1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
//
/// GenXCoalescing
/// --------------
///
/// The LLVM target independent code generator, used by most backends, has a
/// coalescing pass that runs after de-SSA of the machine IR and two-address
/// handling, and attempts to remove the added copies by coalescing values. It
/// also attempts to coalesce a value with a hardreg that it is copied to/from.
///
/// This GenX coalescing and copy insertion pass is a bit different, in that
/// it runs on LLVM IR, which must remain in SSA, and it attempts to coalesce
/// values to try and avoid adding the copy in the first place. In any phi node
/// or two address op where it fails to coalesce, it inserts a copy (and
/// coalesces the result of the copy into the result of the phi node or
/// two address op).
///
/// There are three different kinds of coalescing. Copy coalescing is done first,
/// then the other two are done together.
///
/// 1. Copy coalescing.
///
/// Generally there are no copy instructions in SSA, but we
/// can treat a bitcast as a copy (the operand and result can live in the
/// same register aliased in different registers), and an extractvalue is
/// treated as a copy to be coalesced, and the "inserted value" operand
/// and the corresponding element(s) of the result in an insertvalue are
/// treated as a copy to be coalesced.
///
/// Copy coalescing represents two values that are known to be identical
/// occupying the same register at the same time, thus it is possible even
/// if the two values interfere (are live at the same point). Because we
/// handle copy coalescing before any other kind of coalescing, it usually
/// succeeds.
///
/// This only works because we do copy coalescing first, so we know that
/// neither value that we want to copy coalesce has already undergone normal
/// or phi coalescing.
///
/// However there is a case when copy coalescing between two live ranges
/// LR1 and LR2 (each of which is possibly already copy coalesced) cannot be
/// allowed: when LR2 loops round and has a phi use in the same basic block
/// as a phi definition in LR1, where the phi use of LR2 is after the phi
/// definition of LR1. This can happen because LLVM IR does not attach any
/// meaning to the order of phi nodes, but the GenX backend does with its
/// instruction numbering.
///
/// This constraint on copy coalescing is embodied in the concept of
/// "copy-interference". The two live ranges LR1 and LR2 copy-interfere,
/// meaning they cannot be copy coalesced, if LR1 has a phi definition,
/// one of whose numbers is within LR2's live range.
///
/// 2. Normal coalescing
///
/// This arises where we have a two-address operation, that is, it has an
/// operand that needs to be in the same register as the result, because the
/// instruction represents a partial write operation. The main example of
/// this is wrregion, but there are also some shared function intrinsics
/// that need this.
///
/// Here, we gather all the possible coalesces (including the phi ones),
/// together with an estimate of the cost of failing to coalesce (due to
/// needing to insert a copy), and then sort them in cost order and process
/// them.
///
/// This kind of coalescing is possible only if the two live ranges do not
/// interfere. If coalescing fails, we need to insert a copy just before
/// the instruction, creating a new value with a very short live range
/// that can trivially be coalesced with the result of the original
/// instruction.
///
/// Some subkinds of normal coalescing are:
///
/// 2a. call arg pre-copy
///
/// A call arg needs to be coalesced with or copied to the corresponding
/// function arg.
///
/// Unlike most other kinds of coalescing, if coalescing fails, the copy
/// insertion is delayed until later, so we can ensure that the copies
/// are in the same order as the args, as the live ranges were computed
/// on that basis.
///
/// Normally, call arg pre-copy coalescing occurs, like other normal
/// coalescing, if the two live ranges do not interfere. If this fails,
/// we can still do *call arg special coalescing* (CASC) of call arg A
/// and function arg B as long as both of the following are true:
///
/// i. B has not been normal coalesced into anything (which would be
/// in the subroutine or some other subroutine it calls), except
/// that B is allowed to be call arg pre-copy coalesced;
///
/// ii. For any other call site where the corresponding call arg is not
/// A, A does not interfere with it.
///
/// Call arg special coalescing allows call arg A and function arg B to
/// be in the same register, even if A is used after the call, as long
/// as that register is not already being used for a different value
/// in the subroutine, and as long as a different value for the call
/// arg is not used at a different call site where A is live.
///
/// **Note**: Call arg special coalescing is disabled, because it broke
/// a test and I never got round to investigating why. I don't even know
/// if it would be beneficial any more, given more recent changes to
/// liveness and coalescing.
///
/// 2b. ret value pre-copy
///
/// At a ReturnInst, the return value operand needs to be coalesced with
/// or copied to the unified return value for the function. This is
/// handled mostly the same as a normal coalesce.
///
/// 2c. ret value post-copy
///
/// After a CallInst for a subroutine call, the unified return value
/// needs to be coalesced with or copied to the result of the call. On
/// failure, the copy insertion is delayed until later.
///
/// 3. Phi coalescing
///
/// This is how we "de-SSA" the code. A phi incoming wants to coalesce with
/// the result of the phi node.
///
/// Again, this kind of coalescing is possible only if the two live ranges
/// do not interfere. (A phi incoming can never interfere with its phi
/// result, but earlier coalescing could make them now interfere.) If
/// coalescing fails, we need to insert a copy at the end of the incoming
/// predecessor basic block. In fact we defer the copy insertion from failed
/// phi coalescing to the end, because we need to make sure the inserted
/// copies are in the same order as the phi nodes, as that is the basis on
/// which the live ranges were constructed.
///
/// After phi coalescing, the LLVM IR is still in SSA form, but the phi
/// coalescing, and the copies inserted where phi coalescing failed, mean
/// that it is trivial to transform into non-SSA vISA code: generate code for
/// the phi copies, and ignore the phi nodes themselves because they are
/// completely coalesced.
///
/// Kernel argument copying
/// ^^^^^^^^^^^^^^^^^^^^^^^
///
/// The kernel argument offsets (i.e. where kernel arguments appear in the GRF
/// on entry to the kernel) are set in a very early pass just after Clang
/// codegen. This sets offsets and packs holes in a way that is specific to the
/// language being compiled and its contract with its runtime.
///
/// However, when we get here, we may find that a live range that contains a
/// kernel argument has an alignment requirement that the offset from
/// earlier does not comply with.
///
/// So an extra function of this pass, after doing the coalescing, is to spot
/// this case, where a kernel argument has an offset that is not aligned enough,
/// and insert an extra copy at the start of the function.
///
//===----------------------------------------------------------------------===//
#include "FunctionGroup.h"
#include "GenX.h"
#include "GenXBaling.h"
#include "GenXGotoJoin.h"
#include "GenXIntrinsics.h"
#include "GenXLiveness.h"
#include "GenXModule.h"
#include "GenXNumbering.h"
#include "GenXSubtarget.h"
#include "GenXTargetMachine.h"
#include "GenXUtil.h"
#include "GenXVisitor.h"
#include "vc/Support/GenXDiagnostic.h"
#include "vc/Utils/GenX/GlobalVariable.h"
#include "vc/Utils/GenX/KernelInfo.h"
#include "vc/Utils/GenX/RegCategory.h"
#include "Probe/Assertion.h"
#include "llvmWrapper/IR/InstrTypes.h"
#include "llvmWrapper/IR/Instructions.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <algorithm>
#include <map>
#include <vector>
#define DEBUG_TYPE "GENX_COALESCING"
using namespace llvm;
using namespace genx;
static cl::opt<unsigned> GenXShowCoalesceFailThreshold("genx-show-coalesce-fail-threshold", cl::init(UINT_MAX), cl::Hidden,
cl::desc("GenX size threshold (bytes) for showing coalesce fails."));
static cl::opt<bool> GenXCoalescingLessCopies(
"genx-coalescing-less-copies", cl::init(true), cl::Hidden,
cl::desc(
"GenX Coalescing will try to emit less copies on coalescing failures"));
STATISTIC(NumCoalescingCandidates, "Number of coalescing candidates");
STATISTIC(NumInsertedCopies, "Number of inserted copies");
namespace {
// Candidate : description of a coalescing candidate
struct Candidate {
genx::SimpleValue Dest;
Use *UseInDest;
unsigned SourceIndex;
unsigned Priority;
Candidate(SimpleValue Dest, Use *UseInDest, unsigned SourceIndex,
unsigned Priority)
: Dest(Dest), UseInDest(UseInDest), SourceIndex(SourceIndex),
Priority(Priority) {}
bool operator<(const Candidate &C2) const { return Priority > C2.Priority; }
};
struct PhiCopy {
PHINode *Phi;
unsigned IncomingIdx;
PhiCopy(PHINode *Phi, unsigned IncomingIdx)
: Phi(Phi), IncomingIdx(IncomingIdx) {}
};
enum CopyType { PHICOPY, PHICOPY_BRANCHING_JP, TWOADDRCOPY };
struct CopyData {
SimpleValue Dest;
SimpleValue Source;
Use *UseInDest;
Instruction *InsertPoint;
CopyType CopyT;
unsigned DestPos;
unsigned Serial;
CopyData(SimpleValue Dest, SimpleValue Source, Use *UseInDest,
Instruction *InsertPoint, CopyType CopyT, unsigned DestPos,
unsigned Serial)
: Dest(Dest), Source(Source), UseInDest(UseInDest),
InsertPoint(InsertPoint), CopyT(CopyT), DestPos(DestPos),
Serial(Serial) {}
bool operator<(const CopyData &CD2) const {
if (DestPos != CD2.DestPos)
return DestPos < CD2.DestPos;
return Serial < CD2.Serial;
}
};
// Copies for values for live range
struct CopiesForLRData {
MapVector<SimpleValue, std::set<CopyData>> CopiesPerValue;
void insertData(Value *SourceVal, CopyData &CD) {
SimpleValue SourceSV(SourceVal, CD.Source.getIndex());
CopiesPerValue[SourceSV].insert(CD);
}
};
// Copies for all live ranges
// Note that SourceVal can differ from CD.Source due to
// CopyCoalescing (bitcasts between different types one register).
