsicInfo::RAW))
Liveness->getOrCreateLiveRange(Inst)->LogAlignment = getLogAlignment(
VISA_Align::ALIGN_GRF, ST ? ST->getGRFByteSize() : defaultGRFByteSize);
}
}
// Now see if there is a variable index with an add/sub with an in range
// offset that we can bale in, such that the add/sub does not already
// bale in other instructions.
OperandNum = GenXIntrinsic::GenXRegion::WrIndexOperandNum;
if (auto IndexOperand = Inst->getOperand(OperandNum);
isBalableIndexAdd(IndexOperand)) {
LLVM_DEBUG(llvm::dbgs()
<< __FUNCTION__ << " setting operand #" << OperandNum
<< " to bale in instruction " << *Inst << "\n");
setOperandBaled(Inst, OperandNum, &BI);
// We always set up InstMap for an address add, even though it does not
// bale in any operands.
setBaleInfo(cast<Instruction>(IndexOperand), BaleInfo(BaleInfo::ADDRADD, 0));
}
// See if there is any baling in to the predicate (mask) operand.
if (processPredicate(Inst, GenXIntrinsic::GenXRegion::PredicateOperandNum))
setOperandBaled(Inst, GenXIntrinsic::GenXRegion::PredicateOperandNum, &BI);
// We always set up InstMap for a wrregion, even if it does not bale in any
// operands.
setBaleInfo(Inst, BI);
}
// Process a select instruction. Return true if it can be baled into a cmp
// instruction, false otherwise.
bool GenXBaling::processSelect(Instruction *Inst) {
auto SI = dyn_cast<SelectInst>(Inst);
if (!SI)
return false;
// Only bale into a cmp instruction.
auto *Cmp = dyn_cast<CmpInst>(SI->getCondition());
if (!Cmp || !Cmp->hasOneUse())
return false;
// Only bale "select cond, -1, 0"
Constant *Src0 = dyn_cast<Constant>(SI->getTrueValue());
Constant *Src1 = dyn_cast<Constant>(SI->getFalseValue());
if (!Src0 || !Src0->isAllOnesValue() || !Src1 || !Src1->isNullValue())
return false;
// VISA supports only hf/f destination types for floating-point cmp, not bale
// select as CMPDST in this case.
if (Cmp->isFPPredicate())
return false;
BaleInfo BI(BaleInfo::CMPDST);
unsigned OperandNum = 0;
LLVM_DEBUG(llvm::dbgs() << __FUNCTION__ << " setting operand #" << OperandNum
<< " to bale in instruction " << *SI << "\n");
setOperandBaled(SI, OperandNum, &BI);
setBaleInfo(SI, BI);
return true;
}
// Process a store instruction.
void GenXBaling::processStore(StoreInst *Inst) {
BaleInfo BI(BaleInfo::GSTORE);
unsigned OperandNum = 0;
Instruction *V = dyn_cast<Instruction>(Inst->getOperand(OperandNum));
if (GenXIntrinsic::isWrRegion(V)) {
constexpr unsigned NewValOpNum = GenXIntrinsic::GenXRegion::NewValueOperandNum;
if (getBaleInfo(V).isOperandBaled(NewValOpNum)) {
Instruction *MainInst = cast<Instruction>(V->getOperand(NewValOpNum));
if (getBaleInfo(MainInst).Type == BaleInfo::MAININST &&
!isSafeToMove(MainInst, V, Inst))
return;
}
LLVM_DEBUG(llvm::dbgs()
<< __FUNCTION__ << " setting operand #" << OperandNum
<< " to bale in instruction " << *Inst << "\n");
setOperandBaled(Inst, OperandNum, &BI);
} else if (isa<CallInst>(V) && cast<CallInst>(V)->isInlineAsm()) {
LLVM_DEBUG(llvm::dbgs()
<< __FUNCTION__ << " setting operand #" << OperandNum
<< " to bale in instruction " << *Inst << "\n");
setOperandBaled(Inst, OperandNum, &BI);
}
setBaleInfo(Inst, BI);
}
// We can bale in shufflevector of predicate if it is replicated slice.
bool GenXBaling::processShufflePred(Instruction *Inst) {
IGC_ASSERT_MESSAGE(Inst->getType()->getScalarSizeInBits() == 1,
"Expected bool shuffle");
auto *SI = dyn_cast<ShuffleVectorInst>(Inst);
if (!SI)
return false;
IGC_ASSERT_MESSAGE(ShuffleVectorAnalyzer(SI).isReplicatedSlice(),
"Predicate shuffle is not replicated slice!");
BaleInfo BI(BaleInfo::SHUFFLEPRED);
setBaleInfo(SI, BI);
return true;
}
/***********************************************************************
* processPredicate : process predicate operand (to wrregion or branch)
*
* Enter: Inst = instruction with predicate operand
* OperandNum = operand number in Inst
*
* Return: whether operand can be baled in
*
* If the function returns true, the caller needs to call
* setOperandBaled(Inst, OperandNum, &BI) to actually bale it in.
*
* Unlike most baling, which proceeds in code order building a tree of baled in
* instructions, this function recurses, scanning backward through the code,
* because we only want to bale predicate operations all/any/not/rdpredregion
* once we know that the resulting predicate is used in wrregion or branch (as
* opposed to say a bitcast to int).
*
* So this function decides whether OperandNum in Inst is an instruction that
* is to be baled in, and additionally performs any further baling in to that
* instruction.
*/
bool GenXBaling::processPredicate(Instruction *Inst, unsigned OperandNum) {
Instruction *Mask = dyn_cast<Instruction>(Inst->getOperand(OperandNum));
if (!Mask)
return false;
if (Kind == BalingKind::BK_CodeGen && !isa<VectorType>(Mask->getType())) {
if (auto Extract = dyn_cast<ExtractValueInst>(Mask)) {
auto *GotoJoin = cast<Instruction>(Extract->getAggregateOperand());
auto IID = vc::getAnyIntrinsicID(GotoJoin);
if (IID == GenXIntrinsic::genx_simdcf_goto
|| IID == GenXIntrinsic::genx_simdcf_join) {
// Second pass: Mask is the extractvalue of the !any(EM) result out of
// the result of goto/join. We mark both the use of the extract in the
// branch and the use of the goto/join in the extract as baled. The
// former is done by the caller when we return true.
BaleInfo BI;
LLVM_DEBUG(llvm::dbgs() << __FUNCTION__ << " setting operand #" << 0
<< " to bale in instruction " << *Mask << "\n");
setOperandBaled(Mask, /*OperandNum=*/0, &BI);
setBaleInfo(Mask, BI);
return true;
}
}
}
switch (GenXIntrinsic::getGenXIntrinsicID(Mask)) {
case GenXIntrinsic::genx_rdpredregion: {
if (Kind == BalingKind::BK_CodeGen) {
// Sanity check the offset and number of elements being accessed.
unsigned MinSize = 0; // it will be assigned inside assertion statament
IGC_ASSERT((MinSize = Inst->getType()->getScalarType()->getPrimitiveSizeInBits() == 64 ? 4 : 8, 1));
unsigned NElems = 0; // it will be assigned inside assertion statament
IGC_ASSERT((NElems = cast<IGCLLVM::FixedVectorType>(Mask->getType())
->getNumElements(),
1));
unsigned Offset = 0; // it will be assigned inside assertion statament
IGC_ASSERT((Offset = dyn_cast<ConstantInt>(Mask->getOperand(1))->getZExtValue(), 1));
IGC_ASSERT_MESSAGE(exactLog2(NElems) >= 0,
"illegal offset and/or width in rdpredregion");
IGC_ASSERT_MESSAGE((Offset & (std::min(NElems, MinSize) - 1)) == 0,
"illegal offset and/or width in rdpredregion");
(void) MinSize;
(void) NElems;
(void) Offset;
}
// We always set up InstMap for an rdpredregion, even though it does not
// bale in any operands.
setBaleInfo(Mask, BaleInfo(BaleInfo::RDPREDREGION, 0));
return true;
}
case GenXIntrinsic::genx_all:
case GenXIntrinsic::genx_any: {
if (Kind != BalingKind::BK_CodeGen)
return false; // only bale all/any for CodeGen
// The mask is the result of an all/any. Bale that in.
// Also see if its operand can be baled in.
BaleInfo BI(BaleInfo::ALLANY);
if (processPredicate(Mask, /*OperandNum=*/0)) {
LLVM_DEBUG(llvm::dbgs()
<< __FUNCTION__ << " setting operand #" << 0
<< " to bale in instruction " << *Mask << "\n");
setOperandBaled(Mask, /*OperandNum=*/0, &BI);
}
setBaleInfo(Mask, BI);
return true;
}
default:
break;
}
if (isPredNot(Mask)) {
// The mask is the result of a notp. Bale that in.
// Also see if its operand can be baled in.
BaleInfo BI(BaleInfo::NOTP);
if (processPredicate(Mask, /*OperandNum=*/0)) {
LLVM_DEBUG(llvm::dbgs() << __FUNCTION__ << " setting operand #" << 0
<< " to bale in instruction " << *Mask << "\n");
setOperandBaled(Mask, /*OperandNum=*/0, &BI);
}
setBaleInfo(Mask, BI);
return true;
}
if (processShufflePred(Mask))
return true;
return false;
}
/***********************************************************************
* processSat : set up baling info fp saturate
*/
void GenXBaling::processSat(Instruction *Inst)
{
BaleInfo BI(BaleInfo::SATURATE);
// Get the instruction (if any) that creates value to saturate.
unsigned OperandNum = 0;
Instruction *V = dyn_cast<Instruction>(Inst->getOperand(OperandNum));
if (V && V->hasOneUse()) {
// It is an instruction where we are the only use. We can bale it in, if
// it is a suitable instruction.
auto ValIntrinID = vc::getAnyIntrinsicID(V);
if (GenXIntrinsic::isRdRegion(ValIntrinID)) {
LLVM_DEBUG(llvm::dbgs()
<< __FUNCTION__ << " setting operand #" << OperandNum
<< " to bale in instruction " << *Inst << "\n");
setOperandBaled(Inst, OperandNum, &BI);
} else if (ValIntrinID == GenXIntrinsic::not_any_intrinsic) {
if (isa<BinaryOperator>(V) || isa<SelectInst>(V) ||
(isa<CastInst>(V) && !isa<BitCastInst>(V))) {
LLVM_DEBUG(llvm::dbgs()
<< __FUNCTION__ << " setting operand #" << OperandNum
<< " to bale in instruction " << *Inst << "\n");
setOperandBaled(Inst, OperandNum, &BI);
}
} else if (!GenXIntrinsic::isWrRegion(ValIntrinID)) {
// V is an intrinsic other than rdregion/wrregion. Check that its return
// value is suitable for baling.
