File: GenXDebugInfo.cpp

package info (click to toggle)
intel-graphics-compiler 1.0.12504.6-1%2Bdeb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 83,912 kB
  • sloc: cpp: 910,147; lisp: 202,655; ansic: 15,197; python: 4,025; yacc: 2,241; lex: 1,570; pascal: 244; sh: 104; makefile: 25
file content (1618 lines) | stat: -rw-r--r-- 60,396 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
/*========================== begin_copyright_notice ============================

Copyright (C) 2020-2021 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

#include "FunctionGroup.h"

#include "GenXDebugInfo.h"
#include "GenXTargetMachine.h"
#include "GenXVisaRegAlloc.h"

#include "vc/Support/BackendConfig.h"
#include "vc/Support/GenXDiagnostic.h"
#include "vc/Utils/GenX/KernelInfo.h"

#include "visa/include/visaBuilder_interface.h"

#include "DebugInfo/DwarfCompileUnit.hpp"
#include "DebugInfo/StreamEmitter.hpp"
#include "DebugInfo/VISADebugInfo.hpp"
#include "DebugInfo/VISAIDebugEmitter.hpp"
#include "DebugInfo/VISAModule.hpp"

#include <llvm/Analysis/CallGraph.h>
#include <llvm/CodeGen/TargetPassConfig.h>
#include <llvm/IR/DebugInfoMetadata.h>
#include <llvm/IR/Function.h>
#include <llvm/IR/Instruction.h>
#include <llvm/IR/IntrinsicInst.h>
#include <llvm/InitializePasses.h>
#include <llvm/Support/CommandLine.h>
#include <llvm/Support/Casting.h>
#include <llvm/Support/Errc.h>
#include <llvm/Support/Error.h>

#include "llvmWrapper/IR/DerivedTypes.h"

#include "Probe/Assertion.h"

#include <unordered_set>

//
/// GenXDebugInfo
/// -------------
///
/// The goal of the pass is to provide debug information for each generated
/// genisa instruction (if such information is available).  The debug
/// information is encoded in DWARF format.
///
/// Ultimately, the pass gets data from 2 sources:
///
///   1. LLVM debug information encoded in LLVM IR itself. It captures the
///   important pieces of the source language's Abstract Syntax Tree and
///   maps it onto LLVM code.
///   LLVM framework should maintain it automatically, given that we follow
///   relatively simple rules while designing IR transformations:
///      https://llvm.org/docs/HowToUpdateDebugInfo.html
///
///   2. Debug information obtained from the finalizer. This information is
///   encoded in some proprietary format (blob) and contains the following:
///     a. mapping between vISA and genISA instructions
///     b. live intervals of the virtual registers, information about spilled
///     values, etc.
///     c. call frame information
///
/// The pass feeds the above information to the DebugInfo library which in turn
/// produces the final DWARF.
///
/// Operation of the pass
/// ^^^^^^^^^^^^^^^^^^^^^
///
/// The pass assumes that some data is already being made available by other
/// passes/analysis.
///
/// * FunctionGroupAnalysis:
///     provides information about the overall "structure"
///     of the program: functions, stack calls, indirect calls, subroutines and
///     relationships.
///
/// * GenXModule:
///     1. for each LLVM Function provides information about
///        LLVM instruction -> vISA instructions mapping. This information is
///        produced/maintained during operation of CISABuilder pass.
///     2. for each LLVM Function provides access to a corresponding
///      *VISAKernel* object.
///
/// * GenXVisaRegAlloc:
///     provides the mapping between LLVM values and virtual registers.
///
/// * GenXCisaBuilder:
///     provides access to VISABuilder, which allows us to have access to
///     VISAKernel objects (some Functions from LLVM IR, like the ones
///     representing kernel spawns these) that contain:
///         a. debug information maintained by finalizer (see above)
///         b. the respected gen binaries
///
/// Data Structures
/// ^^^^^^^^^^^^^^^
///
/// Since data is aggregated from different sources, some extra data structures
/// are used to simplify bookkeeping.
///
/// - *genx::di::VisaMapping*
///   provides the mapping from LLMV IR instruction to vISA instruction index,
///   that represents the first vISA instruction spawned by the LLVM IR
///   instruction. A single LLVM IR instruction can spawn several
///   vISA instructions - currently the number of spawned instructions is
///   derived implicitly (which is not always correct but works in most of the
///   cases).
///
/// - *ModuleToVisaTransformInfo*
///   Provides information about how LLVM IR functions are mapped onto various
///   vISA (and genISA) objects. Allows us to answer the following questions:
///     - Is a function a subroutine on vISA level?
///     - If a function is a subroutine, what LLVM IR function corresponds to
///     vISA-level "owner" of this subroutine. An "owner" in this case is
///     either VISAFunction or VISAKernel containing the subroutine.
///     - Is LLVM IR function a "primary" one? "primary" function is the one
///     that spawns vISA entity that gets compiled into a separate gen object
///     - For an arbitrary LLVM IR function, get a set of "primary" functions
///     that contain a compiled vISA corresponding to the function in question
///     compiled into their gen objects.
///
/// - *ProgramInfo*
///   A transient object that groups several llvm Functions that are eventually
///   get compiled into a single gen entity. A separate elf file with the
///   debug information is generated for each gen entity.
///   The grouping is with a help of *ModuleToVisaTransformInfo* object.
///
/// - *GenObjectWrapper*
///  Wrapper over the data produced by the finalizer after a kernel gets
///  compiled. Simplifies/Provides access to the following:
///     + gen binary (gen machine instructions)
///     + decoded *gen* debug info and raw gen debug info blob
///     + FINALIZER_INFO structure
///
/// - *CompiledVisaWrapper*
///  For an arbitrary pair of llvm IR Function and VISAKernel objects,
///  does the following:
///     + Validates that IR Function and VISAKernel object are related (that is
///       the vISA spawned by IR Function is owned by the VISAKernel.
///     + Provides services to access *gen* debug info from an appropriate
///     compiled object (*gen* debug info concept).
///
/// *GenXFunction*
///  An object that loosely resembles MachineFunction from the LLVM Machine IR.
///  This is an object that for a given LLVM IR Function provides access to:
///     - LLVM IR Function
///     - VisaMapping
///     - Subtarget
///     - data from CompiledVisaWrapper/GenObjectWrapper
///     - GenXVisaRegAlloc
///  GenXFunctoin serves as a primary method to communicate with the DebugInfo
///  library. The data these objects hold allow us to reason about the debug
///  information for any Gen construct (instruction, variable, etc).
///
/// Examples
/// ^^^^^^^^
///
/// Examples below use the following naming conventions:
///     K* - kernel function
///     L* - subroutine (non-inlined function)
///     S* - simple stack call
///     I* - indirectly-called function
///
/// FunctionGroup construction peculiarities.
///
///   When function groups are constructed, we do some peculiar transformations.
///
///    Case_1 (FG):
///         Source Code: { K1 calls L1, K2 calls L1 }
///         IR after function groups: { G1 = {K1, L1}, G2 = { K2, L1'} },
///             where L1' is a clone of L1.
///    Case_2 (FG):
///         Source Code: { K1 calls S_1, both call L1 }.
///         IR after function groups: { G1 = {K1, L1, S1, L1' } }.
///    Case_3 (FG):
///         Source Code: { K1 calls I1 and I2 }.
///         IR after function grups { G1 = {K1}, G2 = {I1}, G3={I2} }.
///
/// VISA/genISA  construction peculiarities.
///
///   Case 1:
///     Source code: K1, K2.
///     Compilation phase:
///         two function groups are created, K1 and K2 are heads.
///         two different VISAKernel produced.
///     DebugInfoGeneration:
///         Decoded Debug info for each VISAKernel contains:
///           one compiled object description.
///           two "*.elf" files are created.
///
///   Case 2:
///     Source code: K1, S1. K1 calls S1.
///     Compilation phase:
///         1 function group is created, K1 is the head.
///         1 VISAKernel and 1 VISAFunction are created.
///     DebugInfoGeneratation:
///         Decoded debug info contains *2* compiled objects.
///         Each object has separate vISA indexes - visa instructions are
///         counted separately. Still, both are compiled into the same gen
///         object, so only one "*.elf" file is emitted.
///
///   Case 3:
///     Source code: K1, I1. K1 calls I1
///     Compilation phase:
///         1 function group is created, K1 is the head.
///         Somehow 2 VISAKernels are created.
///     DebugInfoGeneratation:
///         Decoded debug info contains *1* compiled objects (but we have 2
///         VISAKernel).
///         In the end, we emit two "*.elf" files.
///
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "GENX_DEBUG_INFO"

