1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
//
/// GenXConstants
/// -------------
///
/// GenXConstants is not in itself a pass. It contains utility functions and a
/// class used by other passes for constant loading.
///
/// loadNonSimpleConstants
/// ^^^^^^^^^^^^^^^^^^^^^^
///
/// The GenXPostLegalization pass calls loadNonSimpleConstants to insert a load
/// for any operand that is a non-simple constant. (A non-simple constant is one
/// that is too big or an invalid value for a constant operand.)
///
/// It is called in two places:
///
/// 1. in the GenXPostLegalization pass, run after legalization but
/// before CSE, so CSE has an opportunity to common up loaded non-simple
/// constants;
/// 2. later on in GenXCategory, to mop up non-simple constant operands
/// created by CSE's constant propagation.
///
/// This does not insert a load if the constant is "big simple" (that is, it is
/// illegally wide but each legalized part of it is simple) and it is used in
/// the "old value" operand of a wrregion, or as a call arg. Inserting a load
/// of such a constant here would allow the load to be CSEd, which would be
/// counter productive as some of the uses would not be kill uses and so
/// coalescing would fail there.
///
/// Phi incoming constants are not loaded here; they are loaded in
/// loadPhiConstants called from GenXCategory. Phi constant loads do not need to
/// participate in CSE as loadPhiConstants has its own commoning up tailored for
/// phi nodes.
///
/// loadConstants
/// ^^^^^^^^^^^^^
///
/// This is called from GenXCategory. It inserts a load for each constant
/// operand that is not allowed to be constant, but remains after
/// loadNonSimpleConstants.
///
/// Phi incoming constants are not loaded here; they are loaded in
/// loadPhiConstants called from GenXCategory.
///
/// loadPhiConstants
/// ^^^^^^^^^^^^^^^^
///
/// This is called from GenXCategory, and it inserts loads for constant phi
/// incomings, commoning up when possible and sensible.
///
/// Commoning up (inserting one load for multiple phi incomings with the same
/// constant, across one or more phi nodes) proceeds as follows:
///
/// Firstly, we divide the phi nodes into _webs_, where each web is the maximal
/// set of phi nodes that are related through phi nodes and two address
/// instructions, so will be coalesced later on in the flow.
///
/// Secondly, for a single web, we look for multiple uses of the same constant.
/// Such a constant has a load instruction inserted just once, at the end of the
/// nearest common dominator of all the corresponding incoming blocks.
///
/// If that insert point is in an empty split critical edge block, we instead
/// insert in the block above that, in the hope that the split critical edge
/// block can be removed later.
///
/// ConstantLoader
/// ^^^^^^^^^^^^^^
///
/// ConstantLoader is a class that represents a constant and information on how
/// to load it. This is where analysis happens of whether it is a legal packed
/// vector, or whether it needs multiple instructions to load it. It then has
/// methods to insert the code to load the constant.
///
//===----------------------------------------------------------------------===//
#include "GenXConstants.h"
#include "GenXGotoJoin.h"
#include "GenXIntrinsics.h"
#include "GenXUtil.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstIterator.h"
#include "llvmWrapper/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/ValueMap.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "Probe/Assertion.h"
#include "llvmWrapper/IR/Constants.h"
#include "llvmWrapper/IR/DerivedTypes.h"
#include "llvmWrapper/Support/MathExtras.h"
#include "llvmWrapper/Support/TypeSize.h"
#define DEBUG_TYPE "GENX_CONSTANTS"
using namespace llvm;
using namespace genx;
/***********************************************************************
* loadConstantStruct : insert instructions to load a constant struct
*/
static Value *loadConstantStruct(
Constant *C, Instruction *InsertPt, const GenXSubtarget &Subtarget,
const DataLayout &DL,
SmallVectorImpl<Instruction *> *AddedInstructions = nullptr) {
auto ST = cast<StructType>(C->getType());
Value *Agg = UndefValue::get(ST);
for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
Constant *El = C->getAggregateElement(i);
if (isa<UndefValue>(El))
continue;
Value *LoadedEl = nullptr;
if (isa<StructType>(El->getType()))
LoadedEl =
loadConstantStruct(El, InsertPt, Subtarget, DL, AddedInstructions);
else {
LoadedEl = ConstantLoader(El, Subtarget, DL, nullptr, AddedInstructions)
.loadBig(InsertPt);
}
auto *InsertInst =
InsertValueInst::Create(Agg, LoadedEl, i, "loadstruct", InsertPt);
Agg = InsertInst;
if (AddedInstructions)
AddedInstructions->push_back(InsertInst);
}
return Agg;
}
/***********************************************************************
* loadNonSimpleConstants : for any non-simple or illegal size constant in
* an instruction, load it.
*
* Enter: Inst = instruction to find constant operands in
* AddedInstructions = 0 else vector to push added instructions onto
*
* Return: whether code was modified
*
* This does not load constants in a phi nodes. That is done in
* loadPhiConstants.
*/
bool genx::loadNonSimpleConstants(
Instruction *Inst, const GenXSubtarget &Subtarget, const DataLayout &DL,
SmallVectorImpl<Instruction *> *AddedInstructions) {
bool Modified = false;
if (isa<PHINode>(Inst))
return Modified;
// Omit call target operand of a call.
unsigned NumArgs = Inst->getNumOperands();
auto CI = dyn_cast<CallInst>(Inst);
if (CI)
NumArgs = IGCLLVM::getNumArgOperands(CI);
unsigned IID = vc::getAnyIntrinsicID(Inst);
// Do not proceed loading of genx.alloca argument since its value doesn't
// needed (only type matters) and always null.
if (IID == GenXIntrinsic::genx_alloca)
return Modified;
for (unsigned i = 0; i != NumArgs; ++i) {
if (isa<Constant>(Inst->getOperand(i))) {
Use *U = &Inst->getOperandUse(i);
Constant *C = dyn_cast<Constant>(*U);
if (!C)
continue;
if (isa<UndefValue>(C))
continue;
if (opMustBeConstant(Inst, i))
continue;
if (C->getType()->isStructTy()) {
*U = loadConstantStruct(C, Inst, Subtarget, DL, AddedInstructions);
Modified = true;
continue;
}
ConstantLoader CL(C, Subtarget, DL, Inst, AddedInstructions);
if (CL.needFixingSimple()) {
Modified = true;
CL.fixSimple(i);
continue;
}
if (CL.isSimple())
continue;
// Do not load a "big simple" constant for the "old value of vector"
// input of a wrregion, so it does not get CSEd. CSEing it is
// counter-productive because, if it has multiple uses, it will
// need to be two-address copied by GenXCoalescing anyway.
if (GenXIntrinsic::isWrRegion(IID)
&& i == GenXIntrinsic::GenXRegion::OldValueOperandNum
&& CL.isBigSimple())
continue;
// Similarly, do not load a "big simple" constant for a call arg.
if (CI && IID == GenXIntrinsic::not_any_intrinsic && CL.isBigSimple())
continue;
*U = CL.loadBig(Inst);
Modified = true;
}
}
return Modified;
}
bool genx::loadConstantsForInlineAsm(
CallInst *CI, const GenXSubtarget &Subtarget, const DataLayout &DL,
SmallVectorImpl<Instruction *> *AddedInstructions) {
IGC_ASSERT_MESSAGE(CI->isInlineAsm(), "Inline asm expected");
bool Modified = false;
auto ConstraintsInfo = genx::getGenXInlineAsmInfo(CI);
Use *U;
for (unsigned i = 0, e = ConstraintsInfo.size(), ArgNo = 0; i != e; ++i) {
auto &Info = ConstraintsInfo[i];
if (Info.isOutput())
continue;
U = &CI->getOperandUse(ArgNo);
ArgNo++;
if (auto C = dyn_cast<Constant>(*U)) {
if (!isa<UndefValue>(C)) {
switch (Info.getConstraintType()) {
default:
*U = ConstantLoader(C, Subtarget, DL, nullptr, AddedInstructions)
.load(CI);
Modified = true;
break;
case ConstraintType::Constraint_n:
case ConstraintType::Constraint_i:
case ConstraintType::Constraint_F:
break;
}
}
}
}
return Modified;
}
/***********************************************************************
* loadConstants : load constants as required for an instruction
*
* This handles operands that are not allowed to be constant. A constant
* operand that needs loading because it is a non-simple constant is
* handled in loadNonSimpleConstants.
*
* This does not load constants in a phi nodes. That is done in
* loadPhiConstants.