GenXIntrinsicInfo II(ValIntrinID);
if (!II.getRetInfo().isRaw() &&
II.getRetInfo().getSaturation() ==
GenXIntrinsicInfo::SATURATION_DEFAULT) {
LLVM_DEBUG(llvm::dbgs()
<< __FUNCTION__ << " setting operand #" << OperandNum
<< " to bale in instruction " << *Inst << "\n");
setOperandBaled(Inst, OperandNum, &BI);
}
}
}
// We always set up InstMap for a saturate, even if it does not bale in any
// operands.
setBaleInfo(Inst, BI);
}
/***********************************************************************
* processRdRegion : set up baling info for rdregion
*/
void GenXBaling::processRdRegion(Instruction *Inst)
{
// See if there is a variable index with an add/sub with an in range
// offset that we can bale in, such that the add/sub does not already
// bale in other instructions.
const unsigned OperandNum = GenXIntrinsic::GenXRegion::RdIndexOperandNum;
BaleInfo BI(BaleInfo::RDREGION);
if (auto IndexOperand = Inst->getOperand(OperandNum);
isBalableIndexAdd(IndexOperand)) {
LLVM_DEBUG(llvm::dbgs()
<< __FUNCTION__ << " setting operand #" << OperandNum
<< " to bale in instruction " << *Inst << "\n");
setOperandBaled(Inst, OperandNum, &BI);
// We always set up InstMap for an address add, even though it does not
// bale in any operands.
setBaleInfo(cast<Instruction>(IndexOperand), BaleInfo(BaleInfo::ADDRADD, 0));
} else if (isBalableIndexOr(Inst->getOperand(OperandNum))) {
LLVM_DEBUG(llvm::dbgs()
<< __FUNCTION__ << " setting operand #" << OperandNum
<< " to bale in instruction " << *Inst << "\n");
setOperandBaled(Inst, OperandNum, &BI);
// We always set up InstMap for an address or, even though it does not
// bale in any operands.
setBaleInfo(cast<Instruction>(Inst->getOperand(OperandNum)), BaleInfo(BaleInfo::ADDROR, 0));
}
// We always set up InstMap for a rdregion, even if it does not bale in any
// operands.
setBaleInfo(Inst, BI);
}
/***********************************************************************
* processInlineAsm : RdRegion result a baled into inline asm
* instruction. Inline Assembly iremains the main instruction
* of the bale.
*/
void GenXBaling::processInlineAsm(Instruction *Inst) {
auto CI = dyn_cast<CallInst>(Inst);
IGC_ASSERT_MESSAGE(CI, "Inline Asm expected");
IGC_ASSERT_MESSAGE(CI->isInlineAsm(), "Inline Asm expected");
BaleInfo BI(BaleInfo::MAININST);
for (unsigned I = 0; I < IGCLLVM::getNumArgOperands(CI); I++)
if (auto RdR = dyn_cast<Instruction>(CI->getArgOperand(I)))
if (GenXIntrinsic::isRdRegion(RdR)) {
switch (GenXIntrinsic::getGenXIntrinsicID(RdR->getOperand(0))) {
default:
LLVM_DEBUG(llvm::dbgs()
<< __FUNCTION__ << " setting operand #" << I
<< " to bale in instruction " << *Inst << "\n");
setOperandBaled(Inst, I, &BI);
break;
case GenXIntrinsic::genx_constanti:
case GenXIntrinsic::genx_constantf:
continue;
}
}
setBaleInfo(Inst, BI);
}
/***********************************************************************
* processFuncPointer : process genx.faddr which is used in <=1 WrRegions
* and is baled into it.
*/
void GenXBaling::processFuncPointer(Instruction *Inst) {
auto *CI = dyn_cast<CallInst>(Inst);
IGC_ASSERT_MESSAGE(CI, "genx.faddr expected");
IGC_ASSERT_MESSAGE(GenXIntrinsic::getGenXIntrinsicID(CI) == GenXIntrinsic::genx_faddr,
"genx.faddr expected");
IGC_ASSERT(Inst->hasOneUse());
auto *NextUser = Inst->user_back();
if (isa<BitCastInst>(NextUser)) {
// bitcasts <N x i64> -> <2*N x i32> may appear after i64 emulation
IGC_ASSERT(NextUser->hasOneUse());
IGC_ASSERT(NextUser->getType()->getScalarType()->isIntegerTy(32));
NextUser = NextUser->user_back();
}
IGC_ASSERT(NextUser->use_empty() || GenXIntrinsic::isWrRegion(NextUser));
BaleInfo BI(BaleInfo::FADDR);
setBaleInfo(Inst, BI);
}
void GenXBaling::processRdWrPredefReg(Instruction *Inst) {
auto *CI = dyn_cast<CallInst>(Inst);
IGC_ASSERT_MESSAGE((CI && GenXIntrinsic::isReadWritePredefReg(Inst)),
"genx.read/write.reg expected");
BaleInfo BI(BaleInfo::REGINTR);
setBaleInfo(Inst, BI);
}
/***********************************************************************
* processExtractValue : Extract instructions can get elements from structure
* which was a result of inline assembly call with multiple outputs.
*/
void GenXBaling::processExtractValue(ExtractValueInst *EV) {
IGC_ASSERT(EV);
if (auto CI = dyn_cast<CallInst>(EV->getAggregateOperand()))
if (CI->isInlineAsm())
setBaleInfo(EV, BaleInfo(BaleInfo::MAININST, 0));
}
/***********************************************************************
* static getIndexAdd : test whether the specified value is
* a constant add/sub that could be baled in as a variable index offset,
* but without checking that the index is in range
*
* Enter: V = the value that might be a constant add/sub
* Offset = where to store the offset of the constant add/sub
*
* Return: true if a constant add/sub was detected
*
* For the second run of GenXBaling, which is after GenXCategoryConversion,
* we are looking for an llvm.genx.add.addr rather than a real add/sub.
*/
bool GenXBaling::getIndexAdd(Value *V, int *Offset)
{
if (Instruction *Inst = dyn_cast<Instruction>(V)) {
int IsConstAdd = 0;
switch (Inst->getOpcode()) {
case Instruction::Add:
IsConstAdd = 1;
break;
case Instruction::Sub:
IsConstAdd = -1;
break;
default:
if (GenXIntrinsic::getGenXIntrinsicID(Inst) ==
GenXIntrinsic::genx_add_addr)
IsConstAdd = 1;
break;
}
if (IsConstAdd) {
if (Constant *C = dyn_cast<Constant>(Inst->getOperand(1))) {
if (isa<VectorType>(C->getType()))
C = C->getSplatValue();
if (C) {
if (C->isNullValue()) {
*Offset = 0;
return true;
}
if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
// It is a constant add/sub.
*Offset = CI->getSExtValue() * IsConstAdd;
return true;
}
}
}
}
}
return false;
}
/***********************************************************************
* static getIndexOr : test whether the specified value is
* a constant Or that could be baled in as a variable index offset,
* but without checking that the index is in range
*
* Enter: V = the value that might be a constant or
* Offset = where to store the offset of the constant or
*
* Return: true if a constant or was detected
*/
bool GenXBaling::getIndexOr(Value *V, int &Offset)
{
Instruction *Inst = dyn_cast<Instruction>(V);
if (!Inst)
return false;
if (Inst->getOpcode() != Instruction::Or)
return false;
// inst is Or from this point
Constant *C = dyn_cast<Constant>(Inst->getOperand(1));
if (!C)
return false;
if (isa<VectorType>(C->getType()))
C = C->getSplatValue();
// getSplatValue could return nullptr
if (!C)
return false;
if (C->isNullValue()) {
Offset = 0;
return true;
}
if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
// check for or could be changed to add
if(!haveNoCommonBitsSet(Inst->getOperand(0), Inst->getOperand(1),
Inst->getModule()->getDataLayout()))
{
return false;
}
Offset = CI->getSExtValue();
return true;
}
return false;
}
/***********************************************************************
* static isBalableIndexAdd : test whether the specified value is
* a constant add/sub that could be baled in as a variable index offset
*
* For the second run of GenXBaling, which is after GenXCategoryConversion,
* we are looking for an llvm.genx.add.addr rather than a real add/sub.