using namespace llvm;

static cl::opt<bool>
    DbgOpt_ValidationEnable("vc-dbginfo-enable-validation",
                            cl::init(false), cl::Hidden,
                            cl::desc("same as IGC_DebugInfoValidation"));
static cl::opt<bool>
    DbgOpt_ZeBinCompatible("vc-experimental-dbg-info-zebin-compatible",
                           cl::init(false), cl::Hidden,
                           cl::desc("same as IGC_ZeBinCompatibleDebugging"));

static cl::opt<std::string> DbgOpt_VisaTransformInfoPath(
    "vc-dump-module-to-visa-transform-info-path", cl::init(""), cl::Hidden,
    cl::desc("filename into which MVTI is dumped"));

static cl::opt<bool> DbgOpt_VisaMappingPrintDbgIntrinsics(
    "vc-dump-visa-mapping-includes-dbgintrin", cl::init(false), cl::Hidden,
    cl::desc("include llvm.dbg intrinsics in visa mapping dump"));

template <typename ContainerT>
using EmplaceTy = decltype(std::declval<ContainerT>().emplace());

template <typename ContainerT>
using CheckedEmplace = decltype(std::declval<EmplaceTy<ContainerT>>().second);

template <typename ContainerT>
using IsCheckedEmplace = std::is_same<bool, CheckedEmplace<ContainerT>>;

template <typename ContainerT>
using IsNonCheckedEmplace =
    std::is_same<EmplaceTy<ContainerT>, typename ContainerT::iterator>;

// Naive function that checks the presence of copies.
// Container must be multimap-like, values must be comparable.
template <typename ContainerT>
static bool hasCopy(const ContainerT &Container,
                    typename ContainerT::iterator ToCheck) {
  auto Range = Container.equal_range(ToCheck->first);
  auto Result = std::count_if(Range.first, Range.second, [ToCheck](auto It) {
    return It.second == ToCheck->second;
  });

  return Result > 1;
}

// checkedEmplace for multimap-like containers. It will be called if
// Container.emplace() returns Container::iterator. For such containers, emplace
// will always happen and therefore copies can be silently inserted.
template <typename ContainerT, class... ArgsT>
static std::enable_if_t<IsNonCheckedEmplace<ContainerT>::value, void>
checkedEmplace(ContainerT &Container, ArgsT &&... Args) {
  auto Result = Container.emplace(std::forward<ArgsT>(Args)...);
  IGC_ASSERT_MESSAGE(!hasCopy(Container, Result),
                     "a copy of the existing element was emplaced");
  (void)Result;
}

// checkedEmplace for map/set-like containers. If Container.emplace() returns a
// pair whose second element has bool type, this version will be called.
template <typename ContainerT, class... ArgsT>
static std::enable_if_t<IsCheckedEmplace<ContainerT>::value, void>
checkedEmplace(ContainerT &Container, ArgsT &&... Args) {
  auto Result = Container.emplace(std::forward<ArgsT>(Args)...);
  IGC_ASSERT_MESSAGE(Result.second, "unexpected insertion failure");
  (void)Result;
}

static bool compareFunctionNames(const Function *LF, const Function *RF) {
  IGC_ASSERT(LF && RF);
  return LF->getName() > RF->getName();
}

template <typename ContainerT>
static std::vector<const Function *>
extractSortedFunctions(const ContainerT &C) {
  std::vector<const Function *> Result;
  std::transform(C.begin(), C.end(), std::back_inserter(Result),
                 [](const auto &It) { return It.first; });
  std::sort(Result.begin(), Result.end(), compareFunctionNames);
  return Result;
}

// NOTE: the term "program" is used to avoid a potential confusion
// since the term "kernel" may introduce some ambiguity.
// Here a "program" represents a kind of wrapper over a standalone vISA
// object (which currently is produced by function groups and
// visa-external functions) that finally gets compiled into a stand-alone
// gen entity (binary gen kernel) with some auxiliary information
struct ProgramInfo {
  struct FunctionInfo {
    const genx::di::VisaMapping &VisaMapping;
    const Function &F;
  };

  const ModuleToVisaTransformInfo &MVTI;
  VISAKernel &CompiledKernel;
  std::vector<FunctionInfo> FIs;

  const Function &getEntryPoint() const {
    IGC_ASSERT(!FIs.empty());
    return FIs.front().F;
  }
};

//
// ModuleToVisaTransformInfo
// Proides information about how LLVM IR functions are mapped onto various
// vISA (and genISA) objects.
class ModuleToVisaTransformInfo {
  using FunctionMapping =
      std::unordered_map<const Function *, const Function *>;
  using FunctionMultiMapping =
      std::unordered_multimap<const Function *, const Function *>;
  // Note: pointer to VISAKernel can represent either a true kernel or
  // VISAFunction, depending on the context (this is vISA API limitation)
  using FunctionToVisaMapping =
      std::unordered_map<const Function *, VISAKernel *>;

  // Records information about a subroutine and its "owner". The "owner" of
  // a subroutine is LLVM IR function that spawned *VISAFunction* that contains
  // vISA for the subroutine
  FunctionMapping SubroutineOwnersInfo;
  // "VisaSpanwer" is LLVM IR function that produce *VISAFunction*.
  // Different "VISAFunctions" have their own vISA instructions enumerated
  // separately, but they still can be compiled into a single gen object.
  // does not allow to distiguish those easily).
  FunctionToVisaMapping VisaSpawnerInfo;
  // A separate gen object is usually produced by KernelFunctions -
  // the relationsip between VisaFunction and KernelFunctions is
  // captured by the FunctionOnwers
  FunctionMultiMapping FunctionOwnersInfo;
  // "Kernel functions" are functions that produce genISA object
  // Usually these are FuntionGroup heads, but indirectly-called functions
  // also spawn there own genISA object files
  FunctionToVisaMapping KernelFunctionsInfo;
  std::unordered_set<const Function *> SourceLevelKernels;

  void extractSubroutineInfo(const Function &F, VISABuilder &VB,
                             const FunctionGroupAnalysis &FGA);
  void extractVisaFunctionsEmitters(VISABuilder &VB,
                                    const FunctionGroupAnalysis &FGA,
                                    const CallGraph &CG);

  void extractKernelFunctions(VISABuilder &VB,
                              const FunctionGroupAnalysis &FGA);
  void propagatePrimaryEmitter(const CallGraphNode &CGNode,
                               const Function &PrimaryEmitter);

public:
  void print(raw_ostream &OS) const;
  void dump() const;