*/
bool genx::loadConstants(Instruction *Inst, const GenXSubtarget &Subtarget,
const DataLayout &DL) {
bool Modified = false;
Use *U;
if (isa<PHINode>(Inst))
return Modified;
if (isa<BinaryOperator>(Inst) &&
Inst->getType()->getScalarType()->isIntegerTy(1)) {
// Predicate binary operator: disallow constant operands, except
// that xor with -1 is allowed.
for (unsigned oi = 0; oi != 2; ++oi)
if (auto C = dyn_cast<Constant>(Inst->getOperand(oi))) {
auto IsNot = [=]() {
if (oi != 1)
return false;
if (Inst->getOpcode() != Instruction::Xor)
return false;
if (!C->getType()->isVectorTy())
return C->isAllOnesValue();
Constant *C1 = C->getSplatValue();
return C1 && C1->isAllOnesValue();
};
if (!IsNot()) {
Inst->setOperand(oi, ConstantLoader(C, Subtarget, DL).load(Inst));
Modified = true;
}
}
}
if (isa<SelectInst>(Inst)) {
// select: disallow constant selector
U = &Inst->getOperandUse(0);
if (auto C = dyn_cast<Constant>(*U)) {
*U = ConstantLoader(C, Subtarget, DL).load(Inst);
Modified = true;
}
return Modified;
}
if (isa<InsertValueInst>(Inst)) {
// insertvalue (inserting a value into a struct): disallow constant
// on element operand.
U = &Inst->getOperandUse(1);
if (auto C = dyn_cast<Constant>(*U)) {
*U = ConstantLoader(C, Subtarget, DL).load(Inst);
Modified = true;
}
// Also disallow constant (other than undef) on old struct value operand.
// We need to load each non-undef element separately.
U = &Inst->getOperandUse(0);
if (auto C = dyn_cast<Constant>(*U))
if (!isa<UndefValue>(C))
*U = loadConstantStruct(C, Inst, Subtarget, DL);
return Modified;
}
if (auto Br = dyn_cast<BranchInst>(Inst)) {
// Conditional branch: disallow constant condition.
if (Br->isConditional()) {
if (auto C = dyn_cast<Constant>(Br->getCondition())) {
Br->setCondition(ConstantLoader(C, Subtarget, DL).load(Br));
Modified = true;
}
}
return Modified;
}
if (auto Ret = dyn_cast<ReturnInst>(Inst)) {
// Return: disallow constant return value in a subroutine (internal
// linkage).
if (Ret->getNumOperands() && Ret->getParent()->getParent()->getLinkage()
== GlobalValue::InternalLinkage) {
if (auto C = dyn_cast<Constant>(Ret->getOperand(0))) {
if (!C->getType()->isVoidTy() && !isa<UndefValue>(C)) {
Ret->setOperand(0, ConstantLoader(C, Subtarget, DL).load(Ret));
Modified = true;
}
}
}
return Modified;
}
auto CI = dyn_cast<CallInst>(Inst);
if (!CI)
return Modified;
if (CI->isInlineAsm())
return loadConstantsForInlineAsm(CI, Subtarget, DL, nullptr);
int IntrinsicID = vc::getAnyIntrinsicID(CI);
switch (IntrinsicID) {
case GenXIntrinsic::not_any_intrinsic:
case Intrinsic::fma:
case GenXIntrinsic::genx_ssmad:
case GenXIntrinsic::genx_sumad:
case GenXIntrinsic::genx_usmad:
case GenXIntrinsic::genx_uumad:
case GenXIntrinsic::genx_output:
case GenXIntrinsic::genx_output_1:
// load all args for subroutine and some intrinsic calls.
for (unsigned i = 0, e = IGCLLVM::getNumArgOperands(CI); i != e; ++i) {
U = &CI->getOperandUse(i);
if (auto C = dyn_cast<Constant>(*U)) {
if (!isa<UndefValue>(C)) {
*U = ConstantLoader(C, Subtarget, DL).loadBig(CI);
Modified = true;
}
}
}
break;
case GenXIntrinsic::genx_constanti:
case GenXIntrinsic::genx_constantf:
break;
case GenXIntrinsic::genx_absi:
case GenXIntrinsic::genx_absf:
// abs modifier: disallow constant input.
U = &CI->getOperandUse(0);
if (auto C = dyn_cast<Constant>(*U)) {
*U = ConstantLoader(C, Subtarget, DL).load(CI);
Modified = true;
}
break;
case GenXIntrinsic::genx_rdpredregion:
case GenXIntrinsic::genx_any:
case GenXIntrinsic::genx_all:
// rdpredregion, any, all: disallow constant input
U = &CI->getOperandUse(0);
if (auto C = dyn_cast<Constant>(*U)) {
*U = ConstantLoader(C, Subtarget, DL).load(CI);
Modified = true;
}
break;
case GenXIntrinsic::genx_rdregioni:
case GenXIntrinsic::genx_rdregionf:
// rdregion: disallow constant input
U = &CI->getOperandUse(0);
if (auto C = dyn_cast<Constant>(*U)) {
*U = ConstantLoader(C, Subtarget, DL).loadBig(CI);
Modified = true;
}
// Also disallow constant vector index (constant scalar OK).
U = &CI->getOperandUse(GenXIntrinsic::GenXRegion::RdIndexOperandNum);
if (auto C = dyn_cast<Constant>(*U)) {
if (isa<VectorType>(C->getType())) {
*U = ConstantLoader(C, Subtarget, DL).load(CI);
Modified = true;
}
}
break;
case GenXIntrinsic::genx_wrpredpredregion:
// wrpredpred: disallow constant "old vector" input unless undef
U = &CI->getOperandUse(0);
if (auto C = dyn_cast<Constant>(*U)) {
if (!isa<UndefValue>(C)) {
*U = ConstantLoader(C, Subtarget, DL).loadBig(CI);
Modified = true;
}
}
break;
case GenXIntrinsic::genx_wrregioni:
case GenXIntrinsic::genx_wrregionf:
// wrregion: disallow constant "old vector" input unless undef
U = &CI->getOperandUse(0);
if (auto C = dyn_cast<Constant>(*U)) {
if (!isa<UndefValue>(C)) {
*U = ConstantLoader(C, Subtarget, DL).loadBig(CI);
Modified = true;
}
}
// Also disallow constant vector index (constant scalar OK).
U = &CI->getOperandUse(GenXIntrinsic::GenXRegion::WrIndexOperandNum);
if (auto C = dyn_cast<Constant>(*U)) {
if (isa<VectorType>(C->getType())) {
*U = ConstantLoader(C, Subtarget, DL).load(CI);
Modified = true;
}
}
// Also disallow constant predicate unless all ones.
U = &CI->getOperandUse(GenXIntrinsic::GenXRegion::PredicateOperandNum);
if (auto C = dyn_cast<Constant>(*U)) {
if (!C->isAllOnesValue()) {
*U = ConstantLoader(C, Subtarget, DL).load(CI);
Modified = true;
}
}
break;
case GenXIntrinsic::genx_simdcf_goto:
// goto: disallow constant predicate input, unless it is all 0. We want to
// allow constant all 0, as it is the encoding used for an "else", and
// loading the constant into a predicate register stops the finalizer's
// structurizer working.
U = &CI->getOperandUse(2);
if (auto C = dyn_cast<Constant>(*U)) {
if (!C->isNullValue()) {
*U = ConstantLoader(C, Subtarget, DL).load(CI);
Modified = true;
}
}
break;
default:
// Intrinsic: check intrinsic descriptor to see where constant args
// are allowed.
// Iterate through each field in the intrinsic info.
GenXIntrinsicInfo II(IntrinsicID);
// Intrinsic not found.
if (II.isNull())
return Modified;
unsigned MaxRawOperands = II.getTrailingNullZoneStart(CI);
for (auto AI : II.getInstDesc()) {
if (!AI.isArgOrRet() || AI.isRet())
continue;
// This field relates to an operand.
U = &CI->getOperandUse(AI.getArgIdx());
auto C = dyn_cast<Constant>(*U);
if (!C)
continue;
// Operand is constant.
// Allow constant if it is i1 or vector of i1 set to all ones; this
// represents an "all true" predication field.
if (C->getType()->getScalarType()->isIntegerTy(1) && C->isAllOnesValue())
continue;
// Allow constant if intrinsic descriptor allows it for this arg.
if (!AI.isImmediateDisallowed())
continue;
// If it is a RAW operand, allow the constant if it's in the trailing
// null region (it must be a null constant if so), or if the value
// is undefined and RAW_NULLALLOWED is enabled.
if (AI.isRaw()) {
if ((unsigned)AI.getArgIdx() >= MaxRawOperands) {
IGC_ASSERT(C->isNullValue());
continue;
}
if (isa<UndefValue>(C) && AI.rawNullAllowed())
continue;
}
// Also allow constant if it is undef in a TWOADDR
if (isa<UndefValue>(C) && AI.getCategory() == GenXIntrinsicInfo::TWOADDR)
continue;
// Also allow constant if it is a reserved surface index.
if (AI.getCategory() == GenXIntrinsicInfo::SURFACE &&
visa::isReservedSurfaceIndex(visa::convertToSurfaceIndex(C))) {
continue;
}
// Operand is not allowed to be constant. Insert code to load it.