*/
bool GenXBaling::isBalableIndexAdd(Value *V)
{
int Offset;
if (!getIndexAdd(V, &Offset))
return false;
// It is a constant add/sub. Check the constant is in range.
return ( G4_MIN_ADDR_IMM <= Offset && Offset <= G4_MAX_ADDR_IMM);
}
/***********************************************************************
* static isBalableIndexOr : test whether the specified value is
* a constant Or that could be baled in as a variable index offset
*/
bool GenXBaling::isBalableIndexOr(Value *V)
{
int Offset;
if (!getIndexOr(V, Offset))
return false;
IGC_ASSERT_MESSAGE(Offset >=0, "Offset in or appears to be less than zero");
// It is a constant or. Check the constant is in range.
return (Offset <= G4_MAX_ADDR_IMM);
}
// Returns true if instruction uses same mask as operand. Possible cases:
// same mask uses as operand of intrinsic directly; mask value is a replicated
// slice of the mask operand of intrinsic.
static bool usesSameMaskAsOperand(Instruction *Inst, Value *Mask) {
auto *CI = dyn_cast<CallInst>(Inst);
if (!CI)
return false;
Value *MaskOperand = genx::getMaskOperand(Inst);
// No mask at all
if (!MaskOperand)
return false;
// Easy case, same mask as operand
if (MaskOperand == Mask)
return true;
// Allow constant predicates only for gather4_masked_scaled2,
// at least for now
if (auto *CV1 = dyn_cast<ConstantVector>(Mask))
if (auto *CV2 = dyn_cast<ConstantVector>(MaskOperand))
return GenXIntrinsic::getGenXIntrinsicID(Inst) ==
GenXIntrinsic::genx_gather4_masked_scaled2 &&
genx::isReplicatedConstantVector(CV2, CV1);
auto MaskOperandInrtID = GenXIntrinsic::getGenXIntrinsicID(MaskOperand);
auto MaskIntrID = GenXIntrinsic::getGenXIntrinsicID(Mask);
if (MaskOperandInrtID == GenXIntrinsic::genx_constantpred &&
MaskIntrID == GenXIntrinsic::genx_constantpred) {
auto *CV1 =
dyn_cast<ConstantVector>(cast<CallInst>(MaskOperand)->getOperand(0));
auto *CV2 = dyn_cast<ConstantVector>(cast<CallInst>(Mask)->getOperand(0));
return GenXIntrinsic::getGenXIntrinsicID(Inst) ==
GenXIntrinsic::genx_gather4_masked_scaled2 &&
CV1 && CV2 && genx::isReplicatedConstantVector(CV1, CV2);
}
// If both are rdpredregions then compare for equvalency (same operand and
// offset)
if (MaskOperandInrtID == GenXIntrinsic::genx_rdpredregion &&
MaskIntrID == GenXIntrinsic::genx_rdpredregion) {
auto *RdPred1 = cast<CallInst>(MaskOperand);
auto *RdPred2 = cast<CallInst>(Mask);
return RdPred1->getOperand(0) == RdPred2->getOperand(0) &&
RdPred1->getArgOperand(1) == RdPred2->getArgOperand(1);
}
auto *SI = dyn_cast<ShuffleVectorInst>(Mask);
if (!SI)
return false;
ShuffleVectorAnalyzer SIAnalyzer(SI);
if (!SIAnalyzer.isReplicatedSlice())
return false;
// If shufflevector replicates mask operand then we can bale
if (SI->getOperand(0) == MaskOperand) {
IGC_ASSERT_MESSAGE(!SIAnalyzer.getReplicatedSliceDescriptor().InitialOffset,
"Expected zero initial offset");
return true;
}
// If operand is rdpredregion result then check for same initial offset
// of shufflevector and rdpredregion's offset
if (GenXIntrinsic::getGenXIntrinsicID(MaskOperand) ==
GenXIntrinsic::genx_rdpredregion) {
auto *PredRdR = cast<CallInst>(MaskOperand);
return cast<ConstantInt>(PredRdR->getArgOperand(1))->getZExtValue() ==
SIAnalyzer.getReplicatedSliceDescriptor().InitialOffset;
}
return false;
}
/***********************************************************************
* isBalableNewValueIntoWrr : check whether the new val operand can
* be baled into wrr instruction
*/
bool GenXBaling::isBalableNewValueIntoWrr(Value *V, const Region &WrrR) {
Instruction *Inst = dyn_cast<Instruction>(V);
if (!Inst)
return false;
// It is an instruction. We can bale it in, if it is a suitable
// instruction.
unsigned ValIntrinID = vc::getAnyIntrinsicID(Inst);
if (ValIntrinID == GenXIntrinsic::genx_sat ||
GenXIntrinsic::isRdRegion(ValIntrinID))
return true;
else if (ValIntrinID == GenXIntrinsic::not_any_intrinsic) {
if (isa<BinaryOperator>(Inst))
return true;
if (auto *CI = dyn_cast<CastInst>(Inst);
CI && !genx::isNoopCast(CI))
return true;
else if (isMaskPacking(Inst))
return true;
else if (isa<CallInst>(Inst) && cast<CallInst>(Inst)->isInlineAsm())
return true;
else if (isa<SelectInst>(Inst) && !WrrR.Mask) {
// Can bale in a select as long as the wrregion is unpredicated.
return true;
} else if (isa<ExtractValueInst>(Inst)) {
// Each extract bales into its own WrRegionand remains
// the main instruction of the bale
auto Extract = cast<ExtractValueInst>(Inst);
if (auto CI = dyn_cast<CallInst>(Extract->getAggregateOperand()))
if (CI->isInlineAsm())
return true;
}
} else if (!GenXIntrinsic::isWrRegion(ValIntrinID)) {
// V is an intrinsic other than rdregion/wrregion. If this is a
// predicated wrregion, only permit baling in if the intrinsic
// supports a predicate mask.
GenXIntrinsicInfo II(ValIntrinID);
if (WrrR.Mask == 0 || II.getPredAllowed() ||
usesSameMaskAsOperand(Inst, WrrR.Mask)) {
// Check that its return value is suitable for baling.
GenXIntrinsicInfo::ArgInfo AI = II.getRetInfo();
switch (AI.getCategory()) {
case GenXIntrinsicInfo::GENERAL: {
if (isRegionOKForIntrinsic(AI.Info, WrrR, canSplitBale(Inst)))
return true;
} break;
case GenXIntrinsicInfo::RAW: {
// Intrinsic with raw result can be baled in to wrregion as long as
// it is unstrided and starts on a GRF boundary, and there is no
// non-undef TWOADDR operand.
if (isRegionOKForRaw(WrrR, ST)) {
unsigned FinalCallArgIdx = Inst->getNumOperands() - 2;
if (isa<UndefValue>(Inst->getOperand(FinalCallArgIdx)))
return true;
else {
GenXIntrinsicInfo::ArgInfo AI2 = II.getArgInfo(FinalCallArgIdx);
if (AI2.getCategory() != GenXIntrinsicInfo::TWOADDR)
return true;
}
}
} break;
}
}
}
return false;
}
bool GenXBaling::isHighCostBaling(uint16_t Type, Instruction *Inst) {
if (Type != BaleInfo::WRREGION)
return false;
auto *CI = dyn_cast<CallInst>(Inst);
if (!CI)
return false;
return !CI->doesNotAccessMemory();
}
/***********************************************************************
* acceptableMainInst : if Inst acceptable as bale main instruction
*/
static bool acceptableMainInst(Instruction *Inst) {
if (isa<BinaryOperator>(Inst))
return BaleBinary;
if (isa<CmpInst>(Inst))
return BaleCmp;
if (isa<CastInst>(Inst))
return BaleCast;
if (isa<SelectInst>(Inst))
return BaleSelect;
if (Inst->getOpcode() == Instruction::FNeg)
return BaleFNeg;
return false;
}
/***********************************************************************
* processMainInst : set up baling info for potential main instruction
*/
void GenXBaling::processMainInst(Instruction *Inst, int IntrinID) {
if (isa<DbgInfoIntrinsic>(Inst))
return;
BaleInfo BI(BaleInfo::MAININST);
if (IntrinID == GenXIntrinsic::not_any_intrinsic) {
if (!acceptableMainInst(Inst))
return;
if (auto *CI = dyn_cast<CastInst>(Inst); CI && genx::isNoopCast(CI))
return;
BI.Type = checkModifier(Inst);
// Work out whether the instruction accepts arithmetic, logic or no
// modifier.
int ModType = GenXIntrinsicInfo::MODIFIER_ARITH;
switch (BI.Type) {
case BaleInfo::NOTMOD:
// a "not" can only merge with a logic modifier (another "not")
ModType = GenXIntrinsicInfo::MODIFIER_LOGIC;
break;
case BaleInfo::ZEXT:
case BaleInfo::SEXT:
// an extend cannot bale in any other modifier.
// But as a bodge we allow abs to be baled in to zext/sext. This is a
// workaround for not having worked out how to set the computation type
// in cm_abs. Currently cm_abs does a genx.absi in the source type, then
// converts it to destination type. This does not allow for the result
// of an abs needing one more bit than its input.
ModType = MODIFIER_ABSONLY;
break;
case BaleInfo::MAININST:
switch (Inst->getOpcode()) {
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
// These instructions take a logic modifier.
ModType = GenXIntrinsicInfo::MODIFIER_LOGIC;
break;
case Instruction::LShr:
case Instruction::AShr:
case Instruction::Shl:
// Do not allow source modifier on integer shift operations,
// because of extra precision introduced.