  bool isSourceLevelKernel(const Function *F) const {
    return SourceLevelKernels.find(F) != SourceLevelKernels.end();
  }
  bool isKernelFunction(const Function *F) const {
    return KernelFunctionsInfo.find(F) != KernelFunctionsInfo.end();
  }
  bool isSubroutine(const Function *F) const {
    return SubroutineOwnersInfo.find(F) != SubroutineOwnersInfo.end();
  }
  bool isVisaFunctionSpawner(const Function *F) const {
    return VisaSpawnerInfo.find(F) != VisaSpawnerInfo.end();
  }
  // Currently unused
  // For a provided function returns visa object spawned by this function
  // visa object can represent either VISAKernel or VISAFunction
  VISAKernel *getSpawnedVISAFunction(const Function *F) const {
    IGC_ASSERT(!isSubroutine(F));
    auto SpawnedInfoIt = VisaSpawnerInfo.find(F);
    IGC_ASSERT(SpawnedInfoIt != VisaSpawnerInfo.end());
    return SpawnedInfoIt->second;
  }
  // Return a VISA object representing true *VISAKernel* that was spawned by a
  // "kernel" function: IR kernel or indirectly called function.
  VISAKernel *getSpawnedVISAKernel(const Function *F) const {
    IGC_ASSERT_MESSAGE(isKernelFunction(F),
                       "kernel or indirectly called function is expected");
    return KernelFunctionsInfo.at(F);
  }
  // return an "owner" (on vISA level) of the function representing a
  // subroutine
  const Function *getSubroutineOwner(const Function *F) const {
    IGC_ASSERT(isSubroutine(F));
    auto SubInfoIt = SubroutineOwnersInfo.find(F);
    IGC_ASSERT(SubInfoIt != SubroutineOwnersInfo.end());
    return SubInfoIt->second;
  }
  // PrimaryEmitter is the function spawning gen object, that
  // contains the vISA object emitted by the specified function
  std::unordered_set<const Function *>
  getPrimaryEmittersForVisa(const Function *F, bool Strict = true) const;

  std::vector<const Function *> getPrimaryFunctions() const {
    return extractSortedFunctions(KernelFunctionsInfo);
  }

  std::vector<const Function *>
    getSecondaryFunctions(const Function *PrimaryFunction) const;

  ModuleToVisaTransformInfo(VISABuilder &VB, const FunctionGroupAnalysis &FGA,
                            const CallGraph &CG);
};

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void ModuleToVisaTransformInfo::dump() const {
  print(errs());
  errs() << "\n";
}
#endif

void ModuleToVisaTransformInfo::print(raw_ostream &OS) const {

  auto KernelFunctions = extractSortedFunctions(KernelFunctionsInfo);
  auto Subroutines = extractSortedFunctions(SubroutineOwnersInfo);
  auto VisaProducers = extractSortedFunctions(VisaSpawnerInfo);

  // filter-out kernel functions
  VisaProducers.erase(
      std::remove_if(VisaProducers.begin(), VisaProducers.end(),
                     [this](const auto *F) { return isKernelFunction(F); }),
      VisaProducers.end());

  auto PrintFunctionSubroutines = [this, &OS, &Subroutines](const Function *F,
                                                            StringRef Prefix) {
    unsigned Counter = 0;
    for (const auto *LF : Subroutines) {
      if (getSubroutineOwner(LF) != F)
        continue;
      OS << Prefix << "l." << Counter << " " << LF->getName() << "\n";
      ++Counter;
    }
  };

  for (size_t i = 0, NumKF = KernelFunctions.size(); i < NumKF; ++i) {
    const auto *KF = KernelFunctions[i];
    OS << "[" << i << "] " << KF->getName() << " "
       << (SourceLevelKernels.count(KF) != 0 ? "(K)" : "(I)") << "\n";

    PrintFunctionSubroutines(KF, "    ");

    unsigned SubIdx = 0;
    for (const auto *VF : VisaProducers) {
      if (!getPrimaryEmittersForVisa(VF).count(KF))
        continue;
      OS << "    v." << SubIdx << " " << VF->getName() << "\n";
      PrintFunctionSubroutines(VF, "        ");
      ++SubIdx;
    }
  }
}

using VMap = decltype(genx::di::VisaMapping::V2I);
// Compare two functions with their visa-mapping
static bool visaMapComparer(const Function *L, const Function *R,
                            const VMap &V2IL, const VMap &V2IR) {
  if (V2IL.empty() && V2IR.empty())
    return compareFunctionNames(L, R);
  if (V2IL.empty())
    return false;
  if (V2IR.empty())
    return true;
  return V2IL.front().VisaIdx < V2IR.front().VisaIdx;
}

std::vector<const Function *> ModuleToVisaTransformInfo::getSecondaryFunctions(
    const Function *PrimaryFunction) const {
  auto IsSecondaryFunction = [PrimaryFunction, this](const Function *F) {
    if (F == PrimaryFunction)
      return false;
    return getPrimaryEmittersForVisa(F).count(PrimaryFunction) > 0;
  };
  IGC_ASSERT(isKernelFunction(PrimaryFunction));
  std::vector<const Function *> Result;
  for (const auto &[F, VF] : SubroutineOwnersInfo) {
    (void)VF;
    if (IsSecondaryFunction(F))
      Result.push_back(F);
  }
  for (const auto &[F, VF] : VisaSpawnerInfo) {
    (void)VF;
    if (IsSecondaryFunction(F))
      Result.push_back(F);
  }
  return Result;
}

void ModuleToVisaTransformInfo::extractSubroutineInfo(
    const Function &F, VISABuilder &VB, const FunctionGroupAnalysis &FGA) {
  IGC_ASSERT(isVisaFunctionSpawner(&F));
  const auto *Gr = FGA.getAnyGroup(&F);
  IGC_ASSERT(Gr);
  for (const Function *SF : *Gr) {
    if (isKernelFunction(SF))
      continue;
    if (vc::requiresStackCall(SF))
      continue;
    checkedEmplace(SubroutineOwnersInfo, SF, &F);
  }
}

std::unordered_set<const Function *>
ModuleToVisaTransformInfo::getPrimaryEmittersForVisa(const Function *F,
                                                     bool Strict) const {
  if (isSubroutine(F)) {
    auto SubrInfoIt = SubroutineOwnersInfo.find(F);
    IGC_ASSERT(SubrInfoIt != SubroutineOwnersInfo.end());
    const Function *SubrOwner = SubrInfoIt->second;
    IGC_ASSERT(SubrOwner);
    IGC_ASSERT(!isSubroutine(SubrOwner));
    return getPrimaryEmittersForVisa(SubrOwner);
  }
  auto InfoRange = FunctionOwnersInfo.equal_range(F);
  std::unordered_set<const Function *> PrimaryEmitters;
  std::transform(InfoRange.first, InfoRange.second,
                 std::inserter(PrimaryEmitters, PrimaryEmitters.end()),
                 [](auto It) { return It.second; });

  if (Strict) {
    IGC_ASSERT_MESSAGE(!PrimaryEmitters.empty(),
                       "could not get primary emitter");
  }
  return PrimaryEmitters;
}

void ModuleToVisaTransformInfo::propagatePrimaryEmitter(
    const CallGraphNode &CGNode, const Function &PrimaryEmitter) {
  const Function *F = CGNode.getFunction();
  if (!F)
    return;
  if (vc::requiresStackCall(F) && !vc::isIndirect(F)) {
    auto Range = FunctionOwnersInfo.equal_range(F);
    auto Res =
        std::find_if(Range.first, Range.second, [&PrimaryEmitter](auto Info) {
          return Info.second == &PrimaryEmitter;
        });
    // F -> PrimaryEmitter was already inserted. It happens if a recursion
    // exists.
    if (Res != Range.second)
      return;
    LLVM_DEBUG(dbgs() << "setting <" << PrimaryEmitter.getName()
                      << "> as a host of the stack-callee <" << F->getName()
                      << ">\n");
    checkedEmplace(FunctionOwnersInfo, F, &PrimaryEmitter);
  }

  for (const auto &CalleeCGNode : CGNode)
    propagatePrimaryEmitter(*CalleeCGNode.second, PrimaryEmitter);
}

void ModuleToVisaTransformInfo::extractVisaFunctionsEmitters(
    VISABuilder &VB, const FunctionGroupAnalysis &FGA, const CallGraph &CG) {