*U = ConstantLoader(C, Subtarget, DL).loadBig(CI);
Modified = true;
}
break;
}
return Modified;
}
bool genx::areConstantsEqual(const Constant *C1, const Constant *C2) {
IGC_ASSERT(C1 && C2);
// If these are same constants then it's obviously true
if (C1 == C2)
return true;
Type *C1Ty = C1->getType();
Type *C2Ty = C2->getType();
bool SameType = C1Ty == C2Ty;
// If types are not the same then compare if types are bitcastable
if (!SameType) {
if (!C1Ty->canLosslesslyBitCastTo(C2Ty))
return false;
}
// Most common case: check for zero initializers
if (C1->isZeroValue() && C2->isZeroValue())
return true;
auto *GC1 = dyn_cast<GlobalValue>(C1);
auto *GC2 = dyn_cast<GlobalValue>(C2);
// TODO: check for specific versions of each global
if (GC1 || GC2)
return false;
if (C1->getValueID() != C2->getValueID())
return false;
// Check contents
if (const auto *C1Seq = dyn_cast<ConstantDataSequential>(C1)) {
const auto *C2Seq = cast<ConstantDataSequential>(C2);
StringRef C1RawData = C1Seq->getRawDataValues();
StringRef C2RawData = C2Seq->getRawDataValues();
if (C1RawData.size() == C2RawData.size())
return (C1RawData.compare(C2RawData) == 0);
return false;
}
switch (C1->getValueID()) {
default:
// Otherwise be conservative
return false;
case Value::ConstantIntVal: {
const APInt &C1Int = cast<ConstantInt>(C1)->getValue();
const APInt &C2Int = cast<ConstantInt>(C2)->getValue();
return C1Int == C2Int;
}
case Value::ConstantFPVal: {
const APFloat &C1FP = cast<ConstantFP>(C1)->getValueAPF();
const APFloat &C2FP = cast<ConstantFP>(C2)->getValueAPF();
return C1FP.bitcastToAPInt() == C2FP.bitcastToAPInt();
}
case Value::ConstantVectorVal: {
const ConstantVector *C1CV = cast<ConstantVector>(C1);
const ConstantVector *C2CV = cast<ConstantVector>(C2);
unsigned NumElementsC1 =
cast<IGCLLVM::FixedVectorType>(C1Ty)->getNumElements();
unsigned NumElementsC2 =
cast<IGCLLVM::FixedVectorType>(C2Ty)->getNumElements();
if (NumElementsC1 != NumElementsC2)
return false;
for (uint64_t i = 0; i < NumElementsC1; ++i)
if (!areConstantsEqual(cast<Constant>(C1CV->getOperand(i)),
cast<Constant>(C2CV->getOperand(i))))
return false;
return true;
}
case Value::ConstantArrayVal: {
const ConstantArray *C1A = cast<ConstantArray>(C1);
const ConstantArray *C2A = cast<ConstantArray>(C2);
uint64_t NumElementsC1 = cast<ArrayType>(C1Ty)->getNumElements();
uint64_t NumElementsC2 = cast<ArrayType>(C2Ty)->getNumElements();
if (NumElementsC1 != NumElementsC2)
return false;
for (uint64_t i = 0; i < NumElementsC1; ++i)
if (!areConstantsEqual(cast<Constant>(C1A->getOperand(i)),
cast<Constant>(C2A->getOperand(i))))
return false;
return true;
}
}
}
/***********************************************************************
* cleanupConstantLoads : remove all genx.constant* intrinsics that have
* non-constant source operand
*/
bool genx::cleanupConstantLoads(Function *F) {
bool Modified = false;
for (auto I = inst_begin(F), E = inst_end(F); I != E;) {
auto *CI = dyn_cast<CallInst>(&*I++);
if (!CI)
continue;
auto IID = vc::getAnyIntrinsicID(CI);
if (IID != GenXIntrinsic::genx_constanti &&
IID != GenXIntrinsic::genx_constantf &&
IID != GenXIntrinsic::genx_constantpred)
continue;
if (isa<Constant>(CI->getOperand(0)))
continue;
CI->replaceAllUsesWith(CI->getOperand(0));
CI->eraseFromParent();
Modified = true;
}
return Modified;
}
/***********************************************************************
* loadPhiConstants : load constant incomings in phi nodes, commoning up
* if appropriate
*/
bool genx::loadPhiConstants(Function &F, DominatorTree *DT,
const GenXSubtarget &Subtarget,
const DataLayout &DL, bool ExcludePredicate) {
bool Modified = false;
std::set<Instruction *> Done;
for (BasicBlock &BB : F) {
for (auto bi = BB.begin();; ++bi) {
auto Phi = dyn_cast<PHINode>(&*bi);
if (!Phi)
break;
if (!Done.insert(Phi).second)
continue; // phi node already processed in some web
// Gather the web of phi nodes and two address instructions related to
// this one. This is an approximation to the web of instructions that
// will or could be coalesced.
// (Use Web as a worklist of phi nodes and two address instructions to
// use to find other phi nodes and two address instructions.)
//
// We process a web of related phi nodes at a time, rather than all phi
// nodes that use the constant, to avoid this situation:
// we try and common up two phi nodes in the same basic block (e.g. two
// variables both initialized to 0 before a loop), but end up having to
// insert a copy for one of them anyway in coalescing.
SmallVector<Instruction *, 4> Web;
Web.push_back(Phi);
for (unsigned wi = 0; wi != Web.size(); ++wi) {
auto Inst = Web[wi];
unsigned oi = 0, oe = 0;
if ((Phi = dyn_cast<PHINode>(Inst))) {
// Phi node: process each incoming.
oe = Phi->getNumIncomingValues();
} else {
if (auto *CI = dyn_cast<CallInst>(Inst)) {
// Two address instruction: process just the two address operand.
oi = *getTwoAddressOperandNum(CI);
oe = oi + 1;
} else {
IGC_ASSERT(isa<CastInst>(Inst));
oi = 0;
oe = 1;
}
}
auto IsPhiOrTwoAddress = [=](Value *V) {
if (isa<PHINode>(V))
return true;
if (auto CI = dyn_cast<CallInst>(V))
return getTwoAddressOperandNum(CI).hasValue();
return false;
};
// For each incoming:
for (; oi != oe; ++oi ) {
auto Incoming = Inst->getOperand(oi);
// If it is a phi node or two address instruction, push it into the
// web for processing later.
if (IsPhiOrTwoAddress(Incoming)) {
auto IncomingInst = cast<Instruction>(Incoming);
if (Done.insert(IncomingInst).second)
Web.push_back(IncomingInst);
} else if (!isa<Constant>(Incoming)) {
// For any other inst or arg, see if it has any other use in a phi
// node or two address inst, and push that into the web.
for (auto ui = Incoming->use_begin(), ue = Incoming->use_end();
ui != ue; ++ui) {
auto User = cast<Instruction>(ui->getUser());
// Add bitcasts into the web to process their users too
if (IsPhiOrTwoAddress(User) ||
(isa<CastInst>(User) && cast<CastInst>(User)->isNoopCast(DL)))
if (Done.insert(User).second)
Web.push_back(User);
}
}
}
// Now process each use of the result of the phi node or two address
// instruction. If the use is in a phi node or is a two address operand,
// push the user into the web.
for (auto ui = Inst->use_begin(), ue = Inst->use_end(); ui != ue; ++ui) {
auto User = cast<Instruction>(ui->getUser());
if (IsPhiOrTwoAddress(User))
if (Done.insert(User).second)
Web.push_back(User);
}
}
LLVM_DEBUG(
dbgs() << "loadPhiConstants: Web of phi nodes and two address insts:\n";
for (auto wi = Web.begin(), we = Web.end(); wi != we; ++wi)
dbgs() << **wi << "\n"
);
// Now process the web, ignoring anything other than phi nodes.