ModType = GenXIntrinsicInfo::MODIFIER_DEFAULT;
break;
default:
// All other (non-intrinsic) instructions take an arith modifier.
break;
}
break;
default:
// Anything else is an arith modifier, so it can only merge with
// another arith modifier.
break;
}
if (auto SI = dyn_cast<SelectInst>(Inst)) {
// If instruction is select, at first try to bale true and false value.
for (unsigned i = 1; i <= 2; ++i)
if (operandCanBeBaled(Inst, i, ModType)) {
LLVM_DEBUG(llvm::dbgs()
<< __FUNCTION__ << " setting operand #" << i
<< " to bale in instruction " << *Inst << "\n");
setOperandBaled(Inst, i, &BI);
}
// If nothing was baled, it can be profitable to try convertion to wrregion.
if (!BI.Bits && processSelectToPredicate(SI))
return;
// If select was not converted, try to bale predicate.
const unsigned OperandNum = 0;
if (processPredicate(Inst, OperandNum)) {
LLVM_DEBUG(llvm::dbgs()
<< __FUNCTION__ << " setting operand #" << OperandNum
<< " to bale in instruction " << *Inst << "\n");
setOperandBaled(Inst, OperandNum, &BI);
}
}
else {
// See which operands we can bale in.
for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
if (operandCanBeBaled(Inst, i, ModType)) {
LLVM_DEBUG(llvm::dbgs()
<< __FUNCTION__ << " setting operand #" << i
<< " to bale in instruction " << *Inst << "\n");
setOperandBaled(Inst, i, &BI);
}
}
} else if (IntrinID == GenXIntrinsic::genx_convert
|| IntrinID == GenXIntrinsic::genx_convert_addr) {
// llvm.genx.convert can bale, and has exactly one arg
if (operandCanBeBaled(Inst, 0, GenXIntrinsicInfo::MODIFIER_ARITH)) {
LLVM_DEBUG(llvm::dbgs() << __FUNCTION__ << " setting operand #" << 0
<< " to bale in instruction " << *Inst << "\n");
setOperandBaled(Inst, 0, &BI);
}
} else if (GenXIntrinsic::isAbs(IntrinID)) {
BI.Type = BaleInfo::ABSMOD;
if (operandCanBeBaled(Inst, 0, GenXIntrinsicInfo::MODIFIER_ARITH)) {
LLVM_DEBUG(llvm::dbgs() << __FUNCTION__ << " setting operand #" << 0
<< " to bale in instruction " << *Inst << "\n");
setOperandBaled(Inst, 0, &BI);
}
} else {
// For an intrinsic, check the arg info of each arg to see if we can
// bale into it.
GenXIntrinsicInfo Info(IntrinID);
for (auto AI : Info.getInstDesc()) {
if (AI.isArgOrRet() && !AI.isRet()) {
unsigned ArgIdx = AI.getArgIdx();
switch (AI.getCategory()) {
case GenXIntrinsicInfo::GENERAL:
// This source operand of the intrinsic is general.
if (operandCanBeBaled(Inst, ArgIdx, AI.getModifier(), AI.Info)) {
LLVM_DEBUG(llvm::dbgs()
<< __FUNCTION__ << " setting operand #" << ArgIdx
<< " to bale in instruction " << *Inst << "\n");
setOperandBaled(Inst, ArgIdx, &BI);
}
break;
case GenXIntrinsicInfo::RAW:
// Rdregion can be baled in to a raw operand as long as it is
// unstrided and starts on a GRF boundary. Ensure that the input to
// the rdregion is 32 aligned.
if (isValueRegionOKForRaw(Inst->getOperand(ArgIdx),
/*IsWrite=*/false, ST)) {
LLVM_DEBUG(llvm::dbgs()
<< __FUNCTION__ << " setting operand #" << ArgIdx
<< " to bale in instruction " << *Inst << "\n");
setOperandBaled(Inst, ArgIdx, &BI);
if (Liveness) {
Value *Opnd = Inst->getOperand(ArgIdx);
Opnd = cast<Instruction>(Opnd)->getOperand(0);
Liveness->getOrCreateLiveRange(Opnd)->LogAlignment =
getLogAlignment(VISA_Align::ALIGN_GRF,
ST ? ST->getGRFByteSize() : defaultGRFByteSize);
}
}
break;
case GenXIntrinsicInfo::TWOADDR:
if (Kind == BalingKind::BK_CodeGen) {
// Record this as a two address send for processing later.
TwoAddrSends.push_back(cast<CallInst>(Inst));
}
break;
case GenXIntrinsicInfo::PREDICATION:
// See if there is any baling in to the predicate (mask) operand.
if (processPredicate(Inst, ArgIdx)) {
LLVM_DEBUG(llvm::dbgs()
<< __FUNCTION__ << " setting operand #" << ArgIdx
<< " to bale in instruction " << *Inst << "\n");
setOperandBaled(Inst, ArgIdx, &BI);
}
break;
}
}
}
}
// If this instruction is a modifier, we attempt to simplify it here
// (i.e. fold constants), to avoid confusion later in GenXCisaBuilder
// if a modifier has a constant operand. Because this pass scans code
// forwards, a constant will propagate through a chain of modifiers.
if (BI.Type != BaleInfo::MAININST) {
Value *Simplified = nullptr;
if (BI.Type != BaleInfo::ABSMOD) {
const DataLayout &DL = Inst->getModule()->getDataLayout();
Simplified = SimplifyInstruction(Inst, SimplifyQuery(DL));
} else {
// SimplifyInstruction does not work on abs, so we roll our own for now.
if (auto C = dyn_cast<Constant>(Inst->getOperand(0))) {
if (C->getType()->isIntOrIntVectorTy()) {
if (!ConstantExpr::getICmp(CmpInst::ICMP_SLT, C,
Constant::getNullValue(C->getType()))->isNullValue())
C = ConstantExpr::getNeg(C);
} else {
if (!ConstantExpr::getFCmp(CmpInst::FCMP_OLT, C,
Constant::getNullValue(C->getType()))->isNullValue())
C = ConstantExpr::getFNeg(C);
}
Simplified = C;
}
}
if (Simplified) {
IGC_ASSERT_MESSAGE(isa<Constant>(Simplified),
"expecting a constant when simplifying a modifier");
Inst->replaceAllUsesWith(Simplified);
Inst->eraseFromParent();
return;
}
}
// Only give an instruction an entry in the map if (a) it is not a main
// instruction or (b) it bales something in.
if (BI.Type || BI.Bits)
setBaleInfo(Inst, BI);
}
/***********************************************************************
* processSelectToPredicate : convert select to predicated wrregion.
*/
bool GenXBaling::processSelectToPredicate(SelectInst *SI) {
if (!SI->getCondition()->getType()->isVectorTy())
return false;
// TODO: check also wrconstregion?
auto IsConstantLike = [](Value *Val) {
if (isa<Constant>(Val))
return true;
auto Inst = dyn_cast<Instruction>(Val);
if (!Inst)
return false;
auto CI = dyn_cast<CallInst>(Val);
if (!CI)
return false;
auto IntrinID = vc::getAnyIntrinsicID(CI);
return IntrinID == GenXIntrinsic::genx_constanti ||
IntrinID == GenXIntrinsic::genx_constantf;
};
if (IsConstantLike(SI->getTrueValue()) ||
IsConstantLike(SI->getFalseValue()))
return false;
Region WrReg(SI);
WrReg.Mask = SI->getCondition();
for (Value *NewVal : { SI->getTrueValue(), SI->getFalseValue() }) {
if (!NewVal->hasOneUse() || !isBalableNewValueIntoWrr(NewVal, WrReg))
continue;
bool IsInverted = NewVal == SI->getFalseValue();
Value *OldVal = IsInverted ? SI->getTrueValue() : SI->getFalseValue();
if (IsInverted)
WrReg.Mask = invertCondition(WrReg.Mask);
auto *WrRegion = WrReg.createWrRegion(OldVal, NewVal, SI->getName(), SI,
SI->getDebugLoc());
SI->replaceAllUsesWith(WrRegion);
// Adjust liveness info if it presented.
if (Liveness)
Liveness->replaceValue(SI, WrRegion);
SI->eraseFromParent();
processWrRegion(WrRegion);
return true;
}
// No conversion.
return false;
}
/***********************************************************************
* processBranch : process a branch instruction
*
* If the branch is conditional, bale in all/any/not
*/
void GenXBaling::processBranch(BranchInst *Branch)
{
if (Branch->isConditional()) {
BaleInfo BI(BaleInfo::MAININST);
if (processPredicate(Branch, 0/*OperandNum of predicate*/)) {
LLVM_DEBUG(llvm::dbgs() << __FUNCTION__ << " setting operand #" << 0
<< " to bale in instruction " << *Branch << "\n");
setOperandBaled(Branch, 0/*OperandNum*/, &BI);
setBaleInfo(Branch, BI);
}
}
}
/***********************************************************************
* processTwoAddrSend : process a two-address send
*
* A "two-address send" is a send (or an intrinsic that becomes a send in the
* finalizer) with a potentially partial write, so it has a TWOADDR operand to
* represent the value of the destination before the operation, and that
* TWOADDR operand is not undef.
*
* This only gets called in the second baling pass.
*
* We can bale a rdregion into the TWOADDR operand and bale the send into a
* wrregion, but only if the two have the same region and "old value" input.
*
* We used to allow such baling in first baling, such that legalization would
* then not split the rdregion and wrregion. In bug 4607, we ran into a problem
* where code changed due to vector decomposition, and the same baling did not
* happen in second baling, leaving an illegally wide rdregion or wrregion.
*
* So now we only do this special kind of baling in the second baling pass.
* That means that we have to detect where the rdregion and wrregion have been
* split by legalization. We use the RdWrRegionSequence class to do that.
*/
void GenXBaling::processTwoAddrSend(CallInst *CI)
{
unsigned TwoAddrOperandNum = IGCLLVM::getNumArgOperands(CI) - 1;
IGC_ASSERT(GenXIntrinsicInfo(vc::getAnyIntrinsicID(CI))
.getArgInfo(TwoAddrOperandNum)
.getCategory() == GenXIntrinsicInfo::TWOADDR);
IGC_ASSERT(GenXIntrinsicInfo(vc::getAnyIntrinsicID(CI))
.getRetInfo()
.getCategory() == GenXIntrinsicInfo::RAW);
// First check the case where legalization did not need to split the rdregion
// and wrregion.
auto TwoAddrOperand = dyn_cast<Instruction>(CI->getArgOperand(TwoAddrOperandNum));
if (!TwoAddrOperand)
return;
if (GenXIntrinsic::isRdRegion(TwoAddrOperand)) {
if (!CI->hasOneUse())
return;
auto Rd = cast<Instruction>(TwoAddrOperand);
auto Wr = cast<Instruction>(CI->use_begin()->getUser());
if (!GenXIntrinsic::isWrRegion(Wr))
return;
if (CI->use_begin()->getOperandNo()
!= GenXIntrinsic::GenXRegion::NewValueOperandNum)
return;
Region RdR = genx::makeRegionFromBaleInfo(Rd, BaleInfo());
Region WrR = genx::makeRegionFromBaleInfo(Wr, BaleInfo());
if (RdR != WrR || RdR.Indirect || WrR.Mask)
return;
if (!isValueRegionOKForRaw(Wr, /*IsWrite=*/true, ST))
return;
// Everything else is in place for a rd-send-wr baling. We just need to check
// that the input to the read sequence is the same as the old value input to
// the write sequence. We need to allow for some bitcasts in the way. Having
// different bitcasts on the two inputs is ok, as long as the original value
// is the same, because bitcasts are always copy coalesced so will be in the
// same register.