  // We've already collected kernels and indirect functions into
  // `KernelFunctionsInfo`.
  for (const auto &[F, VF] : KernelFunctionsInfo) {
    (void)VF;
    const auto *KFNode = CG[F];
    IGC_ASSERT(KFNode);
    propagatePrimaryEmitter(*KFNode, *F);
  }
  // Collect owned functions as a set of unique keys of FunctionOwnersInfo.
  std::unordered_set<const Function *> OwnedFunctions;
  std::transform(FunctionOwnersInfo.begin(), FunctionOwnersInfo.end(),
                 std::inserter(OwnedFunctions, OwnedFunctions.begin()),
                 [](auto Info) { return Info.first; });

  for (const Function *F : OwnedFunctions) {
    // Skip "KernelFunctions" because they have already been processed.
    if (vc::isIndirect(F) || vc::isKernel(F))
      continue;
    VISAKernel *VF = VB.GetVISAKernel(F->getName().str());
    checkedEmplace(VisaSpawnerInfo, F, VF);
    extractSubroutineInfo(*F, VB, FGA);
  }
}

void ModuleToVisaTransformInfo::extractKernelFunctions(
    VISABuilder &VB, const FunctionGroupAnalysis &FGA) {
  for (const auto *FG : FGA.AllGroups()) {
    for (const Function *F : *FG) {
      if (!vc::isIndirect(F) && !vc::isKernel(F))
        continue;
      VISAKernel *VF = VB.GetVISAKernel(F->getName().str());
      if (vc::isKernel(F))
        checkedEmplace(SourceLevelKernels, F);
      checkedEmplace(KernelFunctionsInfo, F, VF);
      checkedEmplace(VisaSpawnerInfo, F, VF);
      checkedEmplace(FunctionOwnersInfo, F, F);

      extractSubroutineInfo(*F, VB, FGA);
    }
  }
}

ModuleToVisaTransformInfo::ModuleToVisaTransformInfo(
    VISABuilder &VB, const FunctionGroupAnalysis &FGA, const CallGraph &CG) {
  extractKernelFunctions(VB, FGA);
  extractVisaFunctionsEmitters(VB, FGA, CG);

  for (const auto *FG : FGA.AllGroups()) {
    for (const Function *F : *FG) {
      if (isSourceLevelKernel(F))
        IGC_ASSERT(isKernelFunction(F) && isVisaFunctionSpawner(F) &&
                   !isSubroutine(F));
      if (isKernelFunction(F))
        IGC_ASSERT(isVisaFunctionSpawner(F) && !isSubroutine(F));
      if (isVisaFunctionSpawner(F))
        IGC_ASSERT(!isSubroutine(F));
      if (isSubroutine(F))
        IGC_ASSERT(!isVisaFunctionSpawner(F) && !isKernelFunction(F));
    }
  }
}

namespace {

class GenObjectWrapper {
  FINALIZER_INFO *JitInfo = nullptr;
  std::unique_ptr<IGC::VISADebugInfo> VISADebugInfo;
  // TODO: remove this once DbgDecoder is refactored
  unsigned GenDbgInfoDataSize = 0;
  void *GenDbgInfoDataPtr = nullptr;

  int GenBinaryDataSize = 0;
  void *GenBinaryDataPtr = nullptr;

  const Function &EntryPoint;

  std::string ErrMsg;

  void setError(const Twine &Msg) {
    ErrMsg.append((Msg + "<" + EntryPoint.getName().str() + ">").str());

    LLVM_DEBUG(dbgs() << "GOW creation for <" << EntryPoint.getName()
                      << "> aborted: " << Msg.str());
  }

public:
  const Function &getEntryPoint() const { return EntryPoint; }

  ArrayRef<char> getGenDebug() const {
    IGC_ASSERT(GenDbgInfoDataPtr);
    return ArrayRef<char>(static_cast<char *>(GenDbgInfoDataPtr),
                          GenDbgInfoDataSize);
  }

  ArrayRef<char> getGenBinary() const {
    IGC_ASSERT(GenBinaryDataPtr);
    return ArrayRef<char>(static_cast<char *>(GenBinaryDataPtr),
                          GenBinaryDataSize);
  }

  const IGC::VISADebugInfo &getVISADebugInfo() const {
    IGC_ASSERT(VISADebugInfo);
    return *VISADebugInfo;
  }

  const FINALIZER_INFO &getJitInfo() const {
    IGC_ASSERT(!hasErrors() && JitInfo);
    return *JitInfo;
  };

  GenObjectWrapper(VISAKernel &VK, const Function &F);
  ~GenObjectWrapper() { releaseDebugInfoResources(); }

  bool hasErrors() const { return !ErrMsg.empty(); }

  const std::string &getError() const { return ErrMsg; }

  void releaseDebugInfoResources() {
    if (!GenDbgInfoDataPtr) {
      IGC_ASSERT(GenDbgInfoDataSize == 0);
      return;
    }
    freeBlock(GenDbgInfoDataPtr);
    GenDbgInfoDataPtr = nullptr;
    GenDbgInfoDataSize = 0;
  }

  void printDecodedGenXDebug(raw_ostream &OS) const {
    IGC_ASSERT(!hasErrors());
    LLVM_DEBUG(dbgs() << "GenXDebugInfo size: " << GenDbgInfoDataSize << "\n");
    getVISADebugInfo().print(OS);
  }
};

GenObjectWrapper::GenObjectWrapper(VISAKernel &VK, const Function &F)
    : EntryPoint(F) {
  if (VK.GetJitInfo(JitInfo) != 0) {
    setError("could not extract jitter info");
    return;
  }
  IGC_ASSERT(JitInfo);

  // Extract Gen Binary (will need it for line table generation)
  VK.GetGenxBinary(GenBinaryDataPtr, GenBinaryDataSize);
  if (GenBinaryDataSize <= 0) {
    setError("could not extract gen binary from finalizer");
    return;
  }

  if (VK.GetGenxDebugInfo(GenDbgInfoDataPtr, GenDbgInfoDataSize) != 0) {
    setError("could not get gen debug information from finalizer");
    return;
  }
  if (!GenDbgInfoDataPtr) {
    setError("gen debug information reported by finalizer is inconsistent");
    return;
  }
  VISADebugInfo = std::make_unique<IGC::VISADebugInfo>(GenDbgInfoDataPtr);
};

class CompiledVisaWrapper {

  using FinalizedDI = IGC::DbgDecoder::DbgInfoFormat;

  const GenObjectWrapper &GOW;
  // underlying data is owned by VISADebugInfo, owned by GOW
  const FinalizedDI *VisaKernelDI = nullptr;

  std::string ErrMsg;

  void setErrorForFunction(const std::string &Err, const Function &F) {
    ErrMsg.append(Err).append("<").append(F.getName().str()).append(">");

    LLVM_DEBUG(dbgs() << "CW creation for <" << F.getName()
                      << "> aborted: " << ErrMsg);
  }

public:
  const FINALIZER_INFO &getJitInfo() const { return GOW.getJitInfo(); };

  const FinalizedDI &getFinalizerDI() const {
    IGC_ASSERT(ErrMsg.empty() && VisaKernelDI);
    return *VisaKernelDI;
  }

  const IGC::VISADebugInfo &getVISADebugInfo() const {
    return GOW.getVISADebugInfo();
  }