struct SortedCopies {
MapVector<LiveRange *, CopiesForLRData> CopiesPerLR;
void insertData(LiveRange *LR, Value *SourceVal, CopyData &CD) {
CopiesPerLR[LR].insertData(SourceVal, CD);
}
};
// GenX coalescing pass
class GenXCoalescing : public FGPassImplInterface,
public IDMixin<GenXCoalescing>,
public GenXVisitor<GenXCoalescing> {
private:
const DataLayout *DL = nullptr;
const GenXSubtarget *ST = nullptr;
GenXBaling *Baling = nullptr;
GenXLiveness *Liveness = nullptr;
GenXNumbering *Numbering = nullptr;
DominatorTreeGroupWrapperPass *DTWrapper = nullptr;
LoopInfoGroupWrapperPass *LIWrapper = nullptr;
std::vector<Candidate> CopyCandidates;
std::vector<Candidate> NormalCandidates;
std::vector<CallInst*> Callables;
std::vector<CopyData> ToCopy;
std::map<SimpleValue, Value*> CallToRetVal;
std::unordered_map<Instruction *, Value *> CopyCoalesced;
public:
explicit GenXCoalescing() {}
static StringRef getPassName() {
return "GenX coalescing and copy insertion";
}
static void getAnalysisUsage(AnalysisUsage &AU) {
AU.addRequired<GenXLiveness>();
AU.addRequired<GenXGroupBaling>();
AU.addRequired<GenXNumbering>();
AU.addRequired<DominatorTreeGroupWrapperPassWrapper>();
AU.addRequired<LoopInfoGroupWrapperPass>();
AU.addRequired<TargetPassConfig>();
AU.addPreserved<DominatorTreeGroupWrapperPass>();
AU.addPreserved<LoopInfoGroupWrapperPass>();
AU.addPreserved<GenXGroupBaling>();
AU.addPreserved<GenXLiveness>();
AU.addPreserved<GenXModule>();
AU.addPreserved<GenXNumbering>();
AU.addPreserved<FunctionGroupAnalysis>();
AU.setPreservesCFG();
}
bool runOnFunctionGroup(FunctionGroup &FG) override;
void visitPHINode(PHINode &Phi);
void visitCallInst(CallInst &CI);
void visitGenXIntrinsicInst(GenXIntrinsicInst &II);
void visitCastInst(CastInst &CI);
void visitExtractValueInst(ExtractValueInst &EVI);
void visitInsertValueInst(InsertValueInst &IVI);
private:
unsigned getPriority(Type *Ty, BasicBlock *BB) const;
unsigned getPriority(SimpleValue Val) const;
// Various permutations of the function to record a coalescing candidate.
void recordCopyCandidate(SimpleValue Dest, unsigned OperandIndex,
unsigned SourceIndex = 0) {
IGC_ASSERT(isa<User>(Dest.getValue()));
recordCandidate(Dest, &cast<User>(Dest.getValue())->getOperandUse(OperandIndex),
SourceIndex, getPriority(Dest), CopyCandidates);
}
void recordNormalCandidate(SimpleValue Dest, unsigned OperandIndex,
unsigned SourceIndex = 0) {
IGC_ASSERT(isa<User>(Dest.getValue()));
recordCandidate(Dest, &cast<User>(Dest.getValue())->getOperandUse(OperandIndex),
SourceIndex, getPriority(Dest), NormalCandidates);
}
void recordCallArgCandidate(SimpleValue Dest, Use *UseInDest, unsigned SourceIndex,
unsigned Priority) {
recordCandidate(Dest, UseInDest, SourceIndex, Priority, NormalCandidates);
}
void recordUnifiedRetCandidate(SimpleValue Dest, unsigned SourceIndex) {
recordCandidate(Dest, nullptr, SourceIndex, getPriority(Dest), NormalCandidates);
}
void recordPhiCandidate(PHINode &Phi, unsigned IncomingIndex, unsigned Priority) {
recordCandidate(&Phi, &Phi.getOperandUse(IncomingIndex), 0, Priority,
NormalCandidates);
}
void recordCandidate(SimpleValue Dest, Use *UseInDest, unsigned SourceIndex,
unsigned Priority, std::vector<Candidate> &Candidates);
void recordCallCandidates(FunctionGroup *FG);
void recordCallArgCandidates(Value *Dest, unsigned ArgNum,
ArrayRef<Instruction *> Insts);
// Functions for processing coalecing candidates.
void processCopyCandidate(const Candidate &Cand) {
processCandidate(Cand, true /*IsCopy*/);
}
void processCandidate(const Candidate &Cand, bool IsCopy = false);
void processPhiNodes(FunctionGroup *FG);
void analysePhiCopies(PHINode *Phi, std::vector<PhiCopy> &ToProcess);
void processPhiCopy(PHINode *Phi, unsigned Inc,
std::vector<PHINode *> &Phis);
void processPhiBranchingJoinLabelCopy(PHINode *Phi, unsigned Inc,
std::vector<PHINode *> &Phis);
PHINode *copyNonCoalescedPhi(PHINode *PhiPred, PHINode *PhiSucc);
void processCalls(FunctionGroup *FG);
void processKernelArgs(FunctionGroup *FG);
void coalesceOutputArgs(FunctionGroup *FG);
void coalesceCallables();
void coalesceGlobalLoads(FunctionGroup *FG);
Instruction *insertCopy(SimpleValue Input, LiveRange *LR,
Instruction *InsertBefore, StringRef Name,
unsigned Number);
Instruction *insertIntoStruct(Type *Ty, unsigned FlattenedIndex,
Value *OldStruct, Instruction *NewVal,
Instruction *InsertBefore);
void showCoalesceFail(SimpleValue V, const DebugLoc &DL, const char *Intro,
LiveRange *DestLR, LiveRange *SourceLR);
// Functions for creating copies
void applyCopies();
Instruction *createCopy(const CopyData &CD);
void replaceAllUsesWith(Instruction *OldInst, Instruction *NewInst);
// Functions for opimized copies generation
SortedCopies getSortedCopyData();
void applyCopiesOptimized();
void applyCopiesForValue(const std::set<CopyData> &CDSet);
template <typename Iter>
Iter mergeCopiesTillFailed(SimpleValue CopySV, Iter BeginIt, Iter EndIt);
// Helpers
DominatorTree *getDomTree(Function *F) const {
return DTWrapper->getDomTree(F);
}
LoopInfo *getLoopInfo(Function *F) const {
return LIWrapper->getLoopInfo(F);
}
};
} // end anonymous namespace
namespace llvm {
void initializeGenXCoalescingWrapperPass(PassRegistry &);
using GenXCoalescingWrapper = FunctionGroupWrapperPass<GenXCoalescing>;
}
INITIALIZE_PASS_BEGIN(GenXCoalescingWrapper, "GenXCoalescingWrapper",
"GenXCoalescingWrapper", false, false)
INITIALIZE_PASS_DEPENDENCY(GenXGroupBalingWrapper)
INITIALIZE_PASS_DEPENDENCY(GenXLivenessWrapper)
INITIALIZE_PASS_DEPENDENCY(GenXNumberingWrapper)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeGroupWrapperPassWrapper);
INITIALIZE_PASS_DEPENDENCY(LoopInfoGroupWrapperPassWrapper);
INITIALIZE_PASS_END(GenXCoalescingWrapper, "GenXCoalescingWrapper",
"GenXCoalescingWrapper", false, false)
ModulePass *llvm::createGenXCoalescingWrapperPass() {
initializeGenXCoalescingWrapperPass(*PassRegistry::getPassRegistry());
return new GenXCoalescingWrapper();
}
/***********************************************************************
* runOnFunctionGroup : run the coalescing pass for this FunctionGroup
*/
bool GenXCoalescing::runOnFunctionGroup(FunctionGroup &FG)
{
DL = &FG.getModule()->getDataLayout();
// Get analyses that we use and/or modify.
ST = &getAnalysis<TargetPassConfig>()
.getTM<GenXTargetMachine>()
.getGenXSubtarget();
Baling = &getAnalysis<GenXGroupBaling>();
Liveness = &getAnalysis<GenXLiveness>();
Numbering = &getAnalysis<GenXNumbering>();
DTWrapper = &getAnalysis<DominatorTreeGroupWrapperPass>();
LIWrapper = &getAnalysis<LoopInfoGroupWrapperPass>();
// Coalesce all global loads prior to normal coalescing.
coalesceGlobalLoads(&FG);
// Record all the coalescing candidates except the call arg and return
// value pre-copy ones.
visit(FG);
// Process the copy coalescing candidates.
for (unsigned i = 0; i != CopyCandidates.size(); ++i)
processCopyCandidate(CopyCandidates[i]);
// Record the call arg and return value pre-copy candidates.
recordCallCandidates(&FG);
// Sort the array of normal coalescing candidates (including phi ones) then
// process them. Preserve original ordering for equal priority candidates
// to get consistent results across different runs.
std::stable_sort(NormalCandidates.begin(), NormalCandidates.end());
for (unsigned i = 0; i != NormalCandidates.size(); ++i)
processCandidate(NormalCandidates[i]);
// Now scan all phi nodes again, inserting copies where necessary. Doing
// them in one go here ensures that the copies appear in the predecessor
// blocks in the same order as the phi nodes, which is the basis on which
// we computed live ranges.
processPhiNodes(&FG);
// Scan all the calls, inserting copies where necessary for call arg
// pre-copies and return value pre- and post-copies. Doing them in one go
// here ensures that the copies appear in the order that live range
// computation assumed they would appear. Also, for call arg and return
// value pre-copies, a single coalesce candidate is shared across multiple
// calls/returns using the same LR, so we need this separate scan to find
// the calls/returns.
processCalls(&FG);
// Add a copy for each kernel arg that is not aligned enough.
processKernelArgs(&FG);
coalesceCallables();
coalesceOutputArgs(&FG);
applyCopies();
CopyCandidates.clear();
NormalCandidates.clear();
Callables.clear();
CallToRetVal.clear();
ToCopy.clear();
CopyCoalesced.clear();
return true;
}
/***********************************************************************
* visitPHINode : for each incoming, record a phi candidate, unless it is a
* registerless value (EM/RM).
* If the incoming block is a branching join label block, then we
* cannot insert any phi copies there, so give the coalescing
* candidate a high priority to ensure it gets coalesced first.
*/
void GenXCoalescing::visitPHINode(PHINode &Phi) {
if (!vc::isRealOrNoneCategory(Liveness->getLiveRange(&Phi)->getCategory()))
return;
for (unsigned i = 0; i < Phi.getNumIncomingValues(); ++i) {
auto IncomingBlock = Phi.getIncomingBlock(i);
unsigned Priority = GotoJoin::isBranchingJoinLabelBlock(IncomingBlock) ?