// Gather the distinct constants, and every use for each one in a phi
// node.
std::map<Constant *, SmallVector<Use *, 4>> ConstantUses;
SmallVector<Constant *, 8> DistinctConstants;
// Fill ConstantUses map
// Process phis with larger types first to make sure that wider
// constant goes to ConstantUses map first
auto WebPhisRange = make_filter_range(
Web, [](Instruction *I) { return isa<PHINode>(I); });
SmallVector<Instruction *, 4> WebPhis(WebPhisRange);
std::sort(WebPhis.begin(), WebPhis.end(),
[&DL](Instruction *I1, Instruction *I2) {
return DL.getTypeSizeInBits(I1->getType()) >
DL.getTypeSizeInBits(I2->getType());
});
for (auto *Inst : WebPhis) {
auto *Phi = cast<PHINode>(Inst);
for (unsigned oi = 0, oe = Phi->getNumIncomingValues(); oi != oe; ++oi) {
Use *U = &Phi->getOperandUse(oi);
auto *C = dyn_cast<Constant>(*U);
if (!C || isa<UndefValue>(C))
continue;
// when doing this transform in pattern matching phase
if (ExcludePredicate) {
if (C->getType()->getScalarType()->isIntegerTy(1))
continue;
if (DL.getTypeSizeInBits(C->getType()) <= 256)
continue;
auto IncomingBlock = Phi->getIncomingBlock(oi);
if (GotoJoin::isBranchingJoinLabelBlock(IncomingBlock))
continue;
}
// Merge uses if constants are bitcastable.
auto EqualC = llvm::find_if(DistinctConstants, [&C](Constant *C2) {
return genx::areConstantsEqual(C, C2);
});
if (EqualC != DistinctConstants.end())
C = *EqualC;
auto Entry = &ConstantUses[C];
if (!Entry->size())
DistinctConstants.push_back(C);
Entry->push_back(U);
}
}
// Handle each distinct constant.
for (unsigned dci = 0, dce = DistinctConstants.size(); dci != dce; ++dci) {
Constant *C = DistinctConstants[dci];
auto Entry = &ConstantUses[C];
if (Entry->size() != 1) {
LLVM_DEBUG(
dbgs() << "multiple use of " << *C << "\n";
for (unsigned ei = 0, ee = Entry->size(); ei != ee; ++ei)
dbgs() << *(*Entry)[ei]->getUser() << "\n"
);
}
// Find the closest common dominator of the incoming blocks of all phi
// uses of the constant. That is where we want to insert the constant
// load.
Use *U = (*Entry)[0];
auto InsertBB = cast<PHINode>(U->getUser())
->getIncomingBlock(U->getOperandNo());
for (unsigned ei = 1, ee = Entry->size(); ei != ee; ++ei) {
U = (*Entry)[ei];
auto Phi = cast<PHINode>(U->getUser());
auto IncomingBB = Phi->getIncomingBlock(U->getOperandNo());
InsertBB = DT->findNearestCommonDominator(InsertBB, IncomingBB);
}
// If that location is an empty split critical edge block, go up to its
// predecessor (which is also its immediate dominator) if this block is
// "true" successor of branching simd cf block. In this case we cannot
// insert anything in current block and have to create partial
// redundancy.
IGC_ASSERT(InsertBB);
auto *InsertTerm = InsertBB->getTerminator();
auto *SinglePred = InsertBB->getSinglePredecessor();
if (InsertTerm->getNumSuccessors() == 1 &&
InsertTerm == &InsertBB->front() && SinglePred &&
GotoJoin::isBranchingGotoJoinBlock(SinglePred))
InsertBB = SinglePred;
// Insert the constant load.
ConstantLoader CL(C, Subtarget, DL);
Value *Load = nullptr;
Instruction *InsertBefore = InsertBB->getTerminator();
if (!CL.isSimple())
Load = CL.loadBig(InsertBefore);
else
Load = CL.load(InsertBefore);
Modified = true;
// Modify the uses.
SmallDenseMap<Type *, Value *, 4> CastMap;
// Create cast of specific type of given value or reuse it
// if exists
auto CreateOrReuseCast = [&CastMap](Value *V, Type *Ty,
Instruction *InsertBefore) {
// No cast needed
if (V->getType() == Ty)
return V;
// Assume bitcastable for now
if (!CastMap.count(Ty))
CastMap[Ty] =
CastInst::Create(Instruction::BitCast, V, Ty,
V->getName() + ".cast", InsertBefore);
return CastMap[Ty];
};
for (unsigned ei = 0, ee = Entry->size(); ei != ee; ++ei) {
auto *U = (*Entry)[ei];
*U = CreateOrReuseCast(Load, U->get()->getType(), InsertBefore);
}
// replace other non-phi uses that are also dominated by the InsertBB
for (unsigned wi = 0, we = Web.size(); wi != we; ++wi) {
if (isa<PHINode>(Web[wi]))
continue;
auto CI = dyn_cast<CallInst>(Web[wi]);
if (CI && getTwoAddressOperandNum(CI)) {
auto oi = *getTwoAddressOperandNum(CI);
Use *U = &CI->getOperandUse(oi);
auto *UC = dyn_cast<Constant>(*U);
if (UC && UC == C) {
if (CI->getParent() != InsertBB && DT->dominates(InsertBB, CI->getParent()))
*U = CreateOrReuseCast(Load, U->get()->getType(), InsertBefore);
}
}
}
}
}
}
return Modified;
}
bool genx::isReplicatedConstantVector(
const ConstantVector *Orig, const ConstantVector *ReplicateCandidate) {
IGC_ASSERT(Orig && ReplicateCandidate);
// First compare for same element type
if (Orig->getType()->getElementType() !=
ReplicateCandidate->getType()->getElementType())
return false;
unsigned OrigNumElements = Orig->getType()->getNumElements();
unsigned CandidateNumElements =
ReplicateCandidate->getType()->getNumElements();
// Check replicate possibility by size: candidate should be
// at least larger and it's size is divisible by the size of
// original vector
if ((OrigNumElements >= CandidateNumElements) ||
((CandidateNumElements % OrigNumElements) != 0))
return false;
// Get slices
unsigned NumReplicates = CandidateNumElements / OrigNumElements;
SmallVector<Constant *, 4> Slices;
for (unsigned i = 0; i < NumReplicates; i++)
Slices.push_back(genx::getConstantSubvector(
ReplicateCandidate, i * OrigNumElements, OrigNumElements));
// Compare all slices
return llvm::all_of(Slices,
[Orig](Constant *Slice) { return Slice == Orig; });
}
void ConstantLoader::fixSimple(int OperandIdx) {
IGC_ASSERT_MESSAGE(User, "user must be provided");
IGC_ASSERT_MESSAGE(NewC, "no need to fix simple case");
IGC_ASSERT_MESSAGE(User->getOperand(OperandIdx) == C,
"wrong arguments: wrong operand index was provided");
User->setOperand(OperandIdx, NewC);
C = NewC;
// indicate that we no longer need fix
NewC = nullptr;
}
/***********************************************************************
* ConstantLoader::loadNonSimple : load a non-simple constant
*
* Enter: C = constant to lower if necessary
* Inst = instruction it is used in (also used to insert new
* code before)
*
* Return: new instruction
*/
Instruction *ConstantLoader::loadNonSimple(Instruction *Inst) {
IGC_ASSERT(!isSimple());
if (!isLegalSize())
return loadBig(Inst);
if (PackedFloat) {
unsigned NumElts =
cast<IGCLLVM::FixedVectorType>(C->getType())->getNumElements();
SmallVector<Instruction *, 4> Quads;
for (unsigned i = 0, e = NumElts; i != e; i += 4) {
SmallVector<Constant *, 4> Quad;
for (unsigned j = 0; j != 4 && (i + j) < NumElts; ++j)
Quad.push_back(C->getAggregateElement(i + j));
ConstantLoader Packed(ConstantVector::get(Quad), Subtarget, DL);
Quads.push_back(Packed.load(Inst));
}
Value *V = UndefValue::get(C->getType());
unsigned Offset = 0;
auto DbgLoc = Inst->getDebugLoc();
for (auto &Q : Quads) {
auto *VTy = cast<IGCLLVM::FixedVectorType>(Q->getType());
Region R(V, &DL);
R.getSubregion(Offset, VTy->getNumElements());
V = R.createWrRegion(V, Q, "constant.quad" + Twine(Offset), Inst, DbgLoc);
Offset += VTy->getNumElements();
}
return cast<Instruction>(V);
}
if (PackedIntScale) {
auto PackTy = C->getType()->getScalarType();
// limit the constant-type to 32-bit because we do not want 64-bit operation
if (DL.getTypeSizeInBits(PackTy) > 32)
PackTy = Type::getInt32Ty(Inst->getContext());
// Load as a packed int vector with scale and/or adjust.