Value *RdIn = genx::getBitCastedValue(
Rd->getOperand(GenXIntrinsic::GenXRegion::OldValueOperandNum));
Value *WrIn = genx::getBitCastedValue(
Wr->getOperand(GenXIntrinsic::GenXRegion::OldValueOperandNum));
if (RdIn != WrIn)
return;
// We can do the baling.
auto BI = getBaleInfo(CI);
LLVM_DEBUG(llvm::dbgs()
<< __FUNCTION__ << " setting operand #" << TwoAddrOperandNum
<< " to bale in instruction " << *CI << "\n");
setOperandBaled(CI, TwoAddrOperandNum, &BI);
setBaleInfo(CI, BI);
BI = getBaleInfo(Wr);
LLVM_DEBUG(llvm::dbgs()
<< __FUNCTION__ << " setting operand #" << TwoAddrOperandNum
<< " to bale in instruction " << *Wr << "\n");
setOperandBaled(Wr, GenXIntrinsic::GenXRegion::NewValueOperandNum, &BI);
setBaleInfo(Wr, BI);
return;
}
// Second, check the case where legalization has split the rdregion and
// wrregion.
if (CI->use_empty())
return;
if (!GenXIntrinsic::isWrRegion(TwoAddrOperand))
return;
RdWrRegionSequence RdSeq;
if (!RdSeq.buildFromWr(TwoAddrOperand, this))
return;
RdWrRegionSequence WrSeq;
auto Rd = cast<Instruction>(CI->use_begin()->getUser());
const DataLayout &DL = CI->getModule()->getDataLayout();
if (!GenXIntrinsic::isRdRegion(Rd))
return;
if (!WrSeq.buildFromRd(Rd, this))
return;
if (!RdSeq.WrR.isWhole(CI->getType(), &DL))
return;
if (!WrSeq.RdR.isWhole(CI->getType(), &DL))
return;
if (RdSeq.RdR.Indirect || WrSeq.WrR.Indirect)
return;
if (RdSeq.RdR != WrSeq.WrR)
return;
// Everything else is in place for a rd-send-wr baling. We just need to check
// that the input to the read sequence is the same as the old value input to
// the write sequence. We need to allow for some bitcasts in the way. Having
// different bitcasts on the two inputs is ok, as long as the original value
// is the same, because bitcasts are always copy coalesced so will be in the
// same register.
Value *RdIn = genx::getBitCastedValue(RdSeq.Input);
Value *WrIn = genx::getBitCastedValue(WrSeq.OldVal);
if (RdIn != WrIn)
return;
// Check that there are no uses of CI other than in WrSeq. We can do that by
// counting the uses.
unsigned NumUses = 0, Size = WrSeq.size();
for (auto ui = CI->use_begin(), ue = CI->use_end(); ui != ue; ++ui)
if (++NumUses > Size)
return;
// We can bale, but we need to unlegalize back to a single rdregion and
// single wrregion.
auto NewRd = RdSeq.RdR.createRdRegion(RdSeq.Input, RdSeq.StartWr->getName(),
RdSeq.StartWr, RdSeq.StartWr->getDebugLoc());
CI->setOperand(TwoAddrOperandNum, NewRd);
auto NewWr =
WrSeq.WrR.createWrRegion(WrSeq.OldVal, CI, WrSeq.StartWr->getName(),
WrSeq.StartWr, WrSeq.StartWr->getDebugLoc());
WrSeq.EndWr->replaceAllUsesWith(NewWr);
// Set baling info for new instructions. The BI for NewWr is just a copy of
// the first wrregion in the sequence being replaced.
setBaleInfo(NewWr, getBaleInfo(WrSeq.StartWr));
auto BI = getBaleInfo(CI);
LLVM_DEBUG(llvm::dbgs() << __FUNCTION__ << " setting operand #"
<< TwoAddrOperandNum << " to bale in instruction "
<< *CI << "\n");
setOperandBaled(CI, TwoAddrOperandNum, &BI);
setBaleInfo(CI, BI);
// Remove original sequences if now unused.
for (Instruction *End = RdSeq.EndWr;;) {
for (Instruction *Wr = End; Wr && Wr->use_empty(); ) {
if (!Wr->use_empty())
break;
if (Wr->getNumOperands() < 2)
break;
auto Rd = dyn_cast<Instruction>(Wr->getOperand(1));
auto NextWr = dyn_cast<Instruction>(Wr->getOperand(0));
Liveness->eraseLiveRange(Wr);
Wr->eraseFromParent();
IGC_ASSERT(Rd);
if (Rd->use_empty()) {
Liveness->eraseLiveRange(Rd);
Rd->eraseFromParent();
}
Wr = NextWr;
}
if (End == WrSeq.EndWr)
break;
End = WrSeq.EndWr;
}
}
/***********************************************************************
* setBaleInfo : set BaleInfo for an instruction
*/
void GenXBaling::setBaleInfo(const Instruction *Inst, genx::BaleInfo BI)
{
IGC_ASSERT(BI.Bits < 1 << Inst->getNumOperands());
LLVM_DEBUG(llvm::dbgs() << "Adding InstMap entry for " << *Inst
<< "; BI type: " << BI.getTypeString() << "\n");
InstMap[Inst] = BI;
}
/***********************************************************************
* setOperandBaled : set flag to say that an operand is baled in
*
* Enter: Inst = instruction to bale into
* OperandNum = operand number in that instruction
* BI = BaleInfo to set flag in
*
* If the operand value has multiple uses, this also flags that we will need
* to do some cloning afterwards to ensure that a baled in operand has a
* single use.
*
* Note that a main instruction baled into a saturate modifier or into
* a wrregion, or a saturate modifier baled into a wrregion, never has
* multiple uses. So the multiple use thing only covers source operands
* of the main inst, plus a possible addradd in the wrregion.
*/
void GenXBaling::setOperandBaled(Instruction *Inst, unsigned OperandNum,
BaleInfo *BI)
{
// Set the bit.
BI->Bits |= 1 << OperandNum;
// Check whether the operand has more than one use.
Instruction *BaledInst = cast<Instruction>(Inst->getOperand(OperandNum));
if (!BaledInst->hasOneUse()) {
// Multiple uses. Add to the NeedClone stack. But not if it is a goto/join;
// we allow a goto/join to be baled into the extract of its !any(EM) result
// even though it has uses in other extracts.
unsigned IID = GenXIntrinsic::getGenXIntrinsicID(BaledInst);
if (IID != GenXIntrinsic::genx_simdcf_goto &&
IID != GenXIntrinsic::genx_simdcf_join)
NeedCloneStack.push_back(NeedClone(Inst, OperandNum));
}
}
/***********************************************************************
* doClones : do any cloning required to make baled in instructions
* single use
*
* NeedCloneStack is a stack of operands (instruction and operand number
* pairs) that are baled in and have more than one use, so need cloning.
* They were pushed in forward order, so if A is baled into B is baled
* into C then the use of A in B was pushed before the use of B in C.
*
* We now pop off the stack in reverse order. We see the use of B in C,
* and clone B to single use B'. Then we see that B bales in A, so we
* add the use of A in B' onto the stack, causing A to be cloned later.
* In this way we handle nested baling correctly.
*/
void GenXBaling::doClones()
{
while (NeedCloneStack.size()) {
// Pop a NeedClone off the stack.
NeedClone NC = NeedCloneStack.back();
NeedCloneStack.pop_back();
// See if it is still multiple use (earlier cloning may have caused this
// one to become single use).
Instruction *Opnd = cast<Instruction>(NC.Inst->getOperand(NC.OperandNum));
if (Opnd->hasOneUse())
continue;
// See if it is still baled. But continue with cloning even if not baled in
// these cases:
// 1. An extend (zext or sext), because it tends to result in better gen
// code, probably because a zext or sext can be baled in to its user by
// the finalizer in a case where we cannot because of the vISA
// restriction that both operands need the same extend. This case arises
// only if we were going to bale the extend in, but then decided not to
// because the two operands did not have the same extend.
// 2. An address generating instruction, because, at this point in the flow
// (between GenXCategory and GenXAddressCommoning), an address
// generating instruction must have a single use.
bool IsBaled = getBaleInfo(NC.Inst).isOperandBaled(NC.OperandNum);
if (!IsBaled && !isa<CastInst>(Opnd) &&
getAddrOperandNum(GenXIntrinsic::getGenXIntrinsicID(NC.Inst)) != (int)NC.OperandNum)
continue;
// Clone it.
IGC_ASSERT(!isa<PHINode>(Opnd));
Instruction *Cloned = Opnd->clone();
Cloned->setName(Opnd->getName());
// We don't want to simply clone rdregions from read_predef_reg
// as it may cause overwriting of that predef reg.
// That's why we want to create wrregion to keep this value in a temp var
// But to do this only when necessary we can't do this earlier
// (in PrologEpilogInsertion pass)
if (GenXIntrinsic::isRdRegion(Cloned) &&
GenXIntrinsic::isReadPredefReg(Cloned->getOperand(
GenXIntrinsic::GenXRegion::OldValueOperandNum))) {
auto *ReadPredef = cast<Instruction>(
Cloned->getOperand(GenXIntrinsic::GenXRegion::OldValueOperandNum));
Instruction *ClonedReadPredef = ReadPredef->clone();
ClonedReadPredef->insertAfter(ReadPredef);
BaleInfo BI(BaleInfo::REGINTR);
setBaleInfo(ClonedReadPredef, BI);
Cloned->setOperand(GenXIntrinsic::GenXRegion::OldValueOperandNum,
ClonedReadPredef);
}
// Change the use.