UINT_MAX : getPriority(Phi.getType(), IncomingBlock);
recordPhiCandidate(Phi, i, Priority);
}
}
/***********************************************************************
* visitCallInst : process inlime asm and direct non-intrinsic calls
*/
void GenXCoalescing::visitCallInst(CallInst &CI) {
if (CI.isInlineAsm()) {
InlineAsm *IA = cast<InlineAsm>(IGCLLVM::getCalledValue(CI));
// Do not process if no constraints provided or it's baled
// (the coalescing actually needs to be done at the wrregion).
if (IA->getConstraintString().empty() || Baling->isBaled(&CI))
return;
unsigned NumOutputs = genx::getInlineAsmNumOutputs(&CI);
auto ConstraintsInfo = genx::getGenXInlineAsmInfo(&CI);
// we need to coalesce if there is a '+' modifier
// because those operands are tied and have to be in the same
// registers
for (unsigned ArgNo = 0; ArgNo < ConstraintsInfo.size(); ArgNo++) {
auto &Info = ConstraintsInfo[ArgNo];
if (!Info.isOutput() || !Info.hasMatchingInput())
continue;
unsigned ActualIdx = Info.getMatchingInput() - NumOutputs;
auto OpInst = dyn_cast<Instruction>(CI.getOperand(ActualIdx));
if (!OpInst || Baling->isBaled(OpInst))
continue;
SimpleValue SV (&CI, isa<StructType>(CI.getType()) ? ArgNo : 0);
recordNormalCandidate(SV, ActualIdx);
}
return;
}
if (IGCLLVM::isIndirectCall(CI))
return;
// This is a non-intrinsic call. If it returns a value, mark
// (elements of) the return value for coalescing with the
// unified return value.
if (!CI.getType()->isVoidTy()) {
for (unsigned i = 0, e = IndexFlattener::getNumElements(CI.getType());
i != e; ++i)
recordUnifiedRetCandidate(SimpleValue(&CI, i), i);
return;
}
// handle callable kernel
Function *Callee = CI.getCalledFunction();
if (!Callee->hasFnAttribute("CMCallable"))
return;
if (CI.getFunction()->hasFnAttribute("CMCallable")) {
vc::diagnose(CI.getContext(), "GenXCoalescing",
"Callable function must not call", &CI);
}
Callables.push_back(&CI);
}
/***********************************************************************
* visitGenXIntrinsicInst : process an intrinsic with a two address operand
* (including the case of operand 0 in wrregion). That operand has to be in
* the same register as the result.
* NOTE: *.predef.reg intrinsics should not participate in coalescing
* since they don't have any LR
*/
void GenXCoalescing::visitGenXIntrinsicInst(GenXIntrinsicInst &II) {
if (GenXIntrinsic::isReadWritePredefReg(&II))
return;
auto OperandNum = getTwoAddressOperandNum(&II);
if (!OperandNum)
return;
if (Baling->isBaled(&II) ||
GenXIntrinsic::isReadWritePredefReg(II.getOperand(0))) {
// The intrinsic is baled into a wrregion. The two address
// operand must also have a rdregion baled in whose input is
// the "old value" input of the wrregion, and the coalescing
// actually needs to be done at the wrregion. That is handled
// when this pass reaches the wrregion, so we do not want to do
// anything here.
return;
}
// Normal unbaled twoaddr operand.
recordNormalCandidate(&II, *OperandNum);
}
/***********************************************************************
* visitCastInst : the source and destination of a no-op cast can copy coalesce,
* but only if it is not the case that the source is a phi and
* the destination has a use in a phi node in the same block and
* after the source's phi. If the above is the case, then we try
* and normal coalesce instead, which fails, leading to a copy
* being generated.
* Ignore bitcasts of volatile globals as they normally
* participate in load/store only, so no coalescing is possible anyway.
*/
void GenXCoalescing::visitCastInst(CastInst &CI) {
if (!genx::isNoopCast(&CI))
return;
IGC_ASSERT_MESSAGE(!isa<StructType>(CI.getDestTy()), "not expecting cast to struct");
IGC_ASSERT_MESSAGE(!isa<StructType>(CI.getSrcTy()), "not expecting cast from struct");
if (GenXLiveness::wrapsAround(CI.getOperand(0), &CI))
recordNormalCandidate(&CI, 0);
else {
if (!Liveness->getLiveRangeOrNull(&CI))
return;
if (GenXIntrinsic::isReadWritePredefReg(CI.getOperand(0)))
return;
if (auto * GV = dyn_cast<GlobalVariable>(CI.getOperandUse(0));
GV && GV->hasAttribute(VCModuleMD::VCVolatile))
return;
recordCopyCandidate(&CI, 0);
}
}
/***********************************************************************
* visitExtractValueInst : copy coalesce the element being extracted, as long as
* both source and destination have live ranges. The two cases where
* they don't are:
* 1. the source live range got removed in the code below that
* handles undef elements in an insertvalue chain;
* 2. this is the extract of the !any(EM) result of a goto/join,
* which does not have a live range because it is baled in to the
* branch.
*/
void GenXCoalescing::visitExtractValueInst(ExtractValueInst &EVI) {
if (!Liveness->getLiveRangeOrNull(&EVI))
return;
unsigned StartIndex = IndexFlattener::flatten(
cast<StructType>(EVI.getAggregateOperand()->getType()), EVI.getIndices());
unsigned NumElements = IndexFlattener::getNumElements(EVI.getType());
for (unsigned i = 0; i < NumElements; ++i)
if (Liveness->getLiveRangeOrNull(
SimpleValue(EVI.getAggregateOperand(), StartIndex + i)))
recordCopyCandidate(SimpleValue(&EVI, i), 0, StartIndex + i);
}
/***********************************************************************
* visitInsertValueInst :
* First, if the struct value input is undef, scan the possible chain
* of insertvalues and remove the live range for any SimpleValue that
* is undef. We need to do this to stop a register being allocated
* later for a coalesced SimpleValue from a chain of insertvalues
* for a return where that element is never set.
*/
void GenXCoalescing::visitInsertValueInst(InsertValueInst &IVI) {
auto ST = cast<StructType>(IVI.getType());
unsigned NumElements = IndexFlattener::getNumElements(ST);
if (isa<UndefValue>(IVI.getAggregateOperand())) {
SmallBitVector IsDefined(NumElements);
// For each insertvalue in the chain:
for (auto ThisIVI = &IVI; ThisIVI;) {
// For the element set by this one, set it as defined (unless the
// input is undef).
unsigned StartIdx = IndexFlattener::flatten(ST, ThisIVI->getIndices());
unsigned EndIdx =
StartIdx + IndexFlattener::getNumElements(
ThisIVI->getInsertedValueOperand()->getType());
if (!isa<UndefValue>(ThisIVI->getInsertedValueOperand()))
IsDefined.set(StartIdx, EndIdx);
// For any element that is still undef, remove its live range.
for (unsigned i = 0; i != NumElements; ++i)
if (!IsDefined[i])
Liveness->removeValue(SimpleValue(ThisIVI, i));
if (!ThisIVI->hasOneUse())
break;
ThisIVI = dyn_cast<InsertValueInst>(ThisIVI->use_begin()->getUser());
}
}
// Copy coalesce the element being inserted and the other elements,
// as long as the appropriate live ranges did not get removed above.
unsigned StartIdx = IndexFlattener::flatten(ST, IVI.getIndices());
unsigned EndIdx = StartIdx + IndexFlattener::getNumElements(
IVI.getInsertedValueOperand()->getType());
for (unsigned i = 0; i != NumElements; ++i) {
if (!Liveness->getLiveRangeOrNull(SimpleValue(&IVI, i)))
continue;
if ((StartIdx <= i) && (i < EndIdx)) {
if (Liveness->getLiveRangeOrNull(SimpleValue(IVI.getInsertedValueOperand(), i - StartIdx)))
recordCopyCandidate(SimpleValue(&IVI, i), 1, i - StartIdx);
} else {
if (Liveness->getLiveRangeOrNull(
SimpleValue(IVI.getAggregateOperand(), i)))
recordCopyCandidate(SimpleValue(&IVI, i), 0, i);
}
}
}
/***********************************************************************
* recordCallCandidates : record the call arg pre-copy and ret value
* pre-copy candidates
*
* This is done here, after copy coalescing has been done, so we can
* more accurately estimate the cost of not coalescing a candidate by
* summing the cost from each call site / return instruction that uses
* the same (copy coalesced) value.
*/
void GenXCoalescing::recordCallCandidates(FunctionGroup *FG)
{
// For each subroutine...
for (auto fgi = FG->begin() + 1, fge = FG->end(); fgi != fge; ++fgi) {
Function *F = *fgi;
// Gather the call sites.
SmallVector<Instruction *, 8> CallSites;
for (auto *U: F->users())
if (auto *CI = checkFunctionCall(U, F))
CallSites.push_back(CI);
// For each arg...
unsigned ArgIdx = 0;
for (auto ai = F->arg_begin(), ae = F->arg_end();
ai != ae; ++ai, ++ArgIdx) {
Argument *Arg = &*ai;
if (Arg->use_empty())
continue; // Ignore unused arg.
// Record a coalesce candidate for each unique input LR for each
// struct element in the arg.
recordCallArgCandidates(Arg, ArgIdx, CallSites);
}
// Now scan for return value pre-copies.
if (F->getReturnType()->isVoidTy())
continue;
// Gather the return insts by looking at the terminator of each BB.
SmallVector<Instruction *, 8> RetInsts;
for (auto fi = F->begin(), fe = F->end(); fi != fe; ++fi) {
auto RetInst = dyn_cast<ReturnInst>(fi->getTerminator());
if (RetInst)
RetInsts.push_back(RetInst);
}
// Record a coalesce candidate for each unique input LR for each
// struct element in the return value.
recordCallArgCandidates(Liveness->getUnifiedRet(F), 0, RetInsts);
}
}
/***********************************************************************
* recordCallArgCandidates : common code for adding a candidate for each
* struct element of a call arg or a return value pre-copy
*
* Enter: Dest = destination Value; the Argument for a call arg, or the
* Function's unified return value for a ret pre-copy
* ArgNum = argument number for call arg, 0 for ret pre-copy
* Insts = array of call sites or return instructions
*
* For each struct element, this adds a coalesce candidate for each unique LR
* used as a call arg or return value.
*/
namespace {
struct CallArg {
Use *U;
LiveRange *LR;
CallArg(Use *U, LiveRange *LR) : U(U), LR(LR) {}
};
} // namespace
void GenXCoalescing::recordCallArgCandidates(Value *Dest, unsigned ArgNum,
ArrayRef<Instruction *> Insts)
{
for (unsigned StructIdx = 0,
StructEnd = IndexFlattener::getNumElements(Dest->getType());
StructIdx != StructEnd; ++StructIdx) {
// For each unique LR used as this arg at any call site, sum the
// cost and add a candidate.
SmallVector<CallArg, 8> CallArgs;
for (unsigned i = 0, ie = Insts.size(); i != ie; ++i) {
Use *U = &Insts[i]->getOperandUse(ArgNum);
CallArgs.emplace_back(
U, Liveness->getLiveRangeOrNull(SimpleValue(*U, StructIdx)));
}
for (unsigned i = 0, ie = CallArgs.size(); i != ie; ++i) {
LiveRange *LR = CallArgs[i].LR;
if (!LR)
continue; // Already done this one (or it was an undef).