  ArrayRef<char> getGenDebug() const { return GOW.getGenDebug(); }
  ArrayRef<char> getGenBinary() const { return GOW.getGenBinary(); }

  const std::string &getError() const { return ErrMsg; }

  bool hasErrors() const { return !getError().empty(); }

  CompiledVisaWrapper(CompiledVisaWrapper &&Other) = default;
  CompiledVisaWrapper(const Function &F, StringRef CompiledObjectName,
                      const GenObjectWrapper &GOWIn)
      : GOW(GOWIn) {
    struct Gen2VisaIdx {
      unsigned GenOffset;
      unsigned VisaIdx;
    };
    LLVM_DEBUG(dbgs() << "creating CW for <" << F.getName() << ">, using <"
                      << CompiledObjectName
                      << "> as a CompiledObject moniker\n");
    IGC_ASSERT(!GOW.hasErrors());

    const auto &CO = GOW.getVISADebugInfo().getRawDecodedData().compiledObjs;
    auto FoundCoIt = std::find_if(
        CO.begin(), CO.end(), [&CompiledObjectName](const auto &DI) {
          return CompiledObjectName == StringRef(DI.kernelName);
        });
    VisaKernelDI = (FoundCoIt == CO.end()) ? nullptr : &*FoundCoIt;
    if (!VisaKernelDI) {
      setErrorForFunction("could not find debug information for", F);
      return;
    }
    if (VisaKernelDI->CISAIndexMap.empty()) {
      setErrorForFunction("empty CisaIndexMap for", F);
      return;
    }

    std::vector<Gen2VisaIdx> Gen2Visa;
    std::transform(VisaKernelDI->CISAIndexMap.begin(),
                   VisaKernelDI->CISAIndexMap.end(),
                   std::back_inserter(Gen2Visa), [](const auto &V2G) {
                     return Gen2VisaIdx{V2G.second, V2G.first};
                   });

    const auto &GenBinary = GOW.getGenBinary();
    // Make Sure that gen isa indeces are inside GenBinary
    const bool InBounds =
        std::all_of(Gen2Visa.begin(), Gen2Visa.end(), [&](const auto &Idx) {
          // <= Is because last index can be equal to the binary size
          return Idx.GenOffset <= GenBinary.size();
        });
    if (!InBounds) {
      setErrorForFunction("fatal error (debug info). inconsistent gen->visa "
                          "mapping: gen index is out of bounds",
                          F);
      return;
    }

    // Make Sure that gen isa indeces are unique and sorted
    const bool Sorted = std::is_sorted(
        Gen2Visa.begin(), Gen2Visa.end(),
        [](const auto &L, const auto &R) { return L.GenOffset < R.GenOffset; });
    const bool Validated =
        Sorted && (Gen2Visa.end() ==
                   std::adjacent_find(Gen2Visa.begin(), Gen2Visa.end(),
                                      [](const auto &L, const auto &R) {
                                        return L.GenOffset == R.GenOffset;
                                      }));
    if (!Validated) {
      setErrorForFunction("fatal error (debug info). inconsistent gen->visa "
                          "mapping: gen index are not ordered properly",
                          F);
      return;
    }
  }
};

class GenXFunction final : public IGC::VISAModule {

public:
  GenXFunction(const GenXSubtarget &STIn, const GenXVisaRegAlloc &RAIn,
               const GenXBaling &BAn, const Function &F,
               CompiledVisaWrapper &&CW, const genx::di::VisaMapping &V2I,
               const ModuleToVisaTransformInfo &MVTI, bool IsPrimary)
      : F{F}, ST{STIn}, VisaMapping{V2I},
        CompiledVisa{std::move(CW)}, RA{RAIn}, BA{BAn}, MVTI(MVTI),
        VISAModule(const_cast<Function *>(&F), IsPrimary) {

    if (MVTI.isSubroutine(&F))
       SetType(ObjectType::SUBROUTINE);
    else if (MVTI.isKernelFunction(&F))
       SetType(ObjectType::KERNEL);
    else
       SetType(ObjectType::STACKCALL_FUNC);
  }

  ~GenXFunction() {
    LLVM_DEBUG(dbgs() << "~GenXFunction() called for " << F.getName() << "\n");
  }

  llvm::StringRef GetVISAFuncName() const override {
    // TODO: this is not quite correct since VISA names is defined by VISA label
    return F.getName();
  }

  bool isSubroutine() const { return GetType() == ObjectType::SUBROUTINE; }

  bool isStackCall() const { return GetType() == ObjectType::STACKCALL_FUNC; }

  bool isKernel() const { return GetType() == ObjectType::KERNEL; }

  const IGC::VISAObjectDebugInfo &
  getVisaObjectDI(const IGC::VISADebugInfo &VDI) const override {
    StringRef CompiledObjectName =
        isSubroutine() ? MVTI.getSubroutineOwner(&F)->getName() : F.getName();
    return VDI.getVisaObjectByCompliledObjectName(CompiledObjectName);
  }

  unsigned int getUnpaddedProgramSize() const override {
    return CompiledVisa.getGenBinary().size();
  }

  bool isLineTableOnly() const override {
    IGC_ASSERT_MESSAGE(0, "isLineTableOnly()");
    return false;
  }
  unsigned getPrivateBaseReg() const override {
    IGC_ASSERT_MESSAGE(0, "getPrivateBaseReg() - not implemented");
    return 0;
  }
  unsigned getGRFSizeInBytes() const override {
    return ST.getGRFByteSize();
  }
  unsigned getNumGRFs() const override {
    return CompiledVisa.getJitInfo().numGRFTotal;
  }
  unsigned getPointerSize() const override {
    return F.getParent()->getDataLayout().getPointerSize();
  }
  uint64_t getTypeSizeInBits(Type* Ty) const override {
    return F.getParent()->getDataLayout().getTypeSizeInBits(Ty);
  }
  ArrayRef<char> getGenDebug() const override {
    return CompiledVisa.getGenDebug();
  }
  ArrayRef<char> getGenBinary() const override {
    return CompiledVisa.getGenBinary();
  }

  const IGC::VISADebugInfo &getVISADebugInfo() const {
    return CompiledVisa.getVISADebugInfo();
  }

  const IGC::DbgDecoder::DbgInfoFormat &getFinalizerDI() const {
    return CompiledVisa.getFinalizerDI();
  }

  const genx::di::VisaMapping &getVisaMapping() const { return VisaMapping; }

  static constexpr unsigned RdIndex =
      GenXIntrinsic::GenXRegion::RdIndexOperandNum;
  static constexpr unsigned RdVstride =
      GenXIntrinsic::GenXRegion::RdVStrideOperandNum;
  static constexpr unsigned RdWidth =
      GenXIntrinsic::GenXRegion::RdWidthOperandNum;
  static constexpr unsigned RdStride =
      GenXIntrinsic::GenXRegion::RdStrideOperandNum;
  static constexpr unsigned RdNumOp =
      GenXIntrinsic::GenXRegion::OldValueOperandNum;

  using OffsetsVector = llvm::SmallVector<unsigned, 0>;

  std::tuple<const Value *, OffsetsVector>
  calculateBaledLocation(const CallInst *UseInst, const GenXBaling &BA,
                         const DataLayout &DL) const {
    IGC_ASSERT(UseInst);
    if (!GenXIntrinsic::isRdRegion(UseInst))
      return std::make_tuple(UseInst, OffsetsVector());
    auto BI = BA.getBaleInfo(UseInst);

    if (BI.Type != genx::BaleInfo::RDREGION ||
        !dyn_cast<ConstantInt>(UseInst->getOperand(RdIndex)) ||
        BI.isOperandBaled(RdNumOp) || !BA.isBaled(UseInst))
      return std::make_tuple(UseInst, OffsetsVector());

    auto GetSignConstant = [](Value *Operand) {
      auto *CI = cast<ConstantInt>(Operand);
      return CI->getSExtValue();
    };