SmallVector<Constant *, 32> PackedVals;
for (unsigned
i = 0,
e = cast<IGCLLVM::FixedVectorType>(C->getType())->getNumElements();
i != e; ++i) {
int64_t Val = 0;
if (auto CI = dyn_cast<ConstantInt>(C->getAggregateElement(i))) {
Val = CI->getSExtValue();
Val -= PackedIntAdjust;
Val /= PackedIntScale;
}
PackedVals.push_back(ConstantInt::get(PackTy, Val, /*isSigned=*/true));
IGC_ASSERT(cast<ConstantInt>(PackedVals.back())->getSExtValue() >= -8
&& cast<ConstantInt>(PackedVals.back())->getSExtValue() <= 15);
}
ConstantLoader Packed(ConstantVector::get(PackedVals), Subtarget, DL);
auto *LoadPacked = Packed.loadNonPackedIntConst(Inst);
if (PackedIntScale != 1) {
auto *SplatVal =
ConstantInt::get(PackTy, PackedIntScale, /*isSigned=*/true);
auto *CVTy = cast<IGCLLVM::FixedVectorType>(C->getType());
auto ElemCount = IGCLLVM::getElementCount(CVTy->getNumElements());
auto *Op1 = ConstantVector::getSplat(ElemCount, SplatVal);
LoadPacked = BinaryOperator::Create(Instruction::Mul, LoadPacked, Op1,
"constantscale", Inst);
}
if (PackedIntAdjust) {
auto *SplatVal =
ConstantInt::get(PackTy, PackedIntAdjust, /*isSigned=*/true);
auto *CVTy = cast<IGCLLVM::FixedVectorType>(C->getType());
auto ElemCount = IGCLLVM::getElementCount(CVTy->getNumElements());
auto *Op1 = ConstantVector::getSplat(ElemCount, SplatVal);
LoadPacked = BinaryOperator::Create(Instruction::Add, LoadPacked, Op1,
"constantadjust", Inst);
}
if (DL.getTypeSizeInBits(PackTy) <
DL.getTypeSizeInBits(C->getType()->getScalarType())) {
LoadPacked = CastInst::CreateSExtOrBitCast(LoadPacked, C->getType(),
"constantsext", Inst);
bool IsI64 =
C->getType()->getScalarType() == Type::getInt64Ty(Inst->getContext());
if (IsI64 && !allowI64Ops()) {
if (LoadPacked->getOpcode() == Instruction::CastOps::SExt) {
LoadPacked = genx::emulateI64Operation(&Subtarget, LoadPacked,
EmulationFlag::RAUWE);
}
}
}
return LoadPacked;
}
if (auto CC = getConsolidatedConstant(C)) {
// We're loading a vector of byte or short (but not i1). Use int so the
// instruction does not use so many channels. This may also save it being
// split by legalization.
ConstantLoader CCL(CC, Subtarget, DL);
Instruction *NewInst = nullptr;
if (CCL.isSimple())
NewInst = CCL.load(Inst);
else
NewInst = CCL.loadNonSimple(Inst);
NewInst = CastInst::Create(Instruction::BitCast, NewInst, C->getType(),
"constant", Inst);
if (AddedInstructions)
AddedInstructions->push_back(NewInst);
return NewInst;
}
auto *VT = cast<IGCLLVM::FixedVectorType>(C->getType());
unsigned NumElements = VT->getNumElements();
SmallVector<Constant *, 32> Elements;
unsigned UndefBits = 0;
if (ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C)) {
// Gather the elements.
for (unsigned i = 0; i != NumElements; ++i) {
Constant *El = CDV->getElementAsConstant(i);
IGC_ASSERT_MESSAGE(!isa<UndefValue>(El), "CDV element can't be undef");
Elements.push_back(El);
}
} else {
ConstantVector *CV = cast<ConstantVector>(C);
// Gather the elements.
for (unsigned i = 0; i != NumElements; ++i) {
Constant *El = CV->getOperand(i);
if (isa<UndefValue>(El))
UndefBits |= 1 << i;
Elements.push_back(El);
}
}
unsigned RemainingBits = ~UndefBits
& ((NumElements == 32 ? 0 : 1 << NumElements) - 1);
if (!RemainingBits) {
// All elements are undef. This should have been simplified away earlier,
// but we need to cope with it in case it was not. Just load the first
// element.
RemainingBits = 1;
}
Instruction *Result = 0;
// If it is wider than 8 elements, see if we can load any group of 8 as a
// packed vector.
if (NumElements > 8) {
for (unsigned Idx = 0; Idx < NumElements - 4; Idx += 8) {
unsigned Size = std::min(8U, NumElements - Idx);
Constant *SubC = getConstantSubvector(C, Idx, Size);
if (isa<UndefValue>(SubC))
continue;
ConstantLoader SubLoader(SubC, Subtarget, DL);
if (SubLoader.PackedIntScale == 0 && !SubLoader.isPackedFloatVector())
continue;
Region R(C, &DL);
R.getSubregion(Idx, Size);
if (SubLoader.isSimple()) {
Value *SubV = SubC;
Result = R.createWrConstRegion(
Result ? (Value *)Result : (Value *)UndefValue::get(C->getType()),
SubV, "constant.split" + Twine(Idx), Inst, Inst->getDebugLoc());
} else {
Value* SubV = SubLoader.loadNonSimple(Inst);
Result = R.createWrRegion(
Result ? (Value *)Result : (Value *)UndefValue::get(C->getType()),
SubV, "constant.split" + Twine(Idx), Inst, Inst->getDebugLoc());
}
if (AddedInstructions)
AddedInstructions->push_back(Result);
RemainingBits &= ~(255 << Idx);
}
if (!RemainingBits)
return Result;
}
// Build the splat sets, that is, the sets of elements of identical value.
SmallVector<unsigned, 32> SplatSets;
{
ValueMap<Constant *, unsigned> SplatSetFinder;
for (unsigned i = 0; i != NumElements; ++i) {
Constant *El = Elements[i];
if (!isa<UndefValue>(El)) {
std::pair<ValueMap<Constant *, unsigned>::iterator, bool> Created
= SplatSetFinder.insert(std::pair<Constant *, unsigned>(El,
SplatSets.size()));
if (Created.second) {
// First time this Constant has been seen.
SplatSets.push_back(1 << i);
} else {
// Add on to existing splat set.
SplatSets[Created.first->second] |= 1 << i;
}
}
}
}
// Remove any splat set with only a single element.
unsigned NewSize = 0;
for (unsigned i = 0, e = SplatSets.size(); i != e; ++i) {
if (countPopulation(SplatSets[i]) >= 2)
SplatSets[NewSize++] = SplatSets[i];
}
SplatSets.resize(NewSize);
// Determine which elements are suitable for inclusion in a packed vector.
// FIXME Not implemented yet. For an int vector constant, we need to
// determine whether the instruction expects the operand to be signed
// or unsigned.
// Loop constructing the constant until it is complete.
do {
// Find the splat set that will contribute the most elements
// to the vector, taking into account what elements we can access
// in a 1D region write. (Initialize BestSplatSetBits so, if no best
// splat is found, we just do a single element out of RemainingBits.)
//
// Note that we are looking for the splat set that sets the most elements,
// not the one that _usefully_ sets the most elements. For example,
// Examples/sepia has a constant vector of the form
// < A, B, C, 0, 0, A, B, C >
// We have four splat sets {0,5} {1,6} {2,7} {3,4}, each of which
// has two elements. What we want to do is set one of the A, B or C
// sets first, rather than the 0s, because region restrictions mean that
// we can only set such a pair if we do it first. If the loop below were
// to find the splat set that _usefully_ sets the most elements, all four
// sets would say "2" and we would arbitrarily pick one of them. But, if
// we ask each splat set how many elements it sets, even uselessly, then
// the A, B and C sets say "8" and the 0 set says "2", and we ensure that
// we do one of the A, B or C sets first.
