1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
//
/// GenXCFSimplification
/// --------------------
///
/// This is a function pass that simplifies CF as follows:
///
/// * Where a conditional branch on "not any(pred)" branches over a single
/// basic block containing a small number of instructions, and all
/// instructions are either predicated by pred or are used only in the same
/// basic block, then change the branch to "branch never" so it gets
/// removed later.
///
//===----------------------------------------------------------------------===//
#include "GenX.h"
#include "GenXIntrinsics.h"
#include "GenXModule.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/GenXIntrinsics/GenXIntrinsics.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/IR/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm-c/Core.h"
#define DEBUG_TYPE "GENX_CFSIMPLIFICATION"
using namespace llvm;
using namespace genx;
namespace {
// GenXCFSimplification : simplify SIMD CF code
class GenXCFSimplification : public FunctionPass {
static const unsigned Threshold;
bool Modified = false;
SmallVector<BasicBlock *, 4> BranchedOver;
public:
static char ID;
explicit GenXCFSimplification() : FunctionPass(ID) { }
StringRef getPassName() const override {
return "GenX SIMD CF simplification";
}
void getAnalysisUsage(AnalysisUsage &AU) const override;
bool runOnFunction(Function &F) override;
private:
bool isBranchedOverBlock(BasicBlock *BB);
BasicBlock *processBranchedOverBlock(BasicBlock *BB);
bool isPredSubsetOf(Value *Pred1, Value *Pred2, bool Inverted);
};
// Threshold for removing a simd cf branch. The 9999 setting means it is
// pretty much always removed when it can be.
const unsigned GenXCFSimplification::Threshold = 9999;
} // end anonymous namespace
char GenXCFSimplification::ID = 0;
namespace llvm { void initializeGenXCFSimplificationPass(PassRegistry &); }
INITIALIZE_PASS_BEGIN(GenXCFSimplification, "GenXCFSimplification", "GenXCFSimplification", false, false)
INITIALIZE_PASS_END(GenXCFSimplification, "GenXCFSimplification", "GenXCFSimplification", false, false)
FunctionPass *llvm::createGenXCFSimplificationPass()
{
initializeGenXCFSimplificationPass(*PassRegistry::getPassRegistry());
return new GenXCFSimplification();
}
void GenXCFSimplification::getAnalysisUsage(AnalysisUsage &AU) const
{
}
/***********************************************************************
* GenXCFSimplification::runOnFunction : process one function to
* simplify SIMD CF
*/
bool GenXCFSimplification::runOnFunction(Function &F)
{
LLVM_DEBUG(dbgs() << "GenXCFSimplification::runOnFunction(" << F.getName() << ")\n");
Modified = false;
// Build a list of simple branched over basic blocks.
for (auto fi = F.begin(), fe = F.end(); fi != fe; ++fi) {
auto BB = &*fi;
if (isBranchedOverBlock(BB)) {
LLVM_DEBUG(dbgs() << "is branched over: " << BB->getName() << "\n");
BranchedOver.push_back(BB);
}
}
// Process each branched over block.
while (!BranchedOver.empty()) {
auto BB = BranchedOver.back();
BranchedOver.pop_back();
BasicBlock *SubsumedInto = processBranchedOverBlock(BB);
if (!SubsumedInto)
continue;
Modified = true;
// The joined together block may now be a simple branched over block.
if (isBranchedOverBlock(SubsumedInto)) {
LLVM_DEBUG(dbgs() << "is branched over: " << SubsumedInto->getName() << "\n");
BranchedOver.push_back(SubsumedInto);
}
}
return Modified;
}
/***********************************************************************
* isBranchedOverBlock : detect whether a basic block is a simple branched
* over block. It must have a single predecessor and a single successor,
* and the predecessor must end in a conditional branch whose other
* successor is our successor.