Use *U = CallArgs[i].U;
unsigned Priority = 0;
for (unsigned j = i, je = CallArgs.size(); j != je; ++j) {
if (LR != CallArgs[j].LR)
continue;
Priority += getPriority(IndexFlattener::getElementType(
(*U)->getType(), StructIdx), Insts[j]->getParent());
CallArgs[j].LR = nullptr; // Blank out so we can see we have done this one.
}
recordCallArgCandidate(SimpleValue(Dest, StructIdx),
U, StructIdx, Priority);
}
}
}
/***********************************************************************
* getPriority : get priority of coalescing candidate
*
* Enter: Ty = type that would need to be copied if coalescing failed,
* so we can estimate the copy cost.
* BB = basic block where copy would be inserted, so we can use
* loop depth to adjust the cost.
*
* Return: priority (estimate of cost of inserting a copy)
*/
unsigned GenXCoalescing::getPriority(Type *Ty, BasicBlock *BB) const
{
IGC_ASSERT(Ty);
IGC_ASSERT(BB);
// Multiplier of priority when copy located in loop.
constexpr unsigned LoopScale = 4;
// Estimate number of moves required for this type.
unsigned VecWidth = vc::getTypeSize(Ty, DL).inBytesCeil();
unsigned Priority = VecWidth / ST->getGRFByteSize() +
countPopulation(VecWidth % ST->getGRFByteSize());
// Scale by loop depth.
Priority *= std::pow(LoopScale,
getLoopInfo(BB->getParent())->getLoopDepth(BB));
return Priority;
}
unsigned GenXCoalescing::getPriority(SimpleValue SV) const
{
IGC_ASSERT(isa<Instruction>(SV.getValue()));
auto *BB = cast<Instruction>(SV.getValue())->getParent();
auto *Type = IndexFlattener::getElementType(SV.getValue()->getType(), SV.getIndex());
return getPriority(Type, BB);
}
/***********************************************************************
* recordCandidate : record a candidate for coalescing
*
* Enter: Dest = destination of copy
* UseInDest = pointer to the use of the source in Dest
* SourceIndex = flattened index of element in source struct
* Priority = priority of coalescing this candidate
* Candidates = vector of candidates to push to
*
* For call arg coalescing, Dest is the subroutine's Argument, and
* UseInDest/SourceIndex are the use in one of the possibly many call sites
* using the same source value.
*
* For ret value pre-copy coalescing (before the return inst), Dest is the the
* unified return value, and UseInDest/SourceIndex are the use in one of the
* possibly many return instructions using the same source value.
*
* For ret value post-copy coalescing (after the call inst), Dest is the
* CallInst, and UseInDest and SourceIndex are 0.
*/
void GenXCoalescing::recordCandidate(SimpleValue Dest, Use *UseInDest,
unsigned SourceIndex, unsigned Priority, std::vector<Candidate> &Candidates)
{
LLVM_DEBUG(dbgs() << "Trying to record cand " << *(Dest.getValue()) << "\n");
if (UseInDest && (isa<UndefValue>(*UseInDest) || isa<Constant>(*UseInDest)))
return;
LLVM_DEBUG(dbgs() << "Recording cand " << *(Dest.getValue()) << "\n");
Candidates.emplace_back(Dest, UseInDest, SourceIndex, Priority);
++NumCoalescingCandidates;
}
/***********************************************************************
* processCandidate : process a coalescing candidate
*
* This attempts to coalesce the candidate. On failure, it inserts a copy
* if necessary:
*
* - a copy candidate never fails to coalesce;
* - a two address candidate needs a copy and it is inserted here;
* - a phi candidate needs a copy, but it is not inserted here. Instead it
* is inserted later so we can ensure that multiple copies inserted at
* the end of an incoming block are in phi node order, which was the
* assumption made by the live range calculation.
*
* See the comment at the top of recordCandidate for the special values of
* fields in Candidate for a call arg coalesce and a ret value coalesce.
*/
void GenXCoalescing::processCandidate(const Candidate &Cand, bool IsCopy)
{
SimpleValue Dest = Cand.Dest;
SimpleValue Source;
if (!Cand.UseInDest) {
auto *Callee = cast<CallInst>(Dest.getValue())->getCalledFunction();
// Do not process calls to external functions
if (Callee->isDeclaration())
return;
// This is a return value post-copy coalesce candidate. The actual source
// is the unified return value.
Source = SimpleValue(Liveness->getUnifiedRet(Callee), Cand.SourceIndex);
} else
Source = SimpleValue(*Cand.UseInDest, Cand.SourceIndex);
LLVM_DEBUG(dbgs() << "Trying coalesce from ";
Source.printName(dbgs());
dbgs() << " to ";
Dest.printName(dbgs());
dbgs() << " priority " << Cand.Priority;
if (isa<Argument>(Dest.getValue()))
dbgs() << " (call arg)";
else if (Liveness->isUnifiedRet(Dest.getValue()))
dbgs() << " (ret pre-copy)";
else if (!Cand.UseInDest)
dbgs() << " (ret post-copy)";
dbgs() << "\n");
LiveRange *DestLR = Liveness->getLiveRange(Dest);
LiveRange *SourceLR = 0;
// Source should not be a constant (but could be undef) because
// GenXLowering ensured that all our two address operands and phi incomings
// are not constant.
IGC_ASSERT(!Cand.UseInDest || !isa<Constant>(Source.getValue()) || isa<UndefValue>(Source.getValue()));
SourceLR = Liveness->getLiveRange(Source);
IGC_ASSERT(DestLR);
if (SourceLR == DestLR)
return; // already coalesced
if (SourceLR && SourceLR->Category == DestLR->Category) {
if (IsCopy) {
// For a copy candidate, we can coalesce if the source and destination do
// not copy-interfere, i.e. we do not have a situation where DestLR
// wraps round a loop into a phi use in the same basic block as the phi
// def of SourceLR but after it.
if (!Liveness->copyInterfere(SourceLR, DestLR)) {
Liveness->coalesce(DestLR, SourceLR, /*DisallowCASC=*/ false);
if (auto *CI = dyn_cast<CastInst>(Dest.getValue());
CI && genx::isNoopCast(CI)) {
CopyCoalesced[CI] = Source.getValue();
}
return;
}
} else {
// For a normal candidate, we can coalesce if the source and destination
// do not interfere, i.e. there is no point in the program where both
// LRs are live.
if (!Liveness->twoAddrInterfere(DestLR, SourceLR)) {
// In the coalesce, disallow future call arg special coalescing if this
// is not a call arg coalesce.
Liveness->coalesce(DestLR, SourceLR,
/*DisallowCASC=*/ !isa<Argument>(Dest.getValue()));
return;
}
}
}
#if 0
// Disable call arg special coalescing for now, as it seems to break the FRC_MC example.
if (isa<Argument>(Dest.getValue())
&& SourceLR->Category == DestLR->Category) {
// This is an attempt at call arg coalescing. The two LRs interfere, but
// we can still try for "call arg special coalescing" (CASC). See the
// comment at the top of the file.
if (!DestLR->DisallowCASC) {
// CASC not disallowed. (It would have been disallowed if DestLR had
// already participated in normal coalescing other than CASC.)
// For any call site where SourceLR is not the corresponding call arg,
// check that A is not live.
auto ThisCallSite = cast<CallInst>(Cand->UseInDest->getUser());
auto Callee = ThisCallSite->getCalledFunction();
bool FailedCASC = false;
for (auto ui = Callee->use_begin(), ue = Callee->use_end();
ui != ue; ++ui) {
auto CallSite = cast<CallInst>(ui->getUser());
if (CallSite == ThisCallSite)
continue;
auto OtherArg = SimpleValue(CallSite->getArgOperand(cast<Argument>(
Dest.getValue())->getArgNo()), Dest.getIndex());
auto OtherLR = Liveness->getLiveRange(OtherArg);
// Check whether OtherArg is the same as SourceLR. This check covers
// several cases:
// 1. OtherArg == SourceLR: the other arg is already coalesced with
// our arg, so it would be OK to do CASC.
// 2. OtherArg is DestLR, meaning that the other call arg has already
// been coalesced with the func arg. We cannot do CASC if SourceLR
// and OtherArg interfere, which they do because we already know
// that DestLR interferes with SourceLR.
// 3. OtherArg is something else, meaning that some other value will
// be copied to the func arg here. We cannot do CASC if SourceLR
// and OtherArg interfere.
if (OtherLR == SourceLR)
continue;
if (Liveness->interfere(OtherLR, SourceLR)) {
FailedCASC = true;
break;
}
}
if (!FailedCASC) {
// Can coalesce. Do not disallow future CASC.
Liveness->coalesce(DestLR, SourceLR, /*DisallowCASC=*/ false);
return;
}
}
}
#endif
// Coalescing failed.
LLVM_DEBUG(
if (SourceLR) {
dbgs() << "Live ranges \"";
DestLR->print(dbgs());
dbgs() << "\" and \"";
SourceLR->print(dbgs());
dbgs() << "\"" << (IsCopy ? " copy" : "") << " interfere, not coalescing\n";
} else {
dbgs() << "Need copy of constant \"";
Source.print(dbgs());
dbgs() << "\" to \"";
Dest.printName(dbgs());
dbgs() << "\"\n";
}
);
if (isa<PHINode>(Dest.getValue()))
return; // Candidate is phi; copy insertion done later.
if (isa<Argument>(Dest.getValue()))
return; // Call arg pre-copy, defer copy insertion
if (Liveness->isUnifiedRet(Dest.getValue()))
return; // Return value pre-copy, defer copy insertion
if (!Cand.UseInDest)
return; // Return value post-copy, defer copy insertion
// Ignore SIMD CF
auto DestCategory = Liveness->getLiveRange(Cand.Dest)->getCategory();
if (!vc::isRealOrNoneCategory(DestCategory))
return;
if (auto *CI = dyn_cast<CastInst>(Dest.getValue());
CI && genx::isNoopCast(CI)) {
// A bitcast is normally copy coalesced, which means it cannot fail to
// coalesce. However, if the source is a phi node and the destination
// wraps round the loop and is used in another phi node in the same
// block that is later than the first phi node, then we instead
// try to normal coalesce, which fails because they interfere.
// This happens with a bitcast inserted in GenXLiveRanges to resolve
// an overlapping circular phi, but can happen in other cases too.
unsigned TySz = vc::getTypeSize(Dest.getValue()->getType(), DL).inBytes();
if (isPowerOf2_32(TySz) && TySz <= ST->getGRFByteSize()) {
// This is a bitcast with a legal size for a single copy. We do not
// insert a copy, because GenXCisaBuilder will generate one.
// (GenXLegalization does not legalize a bitcast, so it can be
// illegal size here. We do that on the basis that a bitcast is
// normally copy coalesced.)
return;
}
// Otherwise, it is a bitcast of size more than 1 GRF or non-power-of-two,
// so we insert a copy.