// So we end up setting the constant in this order (arbitrarily picking
// A first):
// < A, A, A, A, A, A, A, A >
// < 0, 0 >
// < B >
// < B >
// < C >
// < C >
// giving five wrregion instructions rather than six.
unsigned BestSplatSetBits = 1 << genx::log2(RemainingBits);
unsigned BestSplatSetUsefulBits = BestSplatSetBits;
unsigned BestSplatSetCount = 1;
Constant *BestSplatSetConst = Elements[genx::log2(RemainingBits)];
for (unsigned i = 0, e = SplatSets.size(); i != e; ++i) {
unsigned Bits = getRegionBits(SplatSets[i] & RemainingBits,
SplatSets[i] | RemainingBits | UndefBits, NumElements);
unsigned Count = countPopulation(Bits);
// For this splat set, Bits is a bitmap of the vector elements that
// we can set in this splat set in a legal 1D region (possibly including
// elements already set and undef elements), and Count is how many
// elements that still need setting the region will set.
if (Count > BestSplatSetCount) {
BestSplatSetBits = Bits;
BestSplatSetUsefulBits = Bits & SplatSets[i];
BestSplatSetCount = Count;
BestSplatSetConst = Elements[genx::log2(SplatSets[i])];
}
}
// Now BestSplatSetBits is a bitmap of the vector elements to include in
// the best splat. Set up the splatted constant.
if (!Result) {
// For the first time round the loop, just splat the whole vector,
// whatever BestSplatBits says.
Result = loadConstant(
ConstantVector::getSplat(IGCLLVM::getElementCount(NumElements),
BestSplatSetConst),
Inst, Subtarget, DL, AddedInstructions);
Result->setDebugLoc(Inst->getDebugLoc());
} else {
// Not the first time round the loop. Set up the splatted subvector,
// and write it as a region.
Region R(BestSplatSetBits,
DL.getTypeSizeInBits(VT->getElementType()) / genx::ByteBits);
Constant *NewConst = ConstantVector::getSplat(
IGCLLVM::getElementCount(R.NumElements), BestSplatSetConst);
Result = R.createWrConstRegion(Result, NewConst, "constant", Inst,
Inst->getDebugLoc());
if (AddedInstructions)
AddedInstructions->push_back(Result);
}
RemainingBits &= ~BestSplatSetUsefulBits;
} while (RemainingBits);
return Result;
}
/***********************************************************************
* getRegionBits : determine which vector elements we can set with a
* 1D region
*
* Enter: NeededBits = bits for vector elements we need to set
* OptionalBits = bits for vector elements we could set
* VecWidth = number of elements in vector
*
* Return: bits for vector elements to set as a legal 1D region,
* maximizing how many of NeededBits are set
*/
unsigned ConstantLoader::getRegionBits(unsigned NeededBits,
unsigned OptionalBits, unsigned VecWidth) {
if (!NeededBits)
return 0;
// Get the first and last element numbers in NeededBits.
unsigned FirstNeeded = countTrailingZeros(NeededBits, ZB_Undefined);
unsigned LastNeeded = 31 - countLeadingZeros((uint32_t)NeededBits, ZB_Undefined);
// Set the max width to the min size including both those elements
// rounded up to the next power of two.
unsigned MaxWidth = LastNeeded - FirstNeeded + 1;
unsigned LogMaxWidth = genx::log2(MaxWidth);
if (MaxWidth != 1U << LogMaxWidth) {
++LogMaxWidth;
MaxWidth = 1U << LogMaxWidth;
}
// Special case NeededBits only having one element.
if (LogMaxWidth == 0)
return NeededBits;
// Now find the best region.
unsigned BestBits = 0;
unsigned BestCount = 0;
// Try each stride.
static const unsigned StrideBitsTable[] = { 0xffffffffU, 0x55555555U, 0x11111111U };
for (unsigned LogStride = 0, Stride = 1;
LogStride <= 2U && LogStride < LogMaxWidth;
++LogStride, Stride <<= 1U) {
// Try each width (not including 1).
for (unsigned Width = 1U << (LogMaxWidth - LogStride); Width > 1; Width >>= 1) {
if (Width <= BestCount)
break;
// Try each start index.
for (unsigned Idx = 0; Idx + (Width - 1) * Stride < VecWidth; ++Idx) {
if (Idx + Width > VecWidth)
break;
// Calculate which indexes the region will set.
unsigned Bits = StrideBitsTable[LogStride];
if (Width != 32)
Bits &= (1 << Width) - 1;
Bits <<= Idx;
// See if it sets any elements that we are not allowed to set.
if (Bits & ~(NeededBits | OptionalBits))
continue;
// See if it sets all of NeededBits.
if ((Bits & NeededBits) == NeededBits)
return Bits;
// See if it is the best one we have seen so far.
unsigned Count = countPopulation(Bits & NeededBits);
if (Count > BestCount) {
BestCount = Count;
BestBits = Bits;
if (BestCount == Width)
break;
}
}
}
}
if (!BestCount) {
// We could not find any region that includes more than one of NeededBits.
// Just do a single element.
return 1 << genx::log2(NeededBits);
}
return BestBits;
}
Instruction *ConstantLoader::loadSplatConstant(Instruction *InsertPos) {
// Skip scalar types, vector type with just one element, or boolean vector.
auto *VTy = dyn_cast<IGCLLVM::FixedVectorType>(C->getType());
if (!VTy ||
VTy->getNumElements() == 1 ||
VTy->getScalarType()->isIntegerTy(1))
return nullptr;
// Skip non-splat vector.
Constant *C1 = IGCLLVM::Constant::getSplatValue(C, /* AllowUndefs */ true);
if (!C1)
return nullptr;
// Create <1 x T> constant and broadcast it through rdregion.
Constant *CV = ConstantVector::get(C1);
// Load that scalar constant first.
ConstantLoader L(CV, Subtarget, DL);
Value *V = L.load(InsertPos);
// Broadcast through rdregion.
Region R(V, &DL);
R.Width = R.NumElements = VTy->getNumElements();
R.Stride = 0;
R.VStride = 0;
R.Offset = 0;
Instruction *NewInst = R.createRdRegion(V, ".constsplat", InsertPos, DebugLoc());
if (AddedInstructions)
AddedInstructions->push_back(NewInst);
return NewInst;
}
/***********************************************************************
* ConstantLoader::load : insert instruction to load a constant
*
* We use llvm.genx.constant, rather than bitcast, because CSE has a habit
* of propagating a constant bitcast back into our operand that is not
* allowed to be constant.
*
* Enter: C = constant to load
* InsertBefore = insert new instruction before here
*
* Return: new instruction
*/
Instruction *ConstantLoader::load(Instruction *InsertBefore) {
IGC_ASSERT(isSimple());
// Do not splat load on byte data as HW does not support byte imm source.
if (!C->getType()->getScalarType()->isIntegerTy(8))
if (auto NewInst = loadSplatConstant(InsertBefore))
return NewInst;
if (!PackedFloat && !PackedIntScale && !isa<UndefValue>(C)) { // not packed int constant or undef
if (auto CC = getConsolidatedConstant(C)) {
// We're loading a vector of byte or short (but not i1). Use int so the
// instruction does not use so many channels. This may also save it being
// split by legalization.
Instruction *NewInst =
loadConstant(CC, InsertBefore, Subtarget, DL, AddedInstructions);
NewInst = CastInst::Create(Instruction::BitCast, NewInst, C->getType(),
"constant", InsertBefore);
if (AddedInstructions)
AddedInstructions->push_back(NewInst);
return NewInst;
}
}
// Load the constant as normal.
Value *Args[] = { C }; // Args to new llvm.genx.constant
Type *OverloadedTypes[] = { C->getType() };
GenXIntrinsic::ID IntrinsicID = GenXIntrinsic::genx_constanti;
if (C->getType()->isFPOrFPVectorTy())
IntrinsicID = GenXIntrinsic::genx_constantf;
else if (C->getType()->getScalarType()->isIntegerTy(1))
IntrinsicID = GenXIntrinsic::genx_constantpred;
Module *M = InsertBefore->getParent()->getParent()->getParent();
Function *Decl = GenXIntrinsic::getGenXDeclaration(M, IntrinsicID, OverloadedTypes);
Instruction *NewInst = CallInst::Create(Decl, Args, "constant", InsertBefore);
if (AddedInstructions)
AddedInstructions->push_back(NewInst);
return NewInst;
}
/***********************************************************************
* ConstantLoader::loadNonPackedIntConst : insert instruction to load a constant
* that are not packed because they have width > 8.