    // In this place comes rdregion, whose operand is not baled - here we
    // build location for its operand
    LLVM_DEBUG(dbgs() << "   Found Bale candidate for propagation:\n";
               UseInst->dump(););
    auto *VTy = dyn_cast<IGCLLVM::FixedVectorType>(UseInst->getType());
    // TODO: Investigate scalar
    if (!VTy)
      return std::make_tuple(UseInst, OffsetsVector());
    auto Vstride = GetSignConstant(UseInst->getOperand(RdVstride));
    auto Width = GetSignConstant(UseInst->getOperand(RdWidth));
    auto Stride = GetSignConstant(UseInst->getOperand(RdStride));
    // Convert start index from bytes to bits
    auto StartIdx =
        GetSignConstant(UseInst->getOperand(RdIndex)) * vc::ByteBits;
    auto ElSizeInBits = vc::getTypeSize(VTy->getElementType(), &DL).inBits();
    IGC_ASSERT(Width);
    unsigned NumElements = VTy->getNumElements() / Width;
    OffsetsVector Offsets;

    for (unsigned I = 0; I < NumElements; ++I) {
      for (unsigned J = 0; J < Width; ++J) {
        auto CurrOffset = StartIdx + ElSizeInBits * (I * Vstride + J * Stride);
        // Check type overflow
        IGC_ASSERT(CurrOffset <= std::numeric_limits<unsigned>::max());
        if ((CurrOffset % getGRFSizeInBits()) + ElSizeInBits >
            getGRFSizeInBits()) {
          LLVM_DEBUG(dbgs() << "  Fail to generate Bale location element has "
                               "crossGRF access\n");
          return std::make_tuple(UseInst, OffsetsVector());
        }
        Offsets.push_back(CurrOffset);
      }
    }
    // Replace value to source of rdregion
    return std::make_tuple(UseInst->getOperand(RdNumOp), std::move(Offsets));
  }

  IGC::VISAVariableLocation
  GetVariableLocation(const Instruction *DbgInst) const override {
    using Location = IGC::VISAVariableLocation;
    auto EmptyLoc = [this](StringRef Reason) {
      LLVM_DEBUG(dbgs() << "  Empty Location Returned (" << Reason
                        << ")\n <<<\n");
      return Location(this);
    };

    IGC_ASSERT(isa<DbgInfoIntrinsic>(DbgInst));

    LLVM_DEBUG(dbgs() << " >>>\n  GetVariableLocation for " << *DbgInst << "\n");
    const DIVariable *VarDescr = nullptr;
    if (const auto *PDbgAddrInst = dyn_cast<DbgDeclareInst>(DbgInst)) {
      VarDescr = PDbgAddrInst->getVariable();
    } else if (const auto *PDbgValInst = dyn_cast<DbgValueInst>(DbgInst)) {
      VarDescr = PDbgValInst->getVariable();
    } else {
      return EmptyLoc("unsupported Debug Intrinsic");
    }
    const Value *DbgValue =
        IGCLLVM::getVariableLocation(cast<DbgVariableIntrinsic>(DbgInst));

    OffsetsVector Offsets;
    if (auto *UseInst = dyn_cast_or_null<CallInst>(DbgValue)) {
      std::tie(DbgValue, Offsets) =
          calculateBaledLocation(UseInst, BA, F.getParent()->getDataLayout());
    }

    IGC_ASSERT(VarDescr);
    if (!DbgValue) {
      if (const auto *LocalVar = dyn_cast<DILocalVariable>(VarDescr))
        if (LocalVar->isParameter())
          return EmptyLoc("unsupported parameter description");
      return EmptyLoc("unsupported DbgInst");
    }
    IGC_ASSERT(DbgValue);
    LLVM_DEBUG(dbgs() << "   Value:" << *DbgValue << "\n");
    LLVM_DEBUG(dbgs() << "   Var: " << VarDescr->getName()
                      << "/Type:" << *VarDescr->getType() << "\n");
    if (isa<UndefValue>(DbgValue)) {
      return EmptyLoc("UndefValue");
    }
    if (auto *ConstVal = dyn_cast<Constant>(DbgValue)) {
      LLVM_DEBUG(dbgs() << "  ConstantLoc\n <<<\n");
      return Location(ConstVal, this);
    }

    auto *Reg = getRegisterForValue(DbgValue);
    if (!Reg) {
      return EmptyLoc("could not find virtual register");
    }

    return Location(Reg->Num, std::move(Offsets), this);
  }

  void UpdateVisaId() override {
    // do nothing (the moment we need to advance index is controlled explicitly)
  }
  void ValidateVisaId() override {
    // do nothing (we don't need validation since VISA is built already)
  }
  uint16_t GetSIMDSize() const override { return 1; }

  void* getPrivateBase() const override { return nullptr; };
  void setPrivateBase(void*) override {};

  bool hasPTO() const override { return false; }
  int getPTOReg() const override { return -1; }
  int getFPReg() const override { return -1; }
  uint64_t getFPOffset() const override { return 16; }

  const GenXVisaRegAlloc::Reg *getRegisterForValue(const Value *V) const {
    return RA.getRegForValueOrNull(const_cast<Value *>(V));
  }

  void printVisaMapping(raw_ostream &OS, unsigned Level = 0) const {
    const std::string Prefix(Level * 4, ' ');
    OS << Prefix;
    OS << "VisaMapping for <" << getFunction()->getName() << ">(";
    for (const auto &Arg : enumerate(getFunction()->args())) {
      OS << "a" << Arg.index() << ":";
      auto *Reg = getRegisterForValue(&Arg.value());
      if (Reg)
        Reg->print(OS);
      else
        OS << "_";
      OS << ";";
    }
    OS << ") - {\n";

    size_t SkippedIndex = 0;
    size_t SkippedCount = 0;
    auto PrintSkippedAndClearCount = [&SkippedIndex, &SkippedCount, &Prefix,
                                      &OS]() {
      if (!SkippedCount)
        return;
      OS << Prefix << "    <" << SkippedIndex << ">: "
         << "skipped " << SkippedCount << " llvm.dbg.* intrinsics\n";
      SkippedCount = 0;
    };

    for (const auto &Mapping : VisaMapping.V2I) {
      auto VisaIndexCurr = Mapping.VisaIdx;
      auto VisaIndexNext = Mapping.VisaIdx + Mapping.VisaCount;
      const auto *Inst = Mapping.Inst;

      if (Mapping.IsDbgInst && !DbgOpt_VisaMappingPrintDbgIntrinsics) {
        if (!SkippedCount)
          SkippedIndex = VisaIndexCurr;
        ++SkippedCount;
        continue;
      }

      PrintSkippedAndClearCount();

      OS << Prefix;
      OS << " [" << VisaIndexCurr << ";" << VisaIndexNext << "): ";

      auto *Reg = getRegisterForValue(Inst);
      OS << "<";
      if (Reg)
        Reg->print(OS);
      OS << "> ";

      Inst->print(OS);

      if (auto DbgLoc = Inst->getDebugLoc()) {
        StringRef Filename = DbgLoc->getFilename();
        auto Line = DbgLoc->getLine();
        auto Col = DbgLoc->getColumn();
        OS << " [" << Filename << ":" << Line << "," << Col << "]";
      }
      OS << "\n";
    }

    PrintSkippedAndClearCount();