*/
bool GenXCFSimplification::isBranchedOverBlock(BasicBlock *BB)
{
if (BB->use_empty())
return false; // no predecessors
if (!BB->hasOneUse())
return false; // more than one predecessor
auto Term = BB->getTerminator();
if (Term->getNumSuccessors() != 1)
return false; // not exactly one successor
Use *U = &*BB->use_begin();
auto PredBr = dyn_cast<BranchInst>(U->getUser());
if (!PredBr || !PredBr->isConditional())
return false; // predecessor is not conditional branch
auto Succ = Term->getSuccessor(0);
if (PredBr->getSuccessor(0) == BB) {
if (PredBr->getSuccessor(1) != Succ)
return false; // other cond branch successor is not our successor
} else {
if (PredBr->getSuccessor(0) != Succ)
return false; // other cond branch successor is not our successor
}
return true;
}
/***********************************************************************
* processBranchedOverBlock : process a branched over block
*
* Return: 0 if unchanged, else the basic block that BB has been subsumed into
*/
BasicBlock *GenXCFSimplification::processBranchedOverBlock(BasicBlock *BB)
{
LLVM_DEBUG(dbgs() << "processBranchedOverBlock: " << BB->getName() << "\n");
// Check that the condition to enter the branched over block is an any
// of a predicate.
auto PredBr = cast<BranchInst>(BB->use_begin()->getUser());
auto Cond = PredBr->getCondition();
bool Inverted = false;
switch (GenXIntrinsic::getGenXIntrinsicID(Cond)) {
case GenXIntrinsic::genx_any:
if (PredBr->getSuccessor(0) != BB)
return nullptr; // branch is the wrong way round
break;
case GenXIntrinsic::genx_all:
if (PredBr->getSuccessor(1) != BB)
return nullptr; // branch is the wrong way round
Inverted = true;
break;
default:
return nullptr; // condition not "any" or "all"
}
Cond = cast<Instruction>(Cond)->getOperand(0);
LLVM_DEBUG(dbgs() << "branched over simd cf block: " << BB->getName() << " with Cond " << Cond->getName()
<< (Inverted ? " (inverted)" : "") << "\n"
<< "(source line of branch is " << PredBr->getDebugLoc().getLine() << "\n");
// Check that each phi node in the successor has incomings related as
// follows: the incoming from BB must be a chain of selects or predicated
// wrregions where the ultimate original input is the other incoming, and
// each predicate must be Cond (inverted if necessary), or a subset of it.
// Also count the phi nodes that have different incomings for the two blocks,
// and if that goes over the threshold give up.
unsigned Count = 0;
BasicBlock *Succ = BB->getTerminator()->getSuccessor(0);
BasicBlock *Pred = PredBr->getParent();
for (auto Inst = &Succ->front(); ; Inst = Inst->getNextNode()) {
auto Phi = dyn_cast<PHINode>(Inst);
if (!Phi)
break;
LLVM_DEBUG(dbgs() << "Phi " << *Phi << "\n");
Value *V = Phi->getIncomingValueForBlock(BB);
Value *Orig = Phi->getIncomingValueForBlock(Pred);
LLVM_DEBUG(dbgs() << "V: " << *V << "\n"
<< "Orig: " << *Orig << "\n");
if (V == Orig)
continue;
// Check for special case that Orig is constant 0 and V is the condition
// input to any, thus we know that V is 0 if the branch over is taken.
// Thus we can change Pred's incoming to the phi node to match BB's. Not
// doing this can result in the branch over not being removable if it is an
// inner if..else..endif.
if (auto C = dyn_cast<Constant>(Orig)) {
if (C->isNullValue() && V == Cond) {
Phi->setIncomingValue(Phi->getBasicBlockIndex(Pred), V);
continue;
}
}
// Normal check on for phi node.