*
* Enter: C = constant to load
* InsertBefore = insert new instruction before here
*
* Return: new instruction
*/
Instruction *ConstantLoader::loadNonPackedIntConst(Instruction *InsertBefore) {
auto *CTy = cast<IGCLLVM::FixedVectorType>(C->getType());
IGC_ASSERT(CTy->isIntOrIntVectorTy());
// Simple vectors are already the correct size <= 8, process common load
if (isSimple())
return load(InsertBefore);
unsigned NumElements = CTy->getNumElements();
Instruction *Result = nullptr;
for (unsigned Idx = 0; Idx != NumElements;) {
unsigned Size =
std::min(PowerOf2Floor(NumElements - Idx), (uint64_t)ImmIntVec::Width);
Constant *SubC = getConstantSubvector(C, Idx, Size);
Value *SubV = SubC;
ConstantLoader SubLoader(SubC, Subtarget, DL);
SubV = SubLoader.load(InsertBefore);
Region R(C, &DL);
R.getSubregion(Idx, Size);
Result = R.createWrRegion(
Result ? (Value *)Result : (Value *)UndefValue::get(C->getType()), SubV,
"constant.split" + Twine(Idx), InsertBefore, DebugLoc());
Idx += Size;
}
return Result;
}
/***********************************************************************
* ConstantLoader::loadBig : insert instruction to load a constant that might
* be illegally sized
*/
Instruction *ConstantLoader::loadBig(Instruction *InsertBefore) {
if (isLegalSize() || isa<UndefValue>(C)) {
// Does not need legalizing.
if (!isSimple())
return loadNonSimple(InsertBefore);
return load(InsertBefore);
}
IGC_ASSERT_MESSAGE(!C->getType()->getScalarType()->isIntegerTy(1),
"not expecting predicate in here");
if (Constant *Consolidated = getConsolidatedConstant(C)) {
// Load as a consolidated constant, then bitcast to the correct type.
auto Load =
ConstantLoader(Consolidated, Subtarget, DL, nullptr, AddedInstructions)
.loadBig(InsertBefore);
IGC_ASSERT(Load);
Load = CastInst::Create(Instruction::BitCast, Load, C->getType(),
Load->getName() + ".cast", InsertBefore);
if (AddedInstructions)
AddedInstructions->push_back(Load);
return Load;
}
auto VT = cast<IGCLLVM::FixedVectorType>(C->getType());
const unsigned NumElements = VT->getNumElements();
const unsigned GRFWidthInBits = Subtarget.getGRFByteSize() * genx::ByteBits;
const unsigned ElementBits = DL.getTypeSizeInBits(VT->getElementType());
unsigned MaxSize = 2 * GRFWidthInBits / ElementBits;
MaxSize = std::min(MaxSize, 32U);
Instruction *Result = nullptr;
for (unsigned Idx = 0; Idx != NumElements; ) {
unsigned Size = std::min(1U << genx::log2(NumElements - Idx), MaxSize);
// Load this subvector constant if necessary, and insert into the overall
// value with wrregion.
Constant *SubC = getConstantSubvector(C, Idx, Size);
Value *SubV = SubC;
ConstantLoader SubLoader(SubC, Subtarget, DL);
if (!SubLoader.isSimple())
SubV = SubLoader.loadNonSimple(InsertBefore);
Region R(C, &DL);
R.getSubregion(Idx, Size);
Result = R.createWrRegion(
Result ? (Value *)Result : (Value *)UndefValue::get(C->getType()), SubV,
"constant.split" + Twine(Idx), InsertBefore, DebugLoc());
if (AddedInstructions)
AddedInstructions->push_back(Result);
Idx += Size;
}
return Result;
}
/***********************************************************************
* ConstantLoader::isLegalSize : detect if a constant is a legal size
*/
bool ConstantLoader::isLegalSize() const {
auto *VT = dyn_cast<IGCLLVM::FixedVectorType>(C->getType());
if (!VT)
return true;
const int NumBits = DL.getTypeSizeInBits(VT);
if (!llvm::isPowerOf2_32(NumBits))
return false;
const int GRFSizeInBits = Subtarget.getGRFByteSize() * genx::ByteBits;
if (NumBits > GRFSizeInBits * 2)
return false; // bigger than 2 GRFs
if (VT->getNumElements() > 32)
return false; // 64 bytes not allowed
return true;
}
/***********************************************************************
* ConstantLoader::isBigSimple : detect if a constant is either simple,
* or would be simple after being split into legal sizes
*
* This does not do a thorough check so it misses some cases of a constant
* that would split into simple constants.
*/
bool ConstantLoader::isBigSimple() const {
IGC_ASSERT_MESSAGE(!needFixingSimple(),
"simple case shall be fixed first before this call");
if (isa<UndefValue>(C))
return true; // undef is simple
auto VT = dyn_cast<VectorType>(C->getType());
if (!VT)
return true; // scalar always simple
if (IGCLLVM::Constant::getSplatValue(C, /* AllowUndefs */ true))
return true; // splat constant always simple
if (DL.getTypeSizeInBits(VT->getElementType()) == 1)
return true; // predicate constant always simple
return false;
}
/***********************************************************************
* ConstantLoader::isSimple : detect if a constant is "simple"
*
* A simple constant is one we know can be a constant operand in an instruction.
*/
bool ConstantLoader::isSimple() const {
IGC_ASSERT_MESSAGE(!needFixingSimple(),
"simple case shall be fixed first before this call");
if (isa<UndefValue>(C))
return true; // undef is simple (and generates no vISA code)
if (C->getType()->getScalarType()->isIntegerTy(1) && C->isAllOnesValue())
return true; // all 1s predicate is simple
if(User && User->isBinaryOp())
if (isa<VectorType>(C->getType()))
if (auto splat = C->getSplatValue())
if (splat->isZeroValue())
return true;
if (!isLegalSize())
return false; // Simple constant must be legally sized
if (isBigSimple())
return true; // a big simple constant that is legally sized is simple
if (isPackedIntVector())
return true;
if (isPackedFloatVector())
return true;
return false;
}
bool ConstantLoader::allowI64Ops() const {
if (!Subtarget.hasLongLong())
return false;
if (Subtarget.partialI64Emulation())
return false;
return true;
}
/***********************************************************************
* ConstantLoader::isPackedIntVector : check for a packed int vector
* (having already done the analysis in the ConstantLoader constructor)
*/
bool ConstantLoader::isPackedIntVector() const {
// Check for a packed int vector. Either the element type must be i16, or
// the user (instruction using the constant) must be genx.constanti or
// wrregion or wrconstregion. Not allowed if the user is a logic op.
if (cast<IGCLLVM::FixedVectorType>(C->getType())->getNumElements() >
ImmIntVec::Width)
return false; // wrong width for packed vector
if (PackedIntScale == 1 && (PackedIntAdjust == 0 || PackedIntAdjust == -8)) {
if (!User)
return true; // user not specified -- assume it is a mov, so wrong element
// size is allowed
if (!C->getType()->getScalarType()->isIntegerTy(16)
&& GenXIntrinsic::getGenXIntrinsicID(User) != GenXIntrinsic::genx_constanti
&& !GenXIntrinsic::isWrRegion(User))
return false; // wrong element size when it is not a mov
switch (User->getOpcode()) {
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
return false; // disallow packed vector in logic op
default:
break;
}
return true;
}
return false;
}
/***********************************************************************
* ConstantLoader::isPackedFloatVector : check for a packed float vector
* (having already done the analysis in the ConstantLoader constructor)
*/
bool ConstantLoader::isPackedFloatVector() const {
auto *VT = dyn_cast<IGCLLVM::FixedVectorType>(C->getType());
if (!VT)
return false;
if (VT->getNumElements() > 4)
return false;
return PackedFloat;
}
/***********************************************************************
* ConstantLoader::getConsolidatedConstant : get the consolidated constant
* for the given constant
*
* A "consolidated constant" is one where a vector of byte or short is
* turned into the equivalent (as if by bitcast) vector of int.
*/
Constant *ConstantLoader::getConsolidatedConstant(Constant *C) {
if (isa<UndefValue>(C))
return nullptr;
auto *VT = dyn_cast<IGCLLVM::FixedVectorType>(C->getType());
if (!VT)
return nullptr;
const unsigned BytesPerElement =
DL.getTypeSizeInBits(VT->getElementType()) / genx::ByteBits;
const unsigned NumElements = VT->getNumElements();
if (!BytesPerElement)
return nullptr; // vector of i1
if (BytesPerElement >= 4)
return nullptr; // already vector of i32/i64/float/double
if (NumElements * BytesPerElement & 3)
return nullptr; // not a multiple of 4 bytes long
// We're loading a vector of byte or short (but not i1). Use int so the
// instruction does not use so many channels. This may also save it being
// split by legalization.
unsigned Compaction = BytesPerElement == 1 ? 4 : 2;
unsigned Mask = BytesPerElement == 1 ? 0xff : 0xffff;
SmallVector<Constant *, 8> Elements;
Type *I32Ty = Type::getInt32Ty(C->getContext());
for (unsigned i = 0; i != NumElements; i += Compaction) {
unsigned Val = 0;
bool IsUndef = true;
for (unsigned j = 0; j != Compaction; ++j) {
unsigned Bits = 0;
Constant *El = C->getAggregateElement(i + j);
// We assume that anything that is not ConstantInt is undefined. That
// can include a constant expression with an undefined value in the
// middle.
if (auto CI = dyn_cast<ConstantInt>(El)) {
Bits = CI->getSExtValue();
IsUndef = false;
}
else if (auto CI = dyn_cast<ConstantFP>(El)) {
APFloat V = CI->getValueAPF();
Bits = V.bitcastToAPInt().getZExtValue();
IsUndef = false;
}
Val |= (Bits & Mask) << (j * BytesPerElement * 8);
}
if (IsUndef)
Elements.push_back(UndefValue::get(I32Ty));
else
Elements.push_back(ConstantInt::get(I32Ty, Val));
}
// Construct the constant with i32 element type.
return ConstantVector::get(Elements);
}
/***********************************************************************
* ConstantLoader::analyze : analyze a constant value
*
* This analyzes whether a constant of no more than the right vector width
* (integer 8 or fp 4) can be loaded as a packed vector, possibly scaled
* and adjusted.