    OS << Prefix;
    OS << "}\n";
  }

  const ModuleToVisaTransformInfo &getMVTI() const { return MVTI; }

private:
  const Function &F;
  const GenXSubtarget &ST;
  const genx::di::VisaMapping &VisaMapping;
  CompiledVisaWrapper CompiledVisa;
  const GenXVisaRegAlloc &RA;
  const GenXBaling &BA;
  const ModuleToVisaTransformInfo &MVTI;
};

using VisaMapType = std::vector<genx::di::VisaMapping::Mapping>;

static bool validateVisaMapping(const VisaMapType &V2I) {
  // Last used visa index
  auto ExpectedNextId = V2I.cbegin()->VisaIdx;
  for (auto MappingIt = V2I.cbegin(); MappingIt != V2I.cend(); ++MappingIt) {
    auto VisaIndexCurr = MappingIt->VisaIdx;
    auto VisaIndexNext = MappingIt->VisaIdx + MappingIt->VisaCount;
    const auto *Inst = MappingIt->Inst;

    IGC_ASSERT(VisaIndexCurr <= VisaIndexNext);
    if (MappingIt->IsDbgInst) {
      IGC_ASSERT(isa<DbgInfoIntrinsic>(MappingIt->Inst));
      IGC_ASSERT(MappingIt->VisaCount == 0);
    } else {
      // Check that in map only real instructions
      IGC_ASSERT(MappingIt->VisaCount > 0);
    }

    // ExpectedNextId (from the previous iteration) should be the same as
    // the current index
    // In other words, we should have no gaps in vISA mapping
    if (ExpectedNextId != VisaIndexCurr) {
      LLVM_DEBUG(dbgs() << "Detected inconsistency, current visa-Index: "
                        << VisaIndexCurr
                        << " is not equal to expected visa-Index: "
                        << ExpectedNextId << "\n");
      return false;
    }

    ExpectedNextId = VisaIndexNext;
    // Mapping may interupts in calls, because functions may be inlined.
    // Just do not check ExpectedNextId for the next instruction.
    if (isa<CallInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst))
      ExpectedNextId = std::next(MappingIt)->VisaIdx;

    // Marker that this is the last instruction of a BB
    bool lastBlockInst = ((std::next(MappingIt) != V2I.cend()) &&
                          (MappingIt->Inst->getParent() !=
                           (std::next(MappingIt)->Inst->getParent())));

    // Current implementation does not create mapping for vISA labels.
    // That's why the next mapping is considered to be correct:
    //    VisaMapping: [18;20):  br label %1, !dbg !147
    //    VisaMapping: [21;22):  %icmp = icmp ult i32 %.06, 8, !dbg !148
    // In visaasm-file 20-th instruction will be a bb-label:
    //     lifetime.start V51                        /// $19
    //   BB_1:
    //     cmp.lt (M1, 1) P1 V105(0,0)<0;1,0> 0x8:ud /// $21
    // We avoid checking of the ExpectedNextId in such cases - [21;22).
    if (lastBlockInst) {
      ExpectedNextId = std::next(MappingIt)->VisaIdx;
    }
  }
  return true;
}

static void processGenXFunction(IGC::IDebugEmitter &Emitter, GenXFunction &GF) {
  Emitter.setCurrentVISA(&GF);
  const auto &V2I = GF.getVisaMapping().V2I;
  for (auto MappingIt = V2I.cbegin(); MappingIt != V2I.cend(); ++MappingIt) {
    auto VisaIndexCurr = MappingIt->VisaIdx;
    auto VisaIndexNext = MappingIt->VisaIdx + MappingIt->VisaCount;

    // Note: "index - 1" is because we mimic index values as if they were
    // before corresponding instructions were inserted
    GF.SetVISAId(VisaIndexCurr - 1);
    // we need this const_cast because of the flawed VISA Emitter API
    auto *Inst = const_cast<Instruction *>(MappingIt->Inst);
    Emitter.BeginInstruction(Inst);
    GF.SetVISAId(VisaIndexNext - 1);
    Emitter.EndInstruction(Inst);
  }
}

using GenXObjectHolder = std::unique_ptr<GenXFunction>;
GenXObjectHolder buildGenXFunctionObject(const ModuleToVisaTransformInfo &MVTI,
                                         const GenObjectWrapper &GOW,
                                         const ProgramInfo::FunctionInfo &FI,
                                         const GenXSubtarget &ST,
                                         const GenXVisaRegAlloc &RA,
                                         const GenXBaling &BA) {
  StringRef CompiledObjectName = FI.F.getName();
  if (MVTI.isSubroutine(&FI.F))
    CompiledObjectName = MVTI.getSubroutineOwner(&FI.F)->getName();

  CompiledVisaWrapper CW(FI.F, CompiledObjectName, GOW);
  if (CW.hasErrors())
    vc::diagnose(FI.F.getContext(), "GenXDebugInfo", CW.getError());

  bool IsPrimaryFunction = &GOW.getEntryPoint() == &FI.F;
  return std::make_unique<GenXFunction>(
      ST, RA, BA, FI.F, std::move(CW), FI.VisaMapping, MVTI, IsPrimaryFunction);
}

using GenXObjectHolderList = std::vector<GenXObjectHolder>;
GenXObjectHolderList translateProgramInfoToGenXFunctionObjects(
    const GenObjectWrapper &GOW, const ProgramInfo &PI, const GenXSubtarget &ST,
    const std::vector<const GenXVisaRegAlloc *> &RAs,
    const std::vector<const GenXBaling *> &BAs) {
  const auto &MVTI = PI.MVTI;
  GenXObjectHolderList GenXFunctionHolders;
  IGC_ASSERT(PI.FIs.size() == RAs.size());
  IGC_ASSERT(BAs.size() == RAs.size());
  auto Zippy = llvm::zip(RAs, BAs);
  std::transform(PI.FIs.begin(), PI.FIs.end(), Zippy.begin(),
                 std::back_inserter(GenXFunctionHolders),
                 [&ST, &MVTI, &GOW](const auto &FI, const auto &ZIP) {
                   const GenXVisaRegAlloc *RA = std::get<0>(ZIP);
                   const GenXBaling *BA = std::get<1>(ZIP);
                   return buildGenXFunctionObject(MVTI, GOW, FI, ST, *RA, *BA);
                 });
  return GenXFunctionHolders;
}

using GenXFunctionPtrList = std::vector<GenXFunction *>;
using GenXFunctionConstPtrList = std::vector<const GenXFunction *>;
GenXFunctionPtrList initializeDebugEmitter(
    IGC::IDebugEmitter &Emitter, const IGC::DebugEmitterOpts &DebugOpts,
    const ProgramInfo &PI, GenXObjectHolderList &&GFsHolderIn) {