NC.Inst->setOperand(NC.OperandNum, Cloned);
if (IsBaled) {
// Normally, insert the cloned instruction just after the original.
Cloned->insertAfter(Opnd);
} else {
// In the special case that we are cloning something even when not baled:
// Ensure the cloned instruction has the same category as the original
// one.
if (Liveness)
Liveness->getOrCreateLiveRange(Cloned)->setCategory(
Liveness->getOrCreateLiveRange(Opnd)->getCategory());
// Insert the clone just before its single use.
Cloned->insertBefore(NC.Inst);
// If the instruction that we cloned is now single use, not in a phi
// node, move it to just before its use.
if (Opnd->hasOneUse()) {
auto User = Opnd->use_begin()->getUser();
if (!isa<PHINode>(User)) {
Opnd->removeFromParent();
Opnd->insertBefore(cast<Instruction>(User));
}
}
}
// Copy the bale info.
BaleInfo BI = getBaleInfo(Opnd);
setBaleInfo(Cloned, BI);
// Stack any operands of the cloned instruction that are baled. (They
// must be multiple use because we have just cloned the instruction
// using them.) Also any address calculation, for the reason given in the
// comment above.
int AON = getAddrOperandNum(GenXIntrinsic::getGenXIntrinsicID(Cloned));
for (unsigned i = 0, e = Cloned->getNumOperands(); i != e; ++i)
if (BI.isOperandBaled(i) ||
(Kind == BalingKind::BK_CodeGen && AON == (int)i &&
isa<Instruction>(Cloned->getOperand(i))))
NeedCloneStack.push_back(NeedClone(Cloned, i));
}
}
/***********************************************************************
* getOrUnbaleExtend : get or unbale the extend instruction (if any) in
* this operand
*
* Enter: Inst = instruction containing operand
* BI = BaleInfo for Inst
* OperandNum = operand number to look at
* Unbale = true to unbale the extend
*
* Return: 0 if no extend found, else the extend (ZExt or SExt), and, if
* Unbale is true, then *BI has been modified _and_ written back
* into Inst's map entry in GenXBaling.
*
* BI is a pointer to handle two slightly different cases of unbaling the ext:
* 1. If this is the top level call to getOrUnBaleExtend from processMainInst,
* then we want to modify the caller's BaleInfo pointed to by BI, which the
* caller is in the middle of setting up and will write back into the map.
* 2. If this is a recursive call from getOrUnbaleExtend, then we want to
* use setBaleInfo to write the BaleInfo back into the map.
* We don't check which case we have, and we just do both things, as the
* unneeded one is harmless.
*/
Instruction *GenXBaling::getOrUnbaleExtend(Instruction *Inst, BaleInfo *BI,
unsigned OperandNum, bool Unbale)
{
if (!BI->isOperandBaled(OperandNum))
return nullptr;
auto Opnd = cast<Instruction>(Inst->getOperand(OperandNum));
if (isa<ZExtInst>(Opnd) || isa<SExtInst>(Opnd)) {
// Found an extend. Unbale it if requested. But do not remove it from the
// NeedClone stack; we still clone an extend that is not being baled in on
// the basis that the jitter will be able to bale it in because gen allows
// mismatched integer operand types.
if (Unbale) {
BI->clearOperandBaled(OperandNum);
setBaleInfo(Inst, *BI);
}
return Opnd;
}
BaleInfo ThisBI = getBaleInfo(Opnd);
if (ThisBI.isOperandBaled(0))
return getOrUnbaleExtend(Opnd, &ThisBI, 0, Unbale);
if (ThisBI.isOperandBaled(1))
return getOrUnbaleExtend(Opnd, &ThisBI, 1, Unbale);
return nullptr;
}
/***********************************************************************
* dump, print : dump the result of the GenXBaling analysis
*/
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void GenXBaling::dump() const { print(errs()); }
#endif
void GenXBaling::print(raw_ostream &OS) const {
// we need deterministic order of instructions for unit tests
// so we are collecting functions and then traversing all instructions
OS << "GenXBaling dump start\n";
std::set<const Function *> Funcs;
for (auto &&I : InstMap) {
const auto *Inst = cast<Instruction>(I.first);
IGC_ASSERT_MESSAGE(Inst->getParent(), "Instruction shall be in some BB");
Funcs.insert(Inst->getFunction());
}
for (auto *F : Funcs) {
OS << "bales in function: " << F->getName() << ":\n";
for (auto &&Inst : instructions(F)) {
auto InstMapIt = InstMap.find(&Inst);
if (InstMapIt == InstMap.end())
continue;
const auto *BI = &InstMapIt->second;
OS << Inst << ": ";
OS << BI->getTypeString();
for (unsigned OperandNum = 0, e = Inst.getNumOperands(); OperandNum != e;
++OperandNum)
if (BI->isOperandBaled(OperandNum))
OS << " " << OperandNum;
OS << "\n";
}
}
OS << "GenXBaling dump end\n";
}
/***********************************************************************
* getBaleParent : return the instruction baled into, 0 if none
*/
Instruction *GenXBaling::getBaleParent(const Instruction *Inst) const {
// We can rely on the fact that a baled in instruction always has exactly
// one use. The exception is llvm.genx.simdcf.goto/join, which is baled in
// to the extractvalue that extracts the !any(EM) value. Rather than check
// the intrinsic ID, we check whether the return type is struct.
auto use = Inst->use_begin();
if (!Inst->hasOneUse()) {
if (!isa<StructType>(Inst->getType()))
return nullptr;
// For an llvm.genx.simdcf.goto/join, the use we want is the extractvalue
// that extracts the !any(EM) value from the result struct.
for (auto ue = Inst->use_end();; ++use) {
if (use == ue)
return nullptr;
if (!isa<ExtractValueInst>(use->getUser()))
return nullptr;
if (use->getUser()->getType()->isIntegerTy(1))
break;
}
}
Instruction *user = cast<Instruction>(use->getUser());
BaleInfo BI = getBaleInfo(user);
if (!BI.isOperandBaled(use->getOperandNo()))
return nullptr;
return cast<Instruction>(use->getUser());
}
/***********************************************************************
* unbale : unbale an instruction from its bale parent
*/
void GenXBaling::unbale(Instruction *Inst)
{
if (!Inst->hasOneUse())
return;
Value::use_iterator use = Inst->use_begin();
Instruction *user = cast<Instruction>(use->getUser());
BaleInfo BI = getBaleInfo(user);
unsigned OperandNum = use->getOperandNo();
if (!BI.isOperandBaled(OperandNum))
return;
BI.clearOperandBaled(OperandNum);
setBaleInfo(user, BI);
}
/***********************************************************************
* getBaleHead : return the head of the bale containing Inst
*/
Instruction *GenXBaling::getBaleHead(Instruction *Inst) const {
for (;;) {
Instruction *Parent = getBaleParent(Inst);
if (!Parent)
break;
Inst = Parent;
}
return Inst;
}
/***********************************************************************
* buildBale : populate a Bale from the head instruction
*
* Enter: Inst = the head instruction
* B = Bale struct, assumed empty
* IncludeAddr = default false, true to include address calculations
* even when not baled in
*
* IncludeAddr is used by GenXUnbaling to include the address calculation of
* a rdregion in the bale, so it can be considered together when deciding
* whether to unbale and move. This works because an address calculation has
* exactly one use, until GenXAddressCommoning commons them up later.
*/
void GenXBaling::buildBale(Instruction *Inst, Bale *B, bool IncludeAddr) const
{
IGC_ASSERT(!B->size());
buildBaleSub(Inst, B, IncludeAddr);
}
void GenXBaling::buildBaleSub(Instruction *Inst, Bale *B, bool IncludeAddr) const
{
BaleInfo BI = getBaleInfo(Inst);
B->push_front(BaleInst(Inst, BI));
if (isa<PHINode>(Inst) ||
(isa<CallInst>(Inst) && !cast<CallInst>(Inst)->isInlineAsm() &&
!GenXIntrinsic::isAnyNonTrivialIntrinsic(Inst)))
return;
if (IncludeAddr) {
int AddrOperandNum = getAddrOperandNum(GenXIntrinsic::getGenXIntrinsicID(Inst));
if (AddrOperandNum >= 0) {
// IncludeAddr: pretend that the address calculation is baled in, as long
// as it is an instruction.
if (auto OpndInst = dyn_cast<Instruction>(Inst->getOperand(AddrOperandNum))) {
IGC_ASSERT(OpndInst->hasOneUse()); (void)OpndInst;
BI.setOperandBaled(AddrOperandNum);
B->front().Info = BI;
}
}
}
IGC_ASSERT(BI.Bits < (1 << Inst->getNumOperands()) || Inst->getNumOperands() > 16);
while (BI.Bits) {
unsigned Idx = genx::log2(BI.Bits);
BI.Bits &= ~(1 << Idx);
if (Instruction *Op = dyn_cast<Instruction>(Inst->getOperand(Idx)))
buildBaleSub(Op, B, IncludeAddr);
}
}
/***********************************************************************
* getAddrOperandNum : given an intrinsic ID, get the address operand number
*
* For rdregion/wrregion, it returns the operand number of the index operand.
*
* For genx_add_addr, it returns 0 (the only operand number)
*
* In any other case, it returns -1.
*
* This is used both in buildBale when IncludeAddr is true, and in doClones,
* to find the address operand of an instruction.