bool OK = false;
for (;;) {
LLVM_DEBUG(dbgs() << " checking " << *V << "\n");
if (V == Orig) {
OK = true;
break;
}
auto Inst = dyn_cast<Instruction>(V);
if (!Inst)
break;
if (++Count > Threshold) {
LLVM_DEBUG(dbgs() << "Over threshold\n");
break;
}
if (isa<SelectInst>(Inst)) {
if (!isPredSubsetOf(Inst->getOperand(0), Cond, Inverted))
break;
V = Inst->getOperand(2);
continue;
}
if (!GenXIntrinsic::isWrRegion(Inst))
break;
if (!isPredSubsetOf(Inst->getOperand(
GenXIntrinsic::GenXRegion::PredicateOperandNum), Cond, Inverted))
break;
V = Inst->getOperand(0);
}
if (!OK) {
LLVM_DEBUG(dbgs() << "failed\n");
return nullptr;
}
LLVM_DEBUG(dbgs() << "OK\n");
}
// Check that the block does not contain any calls or intrinsics with
// side effects.
for (auto bi = BB->begin(), be = BB->end(); bi != be; ++bi)
if (auto CI = dyn_cast<CallInst>(&*bi)) {
if (!GenXIntrinsic::isAnyNonTrivialIntrinsic(CI)) {
LLVM_DEBUG(dbgs() << "contains call\n");
return nullptr;
}
if (!CI->getCalledFunction()->doesNotAccessMemory()) {
LLVM_DEBUG(dbgs() << "contains intrinsic with side effect\n");
return nullptr;
}
}
// We can now do the transformation.
LLVM_DEBUG(dbgs() << "Transforming " << BB->getName() << "\n");
// Move instructions from BB into the predecessor.
for (;;) {
auto Inst = &BB->front();
if (Inst) {
if (Inst->isTerminator())
break;
Inst->removeFromParent();
Inst->insertBefore(PredBr);
}
}
// In each phi node in the successor, change the incoming for the predecessor
// to match the incoming for our BB, and remove the incoming for our BB.
// If that would leave only one incoming, then remove the phi node.
for (auto Inst = &Succ->front();; ) {
auto Phi = dyn_cast<PHINode>(Inst);
if (!Phi)
break;
auto Next = Inst->getNextNode();
if (Phi->getNumIncomingValues() == 2) {
// Having got rid of the phi, it is worth running instruction
// simplification on each use. Specifically, this turns the
// P3 = (P1 & P2) | (P1 & ~P2) at the endif of an if that
// has an else into the simpler P1. Without that, an enclosing if
// would never have its branch removed, because the use of the "or"
// as a predicate stops us detecting that all predicates are a
// subset of the branch condition.
Value *V = Phi->getIncomingValueForBlock(BB);
replaceAndRecursivelySimplify(Phi, V);
} else {
unsigned PredIdx = Phi->getBasicBlockIndex(Pred);
unsigned BBIdx = Phi->getBasicBlockIndex(BB);
Phi->setIncomingValue(PredIdx, Phi->getIncomingValue(BBIdx));
Phi->removeIncomingValue(BBIdx);
}
Inst = Next;
}
// Change the predecessor to have an unconditional branch to the successor.
auto NewBr = BranchInst::Create(Succ, PredBr);
NewBr->takeName(PredBr);
auto CondInst = dyn_cast<Instruction>(PredBr->getCondition());
PredBr->eraseFromParent();
if (CondInst && CondInst->use_empty())
CondInst->eraseFromParent();
// Remove the now empty and unreferenced BB.
BB->eraseFromParent();
// Merge Pred and Succ blocks.
MergeBlockIntoPredecessor(Succ);
return Pred;
}
/***********************************************************************
* isPredSubsetOf : detect whether Pred1 is a subset of Pred2 (or of ~Pred2
* if Inverted is set)
*/
bool GenXCFSimplification::isPredSubsetOf(Value *Pred1, Value *Pred2,
bool Inverted)
{
if (Pred1 == Pred2 && !Inverted)
return true;
auto BO = dyn_cast<BinaryOperator>(Pred1);
if (!BO)
return false;
if (BO->getOpcode() == Instruction::And)
return isPredSubsetOf(BO->getOperand(0), Pred2, Inverted)
|| isPredSubsetOf(BO->getOperand(1), Pred2, Inverted);
if (BO->getOpcode() == Instruction::Xor)
if (auto C = dyn_cast<Constant>(BO->getOperand(1)))
return BO->getOperand(0) == Pred2 && C->isAllOnesValue();
return false;
}
|