}
// Store info for two address op copy
Instruction *DestInst = cast<Instruction>(Dest.getValue());
ToCopy.emplace_back(Dest, Source, Cand.UseInDest, DestInst, TWOADDRCOPY,
Numbering->getNumber(DestInst), ToCopy.size());
}
/***********************************************************************
* processPhiNodes : add copies for uncoalesced phi node incomings
*/
void GenXCoalescing::processPhiNodes(FunctionGroup *FG)
{
std::vector<PhiCopy> PhiCopies;
for (auto fgi = FG->begin(), fge = FG->end(); fgi != fge; ++fgi) {
Function *F = *fgi;
for (Function::iterator fi = F->begin(), fe = F->end(); fi != fe; ++fi) {
BasicBlock *BB = &*fi;
for (BasicBlock::iterator bi = BB->begin(), be = BB->end(); bi != be; ++bi) {
// Scan the phi nodes at the start of this BB, if any.
PHINode *Phi = dyn_cast<PHINode>(&*bi);
if (!Phi)
break;
// Collect copies to process
analysePhiCopies(Phi, PhiCopies);
}
}
}
// Perform copy of uncoalesced phi node incomings.
// New phis can be created during this, store them.
std::vector<PHINode *> NewPhis;
for (auto Elem : PhiCopies) {
processPhiCopy(Elem.Phi, Elem.IncomingIdx, NewPhis);
}
// Phi copies are resolved. Clean the list.
PhiCopies.clear();
// Process newly created phis. This loop is executed
// when coalescing failed to resolve issues with phis
// in branching join label blocks. Such situation is
// very rare because coalescing tries to solve it
// with the highest priority.
while (!NewPhis.empty()) {
// Collect phi copy candidates
for (auto *Phi : NewPhis) {
analysePhiCopies(Phi, PhiCopies);
}
// Phi copies are collected, clean current Phis worklist
NewPhis.clear();
// Perform copy of uncoalesced phi node incomings.
for (auto Elem : PhiCopies) {
processPhiCopy(Elem.Phi, Elem.IncomingIdx, NewPhis);
}
// Phi copies are resolved. Clean the list.
PhiCopies.clear();
}
}
/***********************************************************************
* analysePhiCopies : for one phi node, collect copies for uncoalesced incomings
*/
void GenXCoalescing::analysePhiCopies(PHINode *Phi,
std::vector<PhiCopy> &ToProcess) {
// Scan each incoming to see if it was successfully coalesced.
LiveRange *DestLR = Liveness->getLiveRange(Phi);
if (!vc::isRealOrNoneCategory(DestLR->getCategory()))
return; // Ignore phi node of EM/RM value.
for (unsigned i = 0, e = Phi->getNumIncomingValues(); i != e; ++i) {
Value *Incoming = Phi->getIncomingValue(i);
// Incoming should not be a constant (but could be undef) because
// GenXPostLegalization and GenXCategory called loadNonSimpleConstants
// to load the non-simple constant incomings, then GenXCategory also
// called GenXConstants::loadConstant for each remaining (simple)
// constant.
if (isa<UndefValue>(Incoming))
continue; // undef, no copy needed
IGC_ASSERT(!isa<Constant>(Incoming));
if (Liveness->getLiveRange(Incoming) == DestLR)
continue; // coalesced, no copy needed
// A phi copy is needed
auto IncomingBlock = Phi->getIncomingBlock(i);
LLVM_DEBUG(dbgs() << "Need phi copy " << Incoming->getName() << " -> "
<< Phi->getName() << " in " << IncomingBlock->getName()
<< "\n");
ToProcess.emplace_back(Phi, i);
}
}
/***********************************************************************
* processPhiCopy : for one phi node incoming, add copy
*/
void GenXCoalescing::processPhiCopy(PHINode *Phi, unsigned Inc,
std::vector<PHINode *> &Phis) {
LiveRange *DestLR = Liveness->getLiveRange(Phi);
Value *Incoming = Phi->getIncomingValue(Inc);
auto *IncomingBlock = Phi->getIncomingBlock(Inc);
// Should be checked in analysePhiCopies
IGC_ASSERT_MESSAGE(vc::isRealOrNoneCategory(DestLR->getCategory()),
"Should be checked earlier!");
IGC_ASSERT_MESSAGE(!isa<UndefValue>(Incoming), "Should be checked earlier!");
IGC_ASSERT_MESSAGE(!isa<Constant>(Incoming), "Should be checked earlier!");
// Check it again: something could change
if (Liveness->getLiveRange(Incoming) == DestLR) {
LLVM_DEBUG(dbgs() << "Already coalesced " << Incoming->getName() << " -> "
<< Phi->getName() << " in " << IncomingBlock->getName()
<< "\n");
return;
}
LLVM_DEBUG(dbgs() << "Copying " << Incoming->getName() << " -> "
<< Phi->getName() << " in " << IncomingBlock->getName()
<< "\n");
// Handle branching join label block separately
if (GotoJoin::isBranchingJoinLabelBlock(IncomingBlock)) {
processPhiBranchingJoinLabelCopy(Phi, Inc, Phis);
return;
}
DominatorTree *DomTree = getDomTree(IncomingBlock->getParent());
Instruction *InsertPoint = IncomingBlock->getTerminator();
InsertPoint = GotoJoin::getLegalInsertionPoint(InsertPoint, DomTree);
if (auto *I = dyn_cast<Instruction>(Incoming)) {
// This should not happen for good BBs (not join blocks)
// if DFG is correct.
IGC_ASSERT_MESSAGE(DomTree->dominates(I->getParent(), InsertPoint->getParent()),
"Dominance corrupted!");
}
// Store info for copy
ToCopy.emplace_back(SimpleValue(Phi), SimpleValue(Incoming),
&Phi->getOperandUse(Inc), InsertPoint, PHICOPY,
Numbering->getNumber(InsertPoint), ToCopy.size());
}
/***********************************************************************
* processPhiBranchingJoinLabelCopy : for one phi node incoming, add copy
* for branching join label incoming BB case
*/
void GenXCoalescing::processPhiBranchingJoinLabelCopy(
PHINode *Phi, unsigned Inc, std::vector<PHINode *> &Phis) {
LiveRange *DestLR = Liveness->getLiveRange(Phi);
Value *Incoming = Phi->getIncomingValue(Inc);
auto *IncomingBlock = Phi->getIncomingBlock(Inc);
// Should be checked in analysePhiCopies
IGC_ASSERT_MESSAGE(vc::isRealOrNoneCategory(DestLR->getCategory()),
"Should be checked earlier!");
IGC_ASSERT_MESSAGE(!isa<UndefValue>(Incoming), "Should be checked earlier!");
IGC_ASSERT_MESSAGE(!isa<Constant>(Incoming), "Should be checked earlier!");
// Should be checked in processPhiCopy
IGC_ASSERT_MESSAGE(Liveness->getLiveRange(Incoming) != DestLR,
"Should be checked earlier!");
IGC_ASSERT_MESSAGE(GotoJoin::isBranchingJoinLabelBlock(IncomingBlock),
"Should be checked earlier!");
LLVM_DEBUG(dbgs() << "Handling branching join label block case\n");
DominatorTree *DomTree = getDomTree(IncomingBlock->getParent());
Instruction *InsertPoint = IncomingBlock->getTerminator();
InsertPoint = GotoJoin::getLegalInsertionPoint(InsertPoint, DomTree);
if (auto *PhiPred = dyn_cast<PHINode>(Incoming)) {
// In case when pred is Phi, it is possible to meet Phi in
// branching join blocks since such Phi does not brake
// SIMD CF Conformance. If such situation happens, we cannot
// perform copy of a phi value copy, we need to perform copy
// on all its incoming values. To do that, copy Phi and add
// it to Phis worklist.
//
// This situation is detected via corrupted dominance.
if (!DomTree->dominates(PhiPred->getParent(), InsertPoint->getParent())) {
auto *PhiCopy = copyNonCoalescedPhi(PhiPred, Phi);
IGC_ASSERT_MESSAGE(PhiCopy, "Invalid phi copy!");
Phis.push_back(PhiCopy);
return;
}
}
if (auto *I = dyn_cast<Instruction>(Incoming)) {
// This should not happen for good BBs (not join blocks)
// if DFG is correct.
//
// For join block, def must be somewhere before it
// because of SIMD CF Conformance. Case for Phi is
// described and handled above.
IGC_ASSERT_MESSAGE(DomTree->dominates(I->getParent(), InsertPoint->getParent()),
"Dominance corrupted!");
}
// Store info for copy
ToCopy.emplace_back(SimpleValue(Phi), SimpleValue(Incoming),
&Phi->getOperandUse(Inc), InsertPoint,
PHICOPY_BRANCHING_JP, Numbering->getNumber(InsertPoint),
ToCopy.size());
}
/***********************************************************************
* copyNonCoalescedPhi : copy PhiPred and coalesce copy's LR with
* PhiSucc's LR
*/
PHINode *GenXCoalescing::copyNonCoalescedPhi(PHINode *PhiPred,
PHINode *PhiSucc) {
// Perform copy
auto *PhiCopy = cast<PHINode>(PhiPred->clone());
PhiCopy->insertBefore(PhiPred->getNextNode());
PhiCopy->setName(PhiPred->getName() + ".copy");
Numbering->setNumber(PhiCopy, Numbering->getNumber(PhiPred));
// Handle LRs
Liveness->buildLiveRange(PhiCopy);
LiveRange *DestLR = Liveness->getLiveRange(PhiSucc);
LiveRange *NewLR = Liveness->getLiveRange(PhiCopy);
Liveness->coalesce(DestLR, NewLR, false);
// Update incoming values
for (unsigned i = 0, e = PhiSucc->getNumIncomingValues(); i != e; ++i) {
Value *IncValue = PhiSucc->getIncomingValue(i);
if (IncValue == PhiPred)
PhiSucc->setIncomingValue(i, PhiCopy);
}
return PhiCopy;
}
/***********************************************************************
* processCalls : insert copies where necessary for call args and ret values
*
* This scans all the calls, inserting copies where necessary for call arg
* pre-copies and return value pre- and post-copies.
*
* We need to do them in one go here because
* 1. a call arg or return value pre-copy coalescing candidate covers
* possibly multiple sites where the same LR input is used, without giving
* any way of getting back to them all;
* 2. we want the inserted copies to be in the order that live range
* computation assumed they would appear.