*/
int GenXBaling::getAddrOperandNum(unsigned IID) const
{
switch (IID) {
case GenXIntrinsic::genx_rdregioni:
case GenXIntrinsic::genx_rdregionf:
return GenXIntrinsic::GenXRegion::RdIndexOperandNum;
case GenXIntrinsic::genx_wrregioni:
case GenXIntrinsic::genx_wrregionf:
return GenXIntrinsic::GenXRegion::WrIndexOperandNum;
case GenXIntrinsic::genx_add_addr:
return 0;
default:
return -1;
}
}
/***********************************************************************
* store : store updated BaleInfo for instruction
*
* Enter: BI = BaleInst struct
*
* This function stores BI.Info as the new BaleInfo for BI.Inst
*
* It is used by GenXLegalization to unbale.
*/
void GenXBaling::store(BaleInst BI)
{
IGC_ASSERT(BI.Info.Bits < 1<< BI.Inst->getNumOperands());
InstMap[BI.Inst] = BI.Info;
}
static bool skipTransform(Instruction *DefI, Instruction *UseI) {
SmallPtrSet<Instruction *, 8> DInsts;
BasicBlock *BB = UseI->getParent();
// Special case for extracting out of subroutine call.
if (isa<ExtractValueInst>(DefI))
return true;
// This is a local optimization only.
for (auto U : DefI->users()) {
auto UI = dyn_cast<Instruction>(U);
if (UI == nullptr || UI->getParent() != BB)
return true;
if (UI != UseI)
DInsts.insert(UI);
}
// If a use is crossing the next region write,
// then two regions are live at the same time.
// Very likely this increases register pressure
// and/or results region copies.
//
// Scan forward starting from Region write,
// check if this hits a write to this region
// before some use.
//
SmallPtrSet<Instruction *, 8> UInsts;
bool IsLocal = !UseI->isUsedOutsideOfBlock(BB);
if (IsLocal) {
for (auto U : UseI->users()) {
auto UI = dyn_cast<Instruction>(U);
if (UI != nullptr)
UInsts.insert(UI);
}
}
for (auto I = UseI; I; I = I->getNextNode()) {
if (I == &BB->back())
break;
if (DInsts.empty())
break;
// UInst is local and it is dead now.
if (IsLocal && UInsts.empty())
break;
// There is a region write before some use.
if (GenXIntrinsic::isWrRegion(I) &&
I->getOperand(GenXIntrinsic::GenXRegion::OldValueOperandNum) == UseI)
return true;
if (DInsts.count(I))
DInsts.erase(I);
if (UInsts.count(I))
UInsts.erase(I);
}
// Not all users are checked which means UseI does not
// dominate them, or UseI is local and dead before some uses.
return !DInsts.empty();
}
// Normalize ill-formed gstores.
// Correct gstore should be in form of:
// x = gload G
// w = wrr x, StoreVal
// gstore w, G
static void normalizeGStore(StoreInst &SI) {
Value *PointerOp = SI.getPointerOperand();
auto LI = new LoadInst(PointerOp->getType()->getPointerElementType(),
PointerOp, ".gload", true /*volatile*/, &SI);
Value *StoreOp = SI.getValueOperand();
Region R(StoreOp);
auto WrR =
R.createWrRegion(LI, StoreOp, ".wrr.gstore", &SI, SI.getDebugLoc());
SI.setOperand(0 /*Value operand idx*/, WrR);
}
// Normalize ill-formed g_stores.
static void normalizeGStores(Function &F) {
for (auto &I : instructions(F)) {
if (!isGlobalStore(&I))
continue;
auto *SI = cast<StoreInst>(&I);
if (!isGlobalStoreLegal(SI))
normalizeGStore(*SI);
}
}
// If operand of gstore is phi and all its incoming values
// form legal values for gstore, then return true.
// All incoming blocks should have single successor.
// Otherwise return false.
static bool canPropagatePhiGStore(StoreInst &SI) {
Value *Val = genx::getBitCastedValue(SI.getValueOperand());
auto *Phi = dyn_cast<PHINode>(Val);
if (!Phi)
return false;
if (!llvm::all_of(Phi->blocks(),
[](BasicBlock *BB) { return BB->getSingleSuccessor(); }))
return false;
Value *StorePtr = SI.getPointerOperand();
// This can be weakened, but then new gstores should be normalized too.
return llvm::all_of(Phi->incoming_values(), [StorePtr](Use &U) {
return isLegalValueForGlobalStore(U, StorePtr);
});
}
// Duplicate gstore in blocks with its legal value operands coming from phi.
// After that, there will be legal gstores that can be baled later.
// Old gstore with phi is deleted.
static void propagatePhiGStore(StoreInst &SI) {
auto *StoreVal = SI.getValueOperand();
auto *Phi = cast<PHINode>(genx::getBitCastedValue(StoreVal));
for (Use &U : Phi->incoming_values()) {
IRBuilder<> IRB(cast<Instruction>(U)->getParent()->getTerminator());
IRB.CreateStore(IRB.CreateBitCast(U, StoreVal->getType()),
SI.getPointerOperand(), SI.isVolatile());
}
SI.eraseFromParent();
RecursivelyDeleteTriviallyDeadInstructions(StoreVal);
}
// If g_store value comes from phi node, try to hoist it.
static void propagatePhiGStores(Function &F) {
SmallVector<StoreInst *, 8> Worklist;
for (auto &I : instructions(F)) {
auto *SI = dyn_cast<StoreInst>(&I);
if (!SI || !isGlobalStore(SI))
continue;
if (canPropagatePhiGStore(*SI))
Worklist.push_back(SI);
}
for (auto *SI : Worklist)
propagatePhiGStore(*SI);
}
// Cleanup and optimization before do baling on a function.
bool GenXBaling::prologue(Function *F) {
bool Changed = false;
auto nextInst = [](BasicBlock &BB, Instruction *I) -> Instruction * {
// This looks like an llvm bug. We cannot call getPrevNode
// on the first instruction...
if (isa<PHINode>(I) || I == &BB.front())
return nullptr;
return I->getPrevNode();
};
for (auto &BB : F->getBasicBlockList()) {
// scan the block backwards.
for (auto Inst = &BB.back(); Inst; Inst = nextInst(BB, Inst)) {
//
// Rewrite
// A = B op C
// V = wrr(A, R)
// E = A op D
// into
//
// A = B op C
// V = wrr(A, R)
// A' = rrd(V, R)
// E = A' op D
//
if (GenXIntrinsic::isWrRegion(Inst)) {
Instruction *V = dyn_cast<Instruction>(
Inst->getOperand(GenXIntrinsic::GenXRegion::NewValueOperandNum));
// Only process the case with multiple uses.
if (!V || V->hasOneUse())
continue;
// Skip if this region write is indirect as
// this would result an indirect read.
Region R = makeRegionFromBaleInfo(Inst, BaleInfo());
if (R.Indirect)
continue;
// Aggressively apply this transform may increase register pressure.
// We detect if there is other region write in between, so that two
// outer regions will not be live at the same time.
if (skipTransform(V, Inst))
continue;
// Do not transform if the predicate is not trivial.
Value *Mask =
Inst->getOperand(GenXIntrinsic::GenXRegion::PredicateOperandNum);
auto *ConstantMask = dyn_cast<Constant>(Mask);
if (!ConstantMask || !ConstantMask->isAllOnesValue())
continue;
// Do this transformation.
// - Insert a region read right after Inst
// - Replace all uses other than Inst with this region read
//
auto NewV = R.createRdRegion(Inst, "split", Inst, Inst->getDebugLoc(),
/*AllowScalar*/ !V->getType()->isVectorTy());
IGC_ASSERT(NewV->getType() == V->getType());
Inst->moveBefore(NewV);
for (auto UI = V->use_begin(); UI != V->use_end(); /*Empty*/) {
Use &U = *UI++;
if (U.getUser() != Inst)
U.set(NewV);
}
Changed = true;
}
}
}
propagatePhiGStores(*F);
// fold bitcast into store/load if any. This allows to bale a g_store instruction
// crossing a bitcast.
for (auto &BB : F->getBasicBlockList()) {
for (auto I = BB.begin(); I != BB.end(); /*empty*/) {
Instruction *Inst = &*I++;
using namespace llvm::PatternMatch;
// bitcast (bitcast X to Ty1) to Ty2 ==> bitcast X to Ty2
Value *X;
if (match(Inst, m_BitCast(m_BitCast(m_Value(X))))) {
// matches bitcast from predicate - false positive
if (X->getType()->getScalarType()->isIntegerTy(1) &&
Inst->getType()->isVectorTy() &&
!Inst->getType()->getScalarType()->isIntegerTy(1))
continue;
BitCastInst *NewCI = new BitCastInst(X, Inst->getType(), "", Inst);
NewCI->setDebugLoc(Inst->getDebugLoc());
NewCI->takeName(Inst);
Inst->replaceAllUsesWith(NewCI);
if (Liveness)
Liveness->eraseLiveRange(Inst);
Inst->eraseFromParent();
Changed = true;
continue;
}
if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst)) {
Instruction* NewInst = foldBitCastInst(Inst);
if (NewInst) {
Changed = true;
Inst = NewInst;
}
}
// Delete Trivially dead store instructions.
if (auto ST = dyn_cast<StoreInst>(Inst)) {
Value *Val = ST->getValueOperand();
IGC_ASSERT(Val);
if (auto LI = dyn_cast<LoadInst>(Val)) {
Value *Ptr = ST->getPointerOperand();
auto *GV1 = vc::getUnderlyingGlobalVariable(Ptr);
auto *GV2 = vc::getUnderlyingGlobalVariable(LI->getPointerOperand());
if (GV1 && GV1 == GV2) {
ST->eraseFromParent();
Changed = true;
}
}
}
}
for (auto I = BB.rbegin(); I != BB.rend(); /*empty*/) {
Instruction *Inst = &*I++;
if (isInstructionTriviallyDead(Inst)) {
if (Liveness)
Liveness->eraseLiveRange(Inst);
Inst->eraseFromParent();
}
}
}
// Result of inline asm with multiple outputs is a
// struct. Each element of this struct passed to
// it's user with extractelement instruction which
// should be baled into it's own WrRegion. genx_convert_addr
// intrinsic or global load will be unbaled between these bales
// of (extractelement + wrregion). The idea is to
// move all of those address conversion before
// the inline assembly instruction. Also each extractvalue and WrR which uses
// extractvalue's result should be moved closely to inline assembly call,
// otherwise baling will force baled instructions
// to locate far away from inline asm call
// which will lead to live range increasing.