*/
void ConstantLoader::analyze() {
auto *VT = dyn_cast<IGCLLVM::FixedVectorType>(C->getType());
if (!VT)
return;
if (C->getSplatValue())
return; // don't analyze if already a splat
unsigned NumElements = VT->getNumElements();
if (VT->getElementType()->isIntegerTy()) {
unsigned MaxSize = 2 * Subtarget.getGRFByteSize(); // element type is boolean
if (!VT->getElementType()->isIntegerTy(1)) {
unsigned ElmSz = VT->getScalarSizeInBits() / genx::ByteBits;
MaxSize = 2 * Subtarget.getGRFByteSize() / ElmSz;
}
if (NumElements <= MaxSize)
analyzeForPackedInt(NumElements);
} else if (NumElements <= 8 && VT->getElementType()->isFloatingPointTy())
analyzeForPackedFloat(NumElements);
}
void ConstantLoader::analyzeForPackedInt(unsigned NumElements) {
// Get element values.
int64_t Min = INT64_MAX;
int64_t Max = INT64_MIN;
SmallVector<int64_t, 32> Elements;
Constant *SomeDefinedElement = nullptr;
for (unsigned i = 0; i != NumElements; ++i) {
auto El = C->getAggregateElement(i);
if (isa<UndefValue>(El))
continue;
SomeDefinedElement = El;
int64_t Element = cast<ConstantInt>(El)->getSExtValue();
Elements.push_back(Element);
Min = std::min(Min, Element);
Max = std::max(Max, Element);
}
if (Elements.empty()) {
// Constant is undef.
IGC_ASSERT_MESSAGE(C == UndefValue::get(C->getType()),
"constant consists only of undef elements only if it's undef itself");
return;
}
if (Elements.size() == 1) {
// if we don't have an immediate user - do not create new constant
// (constant materilization expects that NewC is cleared)
if (!User)
return;
// All but one element undef. If num elements equal 8
// then turn it into a splat constant
if (NumElements != ImmIntVec::Width)
return;
NewC = ConstantVector::getSplat(IGCLLVM::getElementCount(NumElements),
SomeDefinedElement);
return;
}
int64_t ResArith;
if (IGCLLVM::SubOverflow(Max, Min, ResArith))
return;
if (ResArith <= ImmIntVec::MaxUInt) {
if (Min >= ImmIntVec::MinUInt && Max <= ImmIntVec::MaxUInt) {
// Values all in the range [MinUInt..MaxUInt]. We can do this with a packed
// unsigned int with no extra scaling or adjustment.
PackedIntScale = 1;
PackedIntAdjust = 0;
PackedIntMax = Max;
return;
}
if (Min >= ImmIntVec::MinSInt && Max <= ImmIntVec::MaxSInt) {
// Values all in the range [MinSInt..MaxSInt]. We can do this with a packed
// unsigned int with no extra scaling or adjustment.
PackedIntScale = 1;
PackedIntAdjust = -8;
PackedIntMax = Max + 8;
return;
}
// Values all in the range [Min..Min+MaxUInt]. We can do this
// with a packed int with an adjustment.
PackedIntScale = 1;
PackedIntAdjust = Min;
PackedIntMax = Max - Min;
return;
}
// Get unique absolute differences, so we can detect if we have a valid
// packed int vector that is then scaled and has a splatted constant
// added/subtracted.
SmallVector<uint64_t, 31> Diffs;
SmallSet<uint64_t, 31> DiffsSet;
for (unsigned i = 0, e = Elements.size() - 1; i != e; ++i) {
int64_t Diff;
if (IGCLLVM::SubOverflow(Elements[i + 1], Elements[i], Diff))
return;
if (!Diff)
continue;
uint64_t AbsDiff = std::abs(Diff);
if (AbsDiff > UINT_MAX)
return;
if (DiffsSet.insert(AbsDiff).second)
Diffs.push_back(AbsDiff);
}
IGC_ASSERT_MESSAGE(!Diffs.empty(), "not expecting splatted constant");
// Calculate the GCD (greatest common divisor) of the diffs
uint64_t GCD = Diffs[0];
if (Diffs.size() > 1) {
for(unsigned i = 1; i < Diffs.size(); i++)
GCD = GreatestCommonDivisor64(GCD, Diffs[i]);
}
// Scale should fit in signed integer
if (GCD > static_cast<uint64_t>(std::numeric_limits<int64_t>::max()))
return;
int64_t CurScale = static_cast<int64_t>(GCD);
if (!IGCLLVM::MulOverflow(CurScale, static_cast<int64_t>(ImmIntVec::MaxUInt), ResArith) &&
(Max - Min) > ResArith)
return; // range of values too big
PackedIntScale = CurScale;
PackedIntMax = ImmIntVec::MaxUInt;
// Special case adjust of 0 or -8 as then we can save doing an adjust at all
// by using unsigned or signed packed vector respectively.
if (!(Min % CurScale)) {
if (Min >= ImmIntVec::MinUInt &&
(!IGCLLVM::MulOverflow(CurScale, static_cast<int64_t>(ImmIntVec::MaxUInt), ResArith) &&
Max <= ResArith)) {
PackedIntAdjust = ImmIntVec::MinUInt;
return;
}
if ((!IGCLLVM::MulOverflow(CurScale, static_cast<int64_t>(ImmIntVec::MinSInt), ResArith) &&
Min >= ResArith) &&
(!IGCLLVM::MulOverflow(CurScale, static_cast<int64_t>(ImmIntVec::MaxSInt), ResArith) &&
Max <= ResArith)) {
PackedIntAdjust = Min;
PackedIntMax = ImmIntVec::MaxSInt;
return;
}
// Special case all pre-scaled values being in [-15,0] as we can do that
// by negating the scale and not needing to adjust.
if ((!IGCLLVM::MulOverflow(CurScale, static_cast<int64_t>(-ImmIntVec::MaxUInt), ResArith) &&
Min >= ResArith) &&
Max <= -ImmIntVec::MinUInt) {
PackedIntAdjust = ImmIntVec::MinUInt;
PackedIntScale = -PackedIntScale;
return;
}
}
PackedIntAdjust = Min;
}
static bool is8bitPackedFloat(float f) {
union {
float f;
unsigned u;
} u;
u.f = f;
unsigned Exp = (u.u >> 23) & 0xFF;
unsigned Frac = u.u & 0x7FFFFF;
if (Exp == 0 && Frac == 0)
return true;
if (Exp < 124 || Exp > 131)
return false;
if ((Frac & 0x780000) != Frac)
return false;
Frac >>= 19;
if (Exp == 124 && Frac == 0)
return false;
return true;
}
void ConstantLoader::analyzeForPackedFloat(unsigned NumElements) {
if (!Subtarget.hasPackedFloat())
return;
for (unsigned i = 0; i != NumElements; ++i) {
auto Elt = C->getAggregateElement(i);
if (isa<UndefValue>(Elt))
continue;
ConstantFP *CFP = dyn_cast<ConstantFP>(Elt);
// Bail out if any element cannot be analyzed.
if (!CFP)
return;
const APFloat &FP = CFP->getValueAPF();
// Bail out if it's not supported.
// TODO: Only support single precision so far.
if (&FP.getSemantics() != &APFloat::IEEEsingle())
return;
// Bail out if it's not finite.
if (!FP.isFinite())
return;
// Check if it could be represented in 8-bit packed float.
if (!is8bitPackedFloat(FP.convertToFloat()))
return;
}
PackedFloat = true;
}
|