*/
void GenXCoalescing::processCalls(FunctionGroup *FG)
{
// For each subroutine...
for (auto fgi = FG->begin() + 1, fge = FG->end(); fgi != fge; ++fgi) {
Function *F = *fgi;
// For each call site...
for (auto *U: F->users()) {
if (auto *CI = genx::checkFunctionCall(U, F)) {
// For each func arg...
unsigned ArgIdx = 0;
for (auto ai = F->arg_begin(), ae = F->arg_end(); ai != ae;
++ai, ++ArgIdx) {
Argument *Arg = &*ai;
if (Arg->use_empty()) {
// Arg is unused inside the subroutine. Do not try and process
// further, as its live range probably does not have a category.
continue;
}
Value *CallArg = CI->getOperand(ArgIdx);
if (isa<UndefValue>(CallArg)) {
// Call arg undefined. No coalescing needed.
continue;
}
// For each SimpleValue in the func arg...
for (unsigned StructIdx = 0,
se = IndexFlattener::getNumElements(Arg->getType());
StructIdx != se; ++StructIdx) {
auto FuncArgSV = SimpleValue(Arg, StructIdx);
auto CallArgSV = SimpleValue(CallArg, StructIdx);
// See if they are coalesced.
auto DestLR = Liveness->getLiveRange(FuncArgSV);
auto SourceLR = Liveness->getLiveRangeOrNull(CallArgSV);
if (!SourceLR)
// This probably means that source is undef at this index,
// so no need to insert copies
continue;
if (!DestLR || DestLR == SourceLR || F == CI->getFunction())
continue;
if (!vc::isRealOrNoneCategory(DestLR->getCategory()))
continue; // Called function arg is EM.
// Need to insert a copy. Give it the number of the arg's pre-copy
// slot.
LLVM_DEBUG(showCoalesceFail(CallArgSV, CI->getDebugLoc(),
"call arg", DestLR, SourceLR));
unsigned Num =
Numbering->getArgPreCopyNumber(CI, ArgIdx, StructIdx);
Instruction *NewCopy =
insertCopy(CallArgSV, DestLR, CI, "callarg.precopy", Num);
NewCopy = insertIntoStruct(Arg->getType(), StructIdx,
CI->getOperand(ArgIdx), NewCopy, CI);
// Replace operand in call.
IGC_ASSERT(CI->getOperand(ArgIdx)->getType() == NewCopy->getType());
CI->setOperand(ArgIdx, NewCopy);
// No need to extend the live range like we do in the two address op
// case in processCandidate(). The live range of a func arg already
// starts at each point where a copy might need to be inserted.
}
}
// Now check the return value post-copy.
//
// The code to handle a coalesce failure in a return value post-copy
// is different to all other cases of coalesce failure, which are
// pre-copy. We need to ensure that the post-copied value is in the
// original live range for the original value (the return value),
// and all the original value's users are changed to use the post-copied
// value instead. The original value (the return value) gets moved out
// of its live range and put into that of the unified return value.
//
// If the return value is a struct, all the above happens for each
// struct element, with the extra complication of more new values to
// handle because of the extractvalue and insertvalue instructions we
// need to insert.
//
// First remember all uses of the return value, because we want to
// replace them after adding new ones below. Remember if they are
// all extractvalue with a non-struct result (which should usually be
// the case because GenXLowering removes most structs).
SmallVector<Use *, 8> CIUses;
bool AllUsesAreExtract = isa<StructType>(CI->getType());
for (auto ui = CI->use_begin(), ue = CI->use_end(); ui != ue; ++ui) {
auto EV = dyn_cast<ExtractValueInst>(ui->getUser());
if (!EV || isa<StructType>(EV->getType()))
AllUsesAreExtract = false;
CIUses.push_back(&*ui);
}
Instruction *InsertBefore = CI->getNextNode();
Value *StructValue = CI;
SmallVector<LiveRange *, 8> PreviousElements;
// For each SimpleValue in the return value...
for (unsigned StructIdx = 0,
se = IndexFlattener::getNumElements(CI->getType());
StructIdx != se; ++StructIdx) {
auto UnifiedSV = SimpleValue(Liveness->getUnifiedRet(F), StructIdx);
auto SV = SimpleValue(CI, StructIdx);
// See if (the element in) the returned value is dead, or successfully
// coalesced with (the element in) the unified return value.
auto DestLR = Liveness->getLiveRangeOrNull(SV);
PreviousElements.push_back(DestLR);
if (!DestLR)
continue; // dead
auto SourceLR = Liveness->getLiveRange(UnifiedSV);
if (DestLR == SourceLR)
continue; // coalesced
IGC_ASSERT(SourceLR);
if (!vc::isRealOrNoneCategory(SourceLR->getCategory()))
continue; // Unified return value is EM, ignore.
// Remove (the element of) CI, the actual return value, from its
// own live range, and add it instead to the unified return value.
// insertCopy() will add the new value to DestLR (what
// was the LR for the element of CI).
Liveness->removeValueNoDelete(SV);
Liveness->setLiveRange(SV, SourceLR);
// Need to insert a copy. Give it the number of the post-copy slot.
LLVM_DEBUG(showCoalesceFail(SimpleValue(CI, StructIdx),
CI->getDebugLoc(), "ret postcopy", DestLR,
SourceLR));
unsigned Num = Numbering->getRetPostCopyNumber(CI, StructIdx);
SimpleValue Source(CI, StructIdx);
Instruction *NewCopy =
insertCopy(Source, DestLR, InsertBefore, "retval.postcopy", Num);
CallToRetVal[Source] = NewCopy;
IGC_ASSERT(NewCopy);
if (AllUsesAreExtract) {
// For a struct ret value where all the uses are non-struct
// extractvalue, replace uses of the extractvalues with NewCopy.
// Doing this, rather than calling insertIntoStruct() and letting
// the existing extractvalue extract it again, does not improve the
// code generated by the compiler (insertvalue/extractvalue do not
// generate any code), but it does make the IR simpler and easier
// to understand in a dump.
for (unsigned i = 0, e = CIUses.size(); i != e; ++i) {
if (!CIUses[i])
continue;
auto EV = cast<ExtractValueInst>(CIUses[i]->getUser());
if (StructIdx ==
IndexFlattener::flatten(cast<StructType>(CI->getType()),
EV->getIndices())) {
NewCopy->takeName(EV);
replaceAllUsesWith(EV, NewCopy);
if (EV == InsertBefore)
InsertBefore = InsertBefore->getNextNode();
Liveness->removeValue(SimpleValue(EV));
EV->eraseFromParent();
CIUses[i] = 0;
}
}
} else {
// If this is a struct return value, we also need to insertvalue,
// creating a new struct value.
StructValue = insertIntoStruct(CI->getType(), StructIdx,
StructValue, NewCopy, InsertBefore);
// Also, for this and previously seen elements that are not dead,
// add that element of StructValue (the new insertvalue) to the live
// range.
if (StructValue != NewCopy) {
for (unsigned k = 0, ke = PreviousElements.size(); k != ke; ++k) {
if (PreviousElements[k])
Liveness->setLiveRange(SimpleValue(StructValue, k),
PreviousElements[k]);
}
}
}
}
if (!AllUsesAreExtract) {
// Replace uses of the whole return value that existed before we added
// more uses above.
for (unsigned i = 0, e = CIUses.size(); i != e; ++i) {
IGC_ASSERT(CIUses[i]->get()->getType() == StructValue->getType());
*CIUses[i] = StructValue;
}
}
}
}
if (F->getReturnType()->isVoidTy())
continue; // no return value from this func
// For each return inst in the func...
for (auto fi = F->begin(), fe = F->end(); fi != fe; ++fi) {
auto RI = dyn_cast<ReturnInst>(fi->getTerminator());
if (!RI)
continue;
Value *Input = RI->getOperand(0);
// *.predef.reg intrinsics should not participate in coalescing
// since they don't have any LR
if (isa<UndefValue>(Input) || GenXIntrinsic::isReadWritePredefReg(Input))
continue;
Value *UnifiedRet = Liveness->getUnifiedRet(F);
// For each struct element in the return value...
for (unsigned StructIdx = 0,
StructEnd = IndexFlattener::getNumElements(UnifiedRet->getType());
StructIdx != StructEnd; ++StructIdx) {
auto DestLR = Liveness->getLiveRange(SimpleValue(UnifiedRet, StructIdx));
auto SourceLR = Liveness->getLiveRange(SimpleValue(Input, StructIdx));
if (DestLR == SourceLR)
continue; // coalesced
// Need to insert a copy. Give it the number of the ret pre-copy slot.
LLVM_DEBUG(showCoalesceFail(SimpleValue(Input, StructIdx),
RI->getDebugLoc(), "ret precopy", DestLR,
SourceLR));
unsigned Num = Numbering->getNumber(RI) - StructEnd + StructIdx;
Instruction *NewCopy = insertCopy(SimpleValue(Input, StructIdx),
DestLR, RI, "retval.precopy", Num);
NewCopy = insertIntoStruct(UnifiedRet->getType(), StructIdx,
RI->getOperand(0), NewCopy, RI);
// Replace operand in call.
IGC_ASSERT(RI->getOperand(0)->getType() == NewCopy->getType());
RI->setOperand(0, NewCopy);
// No need to extend the live range like we do in the two address op
// case in processCandidate(). The live range of the unified return
// value already starts at each point where a copy might need to be
// inserted.
}
}
}
}
/***********************************************************************
* processKernelArgs : add a copy for each kernel arg that is not aligned enough
*/
void GenXCoalescing::processKernelArgs(FunctionGroup *FG)
{
auto F = FG->getHead();
if (!vc::isKernel(F))
return;
Instruction *InsertBefore = F->front().getFirstNonPHIOrDbg();
vc::KernelMetadata KM{F};
unsigned Idx = 0;
for (auto ai = F->arg_begin(), ae = F->arg_end(); ai != ae; ++ai) {
if (KM.shouldSkipArg(Idx++))
continue;
auto Arg = &*ai;
auto LR = Liveness->getLiveRange(Arg);
if (!(LR->Offset & ((1U << LR->LogAlignment) - 1)))
continue; // aligned enough
// Insert a copy and give the original arg its own new live range. This
// leaves the original live range still live from the start of the
// function, and thus interfering with the new live range for the arg,
// but that doesn't matter.