for (auto &BB : F->getBasicBlockList()) {
for (auto &Inst : BB.getInstList()) {
auto CI = dyn_cast<CallInst>(&Inst);
if (!CI || !CI->isInlineAsm())
continue;
// Nothing to do if result is not a struct: no multiple outputs
if (!isa<StructType>(CI->getType()))
continue;
for (auto ui = CI->use_begin(), ue = CI->use_end(); ui != ue; ++ui) {
auto EV = dyn_cast<ExtractValueInst>(ui->getUser());
if (!EV)
continue;
EV->moveAfter(&Inst);
// extractelement must be baled into wrregion
for (auto User : EV->users()) {
Changed = true;
if (!GenXIntrinsic::isWrRegion(User))
continue;
Instruction *WrR = cast<Instruction>(User);
Value *Index =
WrR->getOperand(GenXIntrinsic::GenXRegion::WrIndexOperandNum);
while (GenXIntrinsic::getGenXIntrinsicID(Index) ==
GenXIntrinsic::genx_add_addr)
Index = cast<Instruction>(Index)->getOperand(0);
Instruction *IndexInst = dyn_cast<Instruction>(Index);
if (IndexInst && (GenXIntrinsic::getGenXIntrinsicID(IndexInst) ==
GenXIntrinsic::genx_convert_addr))
IndexInst->moveBefore(&Inst);
Value *OldVal =
WrR->getOperand(GenXIntrinsic::GenXRegion::OldValueOperandNum);
LoadInst *Load = dyn_cast<LoadInst>(OldVal);
if (Load && isGlobalLoad(Load))
Load->moveBefore(&Inst);
WrR->moveAfter(EV);
}
}
}
}
normalizeGStores(*F);
// Remove Phi node with single incoming value
for (auto &BB : F->getBasicBlockList()) {
for (BasicBlock::iterator bi = BB.begin(), be = BB.end(); bi != be; ) {
Instruction *Inst = &*bi;
++bi;
if (auto Phi = dyn_cast<PHINode>(Inst)) {
if (Phi->getNumIncomingValues() == 1) {
Phi->replaceAllUsesWith(Phi->getIncomingValue(0));
Phi->eraseFromParent();
Changed = true;
}
}
else {
break;
}
}
}
return Changed;
}
/***********************************************************************
* Bale::getMainInst : get the main instruction from the bale, 0 if none
*/
const BaleInst *Bale::getMainInst() const
{
// From the last instruction (the bale head) backwards, find the first
// one that is not wrregion or saturate or addradd. If the head is
// wrregion, then skip anything before we reach its value operand.
// If the first one we find is rdregion, that does not count as a main
// instruction.
Value *PossibleMainInst = nullptr;
for (const_reverse_iterator i = rbegin(), e = rend(); i != e; ++i) {
if (PossibleMainInst && PossibleMainInst != i->Inst)
continue;
PossibleMainInst = nullptr;
switch (i->Info.Type) {
case BaleInfo::WRREGION:
PossibleMainInst = i->Inst->getOperand(1);
break;
case BaleInfo::GSTORE:
PossibleMainInst = i->Inst->getOperand(0);
break;
case BaleInfo::SATURATE:
case BaleInfo::ADDRADD:
break;
case BaleInfo::MAININST:
return &*i;
default:
return nullptr;
}
}
return nullptr;
}
/***********************************************************************
* eraseFromParent : do eraseFromParent on all instructions in the bale
*/
void Bale::eraseFromParent()
{
// Iterate in reverse as each instruction becomes unused only when its
// user in the bale is erased.
for (reverse_iterator ri = rbegin(), re = rend(); ri != re; ++ri)
ri->Inst->eraseFromParent();
}
/***********************************************************************
* Bale::compare : compare this Bale with another one
*
* Return: 0 if equivalent
* < 0 if less
* > 0 if more
*
* Two Bales are equivalent if they compute the same value, that is, they
* have the same opcodes in the instructions, the instructions are
* baled together in the same way, and the operands coming in from outside
* the bale are the same.
*
* Both bales must have had hash() called on them since being built or
* modified in any other way.
*/
int Bale::compare(const Bale &Other) const
{
IGC_ASSERT(Hash && Other.Hash);
if (Hash != Other.Hash)
return Hash < Other.Hash ? -1 : 1;
if (size() != Other.size())
return size() < Other.size() ? -1 : 1;
for (unsigned i = 0, e = size(); i != e; ++i) {
if (Insts[i].Info.Bits != Other.Insts[i].Info.Bits)
return Insts[i].Info.Bits < Other.Insts[i].Info.Bits ? -1 : 1;
Instruction *Inst = Insts[i].Inst, *OtherInst = Other.Insts[i].Inst;
if (Inst->getOpcode() != OtherInst->getOpcode())
return Inst->getOpcode() < OtherInst->getOpcode() ? -1 : 1;
unsigned NumOperands = Inst->getNumOperands();
if (NumOperands != OtherInst->getNumOperands())
return NumOperands < OtherInst->getNumOperands() ? -1 : 1;
for (unsigned j = 0; j != NumOperands; ++j) {
Value *Opnd = Inst->getOperand(j);
if (!Insts[i].Info.isOperandBaled(j)) {
if (Opnd != OtherInst->getOperand(j))
return Opnd < OtherInst->getOperand(j) ? -1 : 1;
} else {
// Baled operand. Find which baled instruction it is, and check that
// the other bale has its corresponding instruction used in its
// corresponding operand.
// (We could use a map to find the baled instruction
// in an algorithmically less complex way, but there is not likely
// to be more than 3 or 4 instructions in the bale so I didn't
// bother.)
unsigned BaledInst;
for (BaledInst = 0; Insts[BaledInst].Inst != Opnd; ++BaledInst) {
IGC_ASSERT(BaledInst != size());
}
if (Other.Insts[BaledInst].Inst != OtherInst->getOperand(j))
return Other.Insts[BaledInst].Inst < OtherInst->getOperand(j) ? -1 : 1;
}
}
}
return 0;
}
/***********************************************************************
* hash_value : get a hash_code for a Bale
*
* If two Bales are equivalent, they have the same hash_value.
*
* If two Bales are not equivalent, it is unlikely but possible that
* they have the same hash_value.
*/
void Bale::hash()
{
Hash = 0;
for (auto i = begin(), e = end(); i != e; ++i) {
BaleInst BI = *i;
Hash = hash_combine(Hash, BI.Info.Bits);
Hash = hash_combine(Hash, BI.Inst->getOpcode());
for (unsigned j = 0, je = BI.Inst->getNumOperands(); j != je; ++j) {
Value *Opnd = BI.Inst->getOperand(j);
if (!BI.Info.isOperandBaled(j)) {
// Non-baled operand. Hash the operand itself.
Hash = hash_combine(Hash, Opnd);
} else {
// Baled operand. Find which baled instruction it is, and use that
// index in the hash. (We could use a map to find the baled instruction
// in an algorithmically less complex way, but there is not likely
// to be more than 3 or 4 instructions in the bale so I didn't
// bother.)
Bale::iterator BaledInst;
for (BaledInst = begin(); BaledInst->Inst != Opnd; ++BaledInst) {
IGC_ASSERT(BaledInst != i);
}
Hash = hash_combine(Hash, BaledInst - begin());
}
}
}
}
bool Bale::isGStoreBaleLegal() const {
IGC_ASSERT(isGstoreBale());
auto ST = cast<StoreInst>(getHead()->Inst);
if (!isGlobalStore(ST))
return false;
return isGlobalStoreLegal(ST);
}
/***********************************************************************
* Bale debug dump/print
*/
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void Bale::dump() const
{
print(errs());
}
#endif
void Bale::print(raw_ostream &OS) const
{
OS << "bale {\n";
for (const_iterator i = begin(), e = end(); i != e; ++i) {
i->Inst->print(OS);
OS << " // {" << i->Info.getTypeString() << "}\n";
}
OS << "}\n";
}
const char *BaleInfo::getTypeString() const
{
switch (Type) {
case BaleInfo::MAININST: return "maininst";
case BaleInfo::WRREGION: return "wrregion";
case BaleInfo::SATURATE: return "saturate";
case BaleInfo::NOTMOD: return "notmod";
case BaleInfo::NEGMOD: return "negmod";
case BaleInfo::ABSMOD: return "absmod";
case BaleInfo::RDREGION: return "rdregion";
case BaleInfo::ADDRADD: return "addradd";
case BaleInfo::RDPREDREGION: return "rdpredregion";
case BaleInfo::ALLANY: return "allany";
case BaleInfo::NOTP: return "notp";
case BaleInfo::ZEXT: return "zext";
case BaleInfo::SEXT: return "sext";
case BaleInfo::WRPREDREGION: return "wrpreregion";
case BaleInfo::CMPDST: return "cmpdst";
case BaleInfo::GSTORE: return "g_store";
case BaleInfo::SHUFFLEPRED: return "shufflepred";
case BaleInfo::FADDR: return "faddr";
default: return "???";
}
}
bool genx::operator==(const BaleInfo &lhs, const BaleInfo &rhs) {
return lhs.Type == rhs.Type && lhs.Bits == rhs.Bits;
}
bool genx::operator==(const BaleInst &lhs, const BaleInst &rhs) {
return lhs.Inst == rhs.Inst && lhs.Info == rhs.Info;
}
|