SmallVector<Use *, 4> Uses;
for (auto ui = Arg->use_begin(), ue = Arg->use_end(); ui != ue; ++ui)
Uses.push_back(&*ui);
unsigned Num = Numbering->getKernelArgCopyNumber(Arg);
auto Copy = insertCopy(Arg, LR, InsertBefore, "argcopy", Num);
Liveness->removeValueNoDelete(Arg);
for (auto ui = Uses.begin(), ue = Uses.end(); ui != ue; ++ui)
**ui = Copy;
auto NewLR = Liveness->getOrCreateLiveRange(Arg);
NewLR->setCategory(LR->getCategory());
NewLR->push_back(Numbering->getNumber(F), Num);
NewLR->Offset = LR->Offset;
LR->Offset = 0;
}
}
void GenXCoalescing::coalesceOutputArgs(FunctionGroup *FG) {
auto *F = FG->getHead();
if (!vc::isKernel(F))
return;
vc::KernelMetadata KM{F};
SmallVector<Value*, 4> OutputArgs;
for(unsigned i = 0; i < KM.getNumArgs(); ++i)
if (KM.isOutputArg(i))
OutputArgs.push_back(F->arg_begin() + i);
if (OutputArgs.empty())
return;
auto GetNextGenXOutput = [](Instruction *StartFrom) -> CallInst* {
while(StartFrom) {
if (auto CI = dyn_cast<CallInst>(StartFrom))
if (GenXIntrinsic::getGenXIntrinsicID(CI) ==
GenXIntrinsic::genx_output_1)
return CI;
StartFrom = StartFrom->getNextNode();
};
return nullptr;
};
// Iterate over all basic blocks with genx.output.1 intrinsics and coalesce
// corresponding output argument with intrinsic argument (assuming that their
// number and ordering are exactly the same).
for (auto &BB : *F) {
CallInst *CI = GetNextGenXOutput(BB.getFirstNonPHI());
if (!CI)
continue;
for (auto Arg : OutputArgs) {
IGC_ASSERT_MESSAGE(CI, "No genx.output.1 intrinsic for output argument");
// This is the final value stored into the output argument.
// If this is coalesced into kernel argument, nothing to do.
// Otherwise, insert a copy.
Value *V = CI->getArgOperand(0);
LiveRange *LR1 = Liveness->getLiveRangeOrNull(V);
LiveRange *LR2 = Liveness->getLiveRange(Arg);
auto coalesceInput = [=]() {
// When LR1 is null, the input value should be Undef. Otherwise, it
// should be loaded as a constant.
if (LR1 == nullptr || LR1 == LR2)
return false;
if (!Liveness->interfere(LR1, LR2)) {
Liveness->coalesce(LR1, LR2, false);
return false;
}
// A copy is needed.
return true;
};
if (coalesceInput()) {
// Insert copy and add a short live range for copy-out.
unsigned Num = Numbering->getNumber(CI);
auto Copy = insertCopy(V, LR2, CI, "copyout", Num);
CI->setArgOperand(0, Copy);
LR2->push_back(Num, Num + 1);
LR2->sortAndMerge();
}
CI = GetNextGenXOutput(CI->getNextNode());
}
}
}
void GenXCoalescing::coalesceCallables() {
for (auto CI : Callables) {
auto NI = CI->getNextNode();
// if the next instruction is a CM-output intrinsic,
// we don't really need that cm-output because CMCallable can serve as
// the anchor for preventing DCE
while (true) {
if (NI && isa<CallInst>(NI)) {
CallInst *OC = cast<CallInst>(NI);
if (GenXIntrinsic::getGenXIntrinsicID(OC) == GenXIntrinsic::genx_output_1) {
NI = NI->getNextNode();
OC->eraseFromParent();
continue;
}
}
break;
}
auto Nxt = CI->getNextNode();
auto Ret = Nxt;
// 1. Possible next node is branch to return
auto Br = dyn_cast<BranchInst>(Nxt);
if (Br && Br->isUnconditional())
Ret = &Br->getSuccessor(0)->front();
// 2. Possible several next nodes are GenXIntrinsic::genx_output_1
while (GenXIntrinsic::getGenXIntrinsicID(Ret) == GenXIntrinsic::genx_output_1)
Ret = Ret->getNextNode();
// Check if next node is correct return insn
if (!Ret || !isa<ReturnInst>(Ret)) {
// getRetVal could not determine what happens to this return value.
DiagnosticSeverity DS_Type = ST->warnCallable() ? DS_Warning : DS_Error;
vc::diagnose(CI->getContext(), "GenXCoalescing",
"Callable Call must be right before function return",
DS_Type, vc::WarningName::Generic, CI);
}
Function *F = CI->getParent()->getParent();
IGC_ASSERT(vc::isKernel(F));
vc::KernelMetadata KM{F};
unsigned Idx = 0; // kernel argument index
unsigned i = 0; // call argument index
for (auto I = F->arg_begin(), E = F->arg_end(); I != E; ++I) {
if (!KM.isFastCompositeArg(Idx++))
continue;
// This is the final value stored into the output argument.
// If this is coalesced into kernel argument, nothing to do.
// Otherwise, insert a copy.
Value *V = CI->getArgOperand(i);
Value *Arg = &*I;
LiveRange *LR1 = Liveness->getLiveRangeOrNull(V);
LiveRange *LR2 = Liveness->getLiveRange(Arg);
auto coalesceInput = [=]() {
// When LR1 is null, the input value should be Undef. Otherwise, it
// should be loaded as a constant.
if (LR1 == nullptr || LR1 == LR2)
return false;
if (!Liveness->interfere(LR1, LR2)) {
Liveness->coalesce(LR1, LR2, false);
return false;
}
// A copy is needed.
return true;
};
if (coalesceInput()) {
// Insert copy and add a short live range for copy-out.
unsigned Num = Numbering->getNumber(CI);
auto Copy = insertCopy(V, LR2, CI, "copyout", Num);
CI->setArgOperand(i, Copy);
LR2->push_back(Num, Num + 1);
LR2->sortAndMerge();
}
++i;
}
}
}
void GenXCoalescing::coalesceGlobalLoads(FunctionGroup *FG) {
for (auto &GV : FG->getModule()->globals()) {
if (!GV.hasAttribute(genx::FunctionMD::GenXVolatile))
continue;
LiveRange *LR1 = Liveness->getLiveRangeOrNull(&GV);
if (!LR1)
continue;
// Collect all loads.
SetVector<Instruction *> LoadsInGroup;
for (auto UI : GV.users()) {
if (auto LI = dyn_cast<LoadInst>(UI)) {
IGC_ASSERT(LI->getPointerOperand() == &GV);
auto Fn = LI->getParent()->getParent();
// Check this load is inside the group.
if (std::find(FG->begin(), FG->end(), Fn) != FG->end())
LoadsInGroup.insert(LI);
}
// Global variable is used in a constexpr.
if (&GV != vc::getUnderlyingGlobalVariable(UI))
continue;
for (auto U : UI->users())
if (auto LI = dyn_cast<LoadInst>(U)) {
auto Fn = LI->getParent()->getParent();
// Check this load is inside the group.
if (std::find(FG->begin(), FG->end(), Fn) != FG->end())
LoadsInGroup.insert(LI);
}
}
// Do coalescing.
for (auto LI : LoadsInGroup) {
LiveRange *LR2 = Liveness->getLiveRange(LI);
LR1 = Liveness->coalesce(LR1, LR2, false);
}
}
}
/***********************************************************************
* insertCopy : insert a copy of a non-struct value
*
* Enter: Input = value to copy
* LR = live range to add the new value to
* InsertBefore = insert copy before this inst
* Name = name to give the new value
* Number = number to give the new instruction(s)
*
* Return: The new copy instruction
*
* This inserts multiple copies if the input value is a vector that is
* bigger than two GRFs or a non power of two size.
*/
Instruction *GenXCoalescing::insertCopy(SimpleValue Input, LiveRange *LR,
Instruction *InsertBefore, StringRef Name, unsigned Number)
{
IGC_ASSERT(!isa<Constant>(Input.getValue()));
if (auto ST = dyn_cast<StructType>(Input.getValue()->getType())) {
// Input is a struct element. First extract it. This
// extract is created coalesced by adding it to the live
// range of the struct element. An extractvalue is always
// coalesced and never generates code.
auto Indices = IndexFlattener::unflatten(ST, Input.getIndex());
Instruction *Extract = ExtractValueInst::Create(Input.getValue(), Indices,
"twoaddr.extract", InsertBefore);
auto SourceLR = Liveness->getLiveRange(Input);
IGC_ASSERT(SourceLR);
Liveness->setLiveRange(SimpleValue(Extract), SourceLR);
Input = SimpleValue(Extract);
}
++NumInsertedCopies;
return Liveness->insertCopy(Input.getValue(), LR, InsertBefore, Name, Number,
ST);
}
/***********************************************************************
* insertIntoStruct : create an insertvalue to insert a new value into a
* struct
*
* Enter: Ty = type of putative struct
* FlattenedIndex = flattened index within the struct
* OldStruct = old value of struct
* NewVal = new value to insert into it
* InsertBefore = where to insert new instruction before
*
* Return: the new InsertValueInst
*
* If Ty is not a struct type, this just returns NewVal.
*/
Instruction *GenXCoalescing::insertIntoStruct(Type *Ty,
unsigned FlattenedIndex, Value *OldStruct, Instruction *NewVal,
Instruction *InsertBefore)
{
auto ST = dyn_cast<StructType>(Ty);
if (!ST)
return NewVal;
// We're copying into struct element. We need to add an insertvalue.
auto Indices = IndexFlattener::unflatten(ST, FlattenedIndex);
return InsertValueInst::Create(OldStruct, NewVal,
Indices, "coalescefail.insert", InsertBefore);
}
/***********************************************************************
* showCoalesceFail : output a message to say that coalescing has failed
*/
void GenXCoalescing::showCoalesceFail(SimpleValue V, const DebugLoc &DL,
const char *Intro, LiveRange *DestLR,
LiveRange *SourceLR) {
if (isa<Constant>(V.getValue()))
return;
if (V.getType()->getPrimitiveSizeInBits() >=
GenXShowCoalesceFailThreshold * 8U) {
dbgs() << "GenX " << Intro << " coalesce failed on ";
V.printName(dbgs());
dbgs() << " size " << V.getType()->getPrimitiveSizeInBits() / 8U
<< " bytes at ";
DL.print(dbgs());
dbgs() << "\nDestLR: " << *DestLR << "\nSourceLR: " << *SourceLR << "\n";
}
}
/***********************************************************************
* applyCopies : insert copies according to collected data.
*
* Postponed insertion is possible during coalescing because all
* liveranges already contains insertion points. The only possible
* exception is Branching Join Blocks copy: the copy will be
* created on joins falling path.
*/
void GenXCoalescing::applyCopies() {
LLVM_DEBUG(dbgs() << "Applying copies\n");
if (GenXCoalescingLessCopies) {
LLVM_DEBUG(dbgs() << "Emitting optimized copies\n");
applyCopiesOptimized();
} else {
LLVM_DEBUG(dbgs() << "Emitting all copies\n");
// Just emit all copies
for (auto &CD : ToCopy) {
createCopy(CD);
}
}
LLVM_DEBUG(dbgs() << "Finished applying copies\n");
}
/***********************************************************************
* applyCopiesOptimized : insert copies according to collected data.
* Try to use less number of copies if possible.
*
* There are several assumptions in current algorithm:
* - Possible bitcast sequences (bitcast->bitcast) are not handled.
* Assuming that they were resolved earlier as redundant. However,
* such sequences would not brake functionality, but can block
* possible redundant copy elimination.
* - The most suitable copy candidate is handled only. This is
* done to simplify algorithm complexity in the first place.
* Also, this is the most common case that can happen in single
* liverange.
* - The most suitable copy candidate is the one with smaller
* number. This comes from GenX blocks layout.
* - The most suitable copy candidate is the latest created copy.
* That is to prevent unnecessary liverange interference. This
* comes from the previous two bullets.
*
* These assumptions represent heuristic for the basic case when
* redundant copies appear. It is possible that there are some
* other cases to be optimized. However, the good thing here is
* that current algorithm cannot make situation any worse compared to
* non-optimized copy generator: the number of generated copies is
* less or equal to one produced by non-optimized generator. Also,
* this optimization doesn't affect any existing insertion points.
*
* The algorithm does the following steps:
* 1. Sort CopyData (see sortCopyData for details)
* - It defines the traverse order.
* 2. Create initial copy
* 3. Try to apply it in other users
* - There are several checks: same LR, same value, dominance,
* interference. Same value check takes into account possible
* copy coalescing that could be applied on source
* value earlier.
* 4. Repeat from 2 on failure.
*/
void GenXCoalescing::applyCopiesOptimized() {
// Sort ToCopy array for simple traverse
SortedCopies SortedCD = getSortedCopyData();
// The loop hierarchy looks quite scary. However,
// it is still simple linear traverse through all copies.
// Traverse all LRs
for (auto LRDataIt : SortedCD.CopiesPerLR) {
// Traverse all copy values
for (auto CDIt : LRDataIt.second.CopiesPerValue) {
// Finally we got into current copy candidates.
// Traverse all copy data.
applyCopiesForValue(CDIt.second);
}
}
}
/***********************************************************************
* applyCopiesForValue: apply copies for CDSet set of copies candidates.
*
* For more details, check applyCopiesOptimized description.
*/
void GenXCoalescing::applyCopiesForValue(const std::set<CopyData> &CDSet) {
auto It = CDSet.begin(), EndIt = CDSet.end();
while (It != EndIt) {
// Create initial copy.
SimpleValue DestSV = It->Dest;
SimpleValue SourceSV = It->Source;
Instruction *CurrCopy = createCopy(*It);
unsigned Idx = It->Source.getIndex();
// Unlink copy from LR and build its own one. This LR
// is used to detect possible interference.
auto CopySV = SimpleValue(CurrCopy, Idx);
Liveness->removeValueNoDelete(CopySV);
auto *CopyLR = Liveness->buildLiveRange(CopySV);
auto *DestLR = Liveness->getLiveRange(DestSV);
LLVM_DEBUG(dbgs() << "Created copy for LR: "; DestLR->print(dbgs());
dbgs() << "\nValue that was copied: "; SourceSV.print(dbgs());
dbgs() << "\nCopy inst: "; CopySV.print(dbgs()); dbgs() << "\n");
// Try to apply this copy in other copy candidates.
It = mergeCopiesTillFailed(CopySV, ++It, EndIt);
LLVM_DEBUG(dbgs() << "Finished processing all candidates for that copy\n";
dbgs() << "Final copy val LR: "; CopyLR->print(dbgs());
dbgs() << "\n");
// All possible copies were handled. Coalesce copy with its dst.
DestLR = Liveness->coalesce(DestLR, CopyLR, false);
LLVM_DEBUG(dbgs() << "Updated dest LR: "; DestLR->print(dbgs());
dbgs() << "\n");
}
}
/***********************************************************************
* mergeCopiesTillFailed: merge all possible copy users until failure
* is met.
*
* Returns iterator to the element where merge has stopped or EndIt
* in case when all elements were handled.
*
* For more details, check applyCopiesOptimized description.
*/
template <typename Iter>
Iter GenXCoalescing::mergeCopiesTillFailed(SimpleValue CopySV, Iter BeginIt,
Iter EndIt) {
if (BeginIt == EndIt)
return EndIt;
auto *CopyLR = Liveness->buildLiveRange(CopySV);
auto *DestLR = Liveness->getLiveRange(BeginIt->Dest);
Instruction *CurrCopy = cast<Instruction>(CopySV.getValue());
for (auto It = BeginIt; It != EndIt; ++It) {
// Interference detection
if (Liveness->interfere(DestLR, CopyLR)) {
LLVM_DEBUG(dbgs() << "Interference detected\n");
return It;
}
// Dominance detection
if (!getDomTree(CurrCopy->getFunction())
->dominates(CurrCopy, cast<Instruction>(It->Dest.getValue()))) {
LLVM_DEBUG(dbgs() << "Copy doesn't dominate user\n");
return It;
}
// Copy may be redundant. Check interference after copy applied.
LLVM_DEBUG(dbgs() << "Current copy value LR: "; CopyLR->print(dbgs());
dbgs() << "\nChecking updated interference\n");
Value *OldValue = It->UseInDest->get();
BitCastInst *BCI = nullptr;
if (It->Source.getValue()->getType() == CurrCopy->getType()) {
*It->UseInDest = CurrCopy;
} else {
IGC_ASSERT_MESSAGE(It->Source.getIndex() == 0,
"Must be non-aggregated type: should come from bitcast");
IRBuilder<> Builder(CurrCopy->getNextNode());
BCI = cast<BitCastInst>(Builder.CreateBitCast(
CurrCopy, It->Source.getValue()->getType(), "red_copy_type_conv"));
Numbering->setNumber(BCI, Numbering->getNumber(CurrCopy));
*It->UseInDest = BCI;
auto *BitcastLR = Liveness->buildLiveRange(SimpleValue(BCI, 0));
CopyLR = Liveness->coalesce(CopyLR, BitcastLR, false);
}
Liveness->rebuildLiveRange(CopyLR);
if (!Liveness->twoAddrInterfere(DestLR, CopyLR)) {
LLVM_DEBUG(dbgs() << "Success. Moving to next candidate\n");
continue;
}
// Undo copy elimination
LLVM_DEBUG(dbgs() << "Interference detected\n");
*It->UseInDest = OldValue;
if (BCI) {
Liveness->removeValue(BCI);
BCI->eraseFromParent();
}
Liveness->rebuildLiveRange(CopyLR);
return It;
}
return EndIt;
}
/***********************************************************************
* getSortedCopyData : sort CopyData for optimizal traverse.
*
* The idea is to group CopyData in the following hierarchy:
* - Destination LR
* - Value to be copied
* - Copy data with the same Source Idx
* - Copy data sorted by instruction Num
*
* This is simply done by adding data into SortHelper. See
* SortedCopies struct implementation for details.
*/
SortedCopies GenXCoalescing::getSortedCopyData() {
SortedCopies SortHelper;
std::for_each(ToCopy.begin(), ToCopy.end(), [&](auto &CD) {
LiveRange *DestLR = Liveness->getLiveRange(CD.Dest);
Value *SourceVal = CD.Source.getValue();
// Apply copy coalesced value for source
if (Instruction *CopyInst = dyn_cast<Instruction>(SourceVal)) {
if (CopyCoalesced.count(CopyInst))
SourceVal = CopyCoalesced[CopyInst];
}
SortHelper.insertData(DestLR, SourceVal, CD);
});
return SortHelper;
}
/***********************************************************************
* createCopy : insert copy according to collected data.
*
* Only twoaddr and phi copies are handled now.
*/
Instruction *GenXCoalescing::createCopy(const CopyData &CD) {
LiveRange *DestLR = Liveness->getLiveRange(CD.Dest);
LiveRange *SourceLR = Liveness->getLiveRange(CD.Source);
SimpleValue Source = CD.Source;
if (auto It = CallToRetVal.find(Source); It != CallToRetVal.end())
Source = SimpleValue{It->second};
Instruction *NewCopy = nullptr;
switch (CD.CopyT) {
case PHICOPY:
case PHICOPY_BRANCHING_JP: {
PHINode *Phi = dyn_cast<PHINode>(CD.Dest.getValue());
IGC_ASSERT_MESSAGE(Phi, "Expected PHI");
unsigned Num =
(CD.CopyT == PHICOPY)
? Numbering->getPhiNumber(
Phi, Phi->getIncomingBlock(CD.UseInDest->getOperandNo()))
: Numbering->getNumber(CD.InsertPoint);
LLVM_DEBUG(showCoalesceFail(CD.Dest, CD.InsertPoint->getDebugLoc(), "phi",
DestLR, SourceLR));
NewCopy = insertCopy(Source, DestLR, CD.InsertPoint, "phicopy", Num);
Phi->setIncomingValue(CD.UseInDest->getOperandNo(), NewCopy);
break;
}
case TWOADDRCOPY: {
// Insert the copy now for a two address op. Give it the number of the
// pre-copy slot, which is one less than the number of the two address
// instruction.
Instruction *DestInst = cast<Instruction>(CD.Dest.getValue());
LLVM_DEBUG(showCoalesceFail(CD.Dest, DestInst->getDebugLoc(), "two address",
DestLR, SourceLR));
NewCopy = insertCopy(Source, DestLR, DestInst, "twoaddr",
Numbering->getNumber(DestInst) - 1);
NewCopy =
insertIntoStruct(CD.UseInDest->get()->getType(), CD.Dest.getIndex(),
*CD.UseInDest, NewCopy, DestInst);
// Replace the use of the old source.
IGC_ASSERT(CD.UseInDest->get()->getType() == NewCopy->getType());
*CD.UseInDest = NewCopy;
// No need to extend the live range, as the result of the two address op was
// already marked as defined at the pre-copy slot.
break;
}
default:
IGC_ASSERT_EXIT_MESSAGE(0, "Unknown copy type!");
}
if (CD.CopyT == PHICOPY_BRANCHING_JP) {
// Extend liverange: we skipped some basic blocks
Liveness->rebuildLiveRange(DestLR);
}
IGC_ASSERT_MESSAGE(NewCopy, "Bad copy");
return NewCopy;
}
/***********************************************************************
* replaceAllUsesWith : replace all uses of OldInst with new instruction
* with regard to GenXCoalescing structs
*/
void GenXCoalescing::replaceAllUsesWith(Instruction *OldInst,
Instruction *NewInst) {
for (auto &&CD : ToCopy) {
if (CD.InsertPoint == OldInst)
CD.InsertPoint = cast<Instruction>(NewInst);
}
ToCopy.erase(std::remove_if(ToCopy.begin(), ToCopy.end(),
[&](CopyData const &CD) {
if (CD.Dest.getValue() == OldInst)
return true;
if (CD.Source.getValue() == OldInst)
return true;
return false;
}),
ToCopy.end());
OldInst->replaceAllUsesWith(NewInst);
}
|