  GenXFunctionPtrList GFPointers;
  for (auto &&GF : GFsHolderIn) {
    GFPointers.push_back(GF.get());

    if (GF->isPrimaryFunc()) {
      Emitter.Initialize(std::move(GF), DebugOpts);
    } else {
      Emitter.registerVISA(GFPointers.back());
      Emitter.resetModule(std::move(GF));
    }
  }
  // Currently Debug Info Emitter expects that GenXFunctions are
  // processed in the same order as they appear in the visa object
  // Ideally, the order should not matter - but we are not there yet
  // due to DwarfEmitter limitations
  std::sort(GFPointers.begin(), GFPointers.end(), [](auto *LGF, auto *RGF) {
    const auto &LDI = LGF->getFinalizerDI();
    const auto &RDI = RGF->getFinalizerDI();
    if (LDI.relocOffset == RDI.relocOffset)
      return visaMapComparer(LGF->getFunction(), RGF->getFunction(),
                             LGF->getVisaMapping().V2I,
                             RGF->getVisaMapping().V2I);
    return LDI.relocOffset < RDI.relocOffset;
  });
  return GFPointers;
}

std::string makePrefixForAuxiliaryShaderDump(const GenXBackendConfig &BC,
                                             const GenObjectWrapper &GOW) {

  const auto &KernelName = GOW.getEntryPoint().getName();
  std::string Prefix = "dbginfo_";
  if (!BC.dbgInfoDumpsNameOverride().empty())
    Prefix.append(BC.dbgInfoDumpsNameOverride()).append("_");
  Prefix.append(KernelName.str());
  return Prefix;
}

std::string serializeDecodedGenDebugInfo(const GenObjectWrapper &GOW) {
  std::string Result;
  llvm::raw_string_ostream OS(Result);
  GOW.printDecodedGenXDebug(OS);
  OS.flush();
  return Result;
}

using GFPtrSet = std::unordered_set<const GenXFunction *>;
using KernelAndVisaOwners =
    std::pair<const GenXFunction *, GenXFunctionConstPtrList>;

void printVisaMapping(raw_ostream &OS, const GenXFunction &GF, unsigned Level,
                      GFPtrSet &NotPrinted) {
  IGC_ASSERT(NotPrinted.count(&GF));
  GF.printVisaMapping(OS, Level);
  NotPrinted.erase(&GF);
}

void printSubroutinesVisaMapping(raw_ostream &OS,
                                 GenXFunctionConstPtrList Subroutines,
                                 unsigned Level, GFPtrSet &NotPrinted) {
  // Sort is needed for printing elements with less visa index first
  std::sort(Subroutines.begin(), Subroutines.end(),
            [](const GenXFunction *L, const GenXFunction *R) {
              const auto &V2IL = L->getVisaMapping().V2I;
              const auto &V2IR = R->getVisaMapping().V2I;
              return visaMapComparer(L->getFunction(), R->getFunction(), V2IL,
                                     V2IR);
            });
  for (const auto *SGF : Subroutines)
    printVisaMapping(OS, *SGF, Level, NotPrinted);
}

void printVisaOwnerVisaMapping(raw_ostream &OS, const GenXFunction &VO,
                               const GenXFunctionConstPtrList &Subroutines,
                               unsigned Level, GFPtrSet &NotPrinted) {
  printVisaMapping(OS, VO, Level, NotPrinted);

  printSubroutinesVisaMapping(OS, Subroutines, Level + 1, NotPrinted);
}

bool isStackCallGF(const GenXFunction *GF) {
  IGC_ASSERT(GF);
  return GF->isStackCall();
}

bool isKernelGF(const GenXFunction *GF) {
  IGC_ASSERT(GF);
  return GF->isKernel();
}

KernelAndVisaOwners
getKernelAndVisaOwners(const GenXFunctionConstPtrList &GFs) {
  IGC_ASSERT(!GFs.empty());
  GenXFunctionConstPtrList StackCalls;
  std::copy_if(GFs.begin(), GFs.end(), std::back_inserter(StackCalls),
               isStackCallGF);
  auto KGFIt = std::find_if(GFs.begin(), GFs.end(), isKernelGF);
  IGC_ASSERT(std::count_if(GFs.begin(), GFs.end(), isKernelGF) == 1);
  return {*KGFIt, std::move(StackCalls)};
}

GenXFunctionConstPtrList
getSubroutinesForVisaOwner(const GenXFunction &VO,
                           const GenXFunctionConstPtrList &AllGFs) {
  const auto &MVTI = VO.getMVTI();
  GenXFunctionConstPtrList Result;
  std::copy_if(AllGFs.begin(), AllGFs.end(), std::back_inserter(Result),
               [&MVTI, &VO](const auto *GF) {
                 if (!GF->isSubroutine())
                   return false;
                 const Function *F = GF->getFunction();
                 return MVTI.getSubroutineOwner(F) == VO.getFunction();
               });
  return Result;
}

std::string serializeGFsVisaMapping(const GenXFunctionConstPtrList &GFs) {
  std::string Result;
  llvm::raw_string_ostream OS(Result);

  GFPtrSet ToPrint(GFs.begin(), GFs.end());

  auto [KGF, VisaOwners] = getKernelAndVisaOwners(GFs);

  printVisaOwnerVisaMapping(OS, *KGF, getSubroutinesForVisaOwner(*KGF, GFs), 0,
                            ToPrint);
  for (const auto *SpawnerGF : VisaOwners)
    printVisaOwnerVisaMapping(OS, *SpawnerGF,
                              getSubroutinesForVisaOwner(*SpawnerGF, GFs), 1,
                              ToPrint);
  IGC_ASSERT(ToPrint.empty());

  OS.flush();
  return Result;
}

void dumpDebugInfo(const GenXBackendConfig &BC, const GenObjectWrapper &GOW,
                   const GenXFunctionPtrList &GFs, const ArrayRef<char> ElfBin,
                   const ArrayRef<char> ErrLog) {

  auto DecodedGenInfo = serializeDecodedGenDebugInfo(GOW);
  GenXFunctionConstPtrList CGFs;
  std::copy(GFs.begin(), GFs.end(), std::back_inserter(CGFs));
  auto SerializedVisaMapping = serializeGFsVisaMapping(CGFs);

  std::string Prefix = makePrefixForAuxiliaryShaderDump(BC, GOW);

  vc::produceAuxiliaryShaderDumpFile(BC, Twine(Prefix) + "_dwarf.elf", ElfBin);
  vc::produceAuxiliaryShaderDumpFile(BC, Twine(Prefix) + "_gen.dump",
                                     GOW.getGenDebug());
  vc::produceAuxiliaryShaderDumpFile(BC, Twine(Prefix) + "_gen.decoded.dump",
                                     DecodedGenInfo);
  vc::produceAuxiliaryShaderDumpFile(BC, Twine(Prefix) + "_visa.mapping",
                                     SerializedVisaMapping);

  if (!ErrLog.empty())
    vc::produceAuxiliaryShaderDumpFile(BC, Twine(Prefix) + ".dbgerr", ErrLog);
}

} // namespace

void GenXDebugInfo::processKernel(const IGC::DebugEmitterOpts &DebugOpts,
                                  const ProgramInfo &PI) {

  IGC_ASSERT_MESSAGE(!PI.FIs.empty(),
                     "Program must include at least one function");
  IGC_ASSERT_MESSAGE(PI.MVTI.getPrimaryEmittersForVisa(&PI.getEntryPoint())
                             .count(&PI.getEntryPoint()) == 1,
                     "The head of ProgramInfo is expected to be a kernel");

  GenObjectWrapper GOW(PI.CompiledKernel, PI.getEntryPoint());
  if (GOW.hasErrors())
    vc::diagnose(GOW.getEntryPoint().getContext(), "GenXDebugInfo",
                 GOW.getError());

  LLVM_DEBUG(GOW.printDecodedGenXDebug(dbgs()));

  auto Deleter = [](IGC::IDebugEmitter *Emitter) {
    IGC::IDebugEmitter::Release(Emitter);
  };
  using EmitterHolder = std::unique_ptr<IGC::IDebugEmitter, decltype(Deleter)>;
  EmitterHolder Emitter(IGC::IDebugEmitter::Create(), Deleter);

  const auto &ST = getAnalysis<TargetPassConfig>()
      .getTM<GenXTargetMachine>()
      .getGenXSubtarget();
  auto *FGA = &getAnalysis<FunctionGroupAnalysis>();
  std::vector<const GenXVisaRegAlloc *> VisaRegAllocs;
  std::vector<const GenXBaling *> BalingList;
  for (const auto &FP : PI.FIs) {
    FunctionGroup *currentFG = FGA->getAnyGroup(&FP.F);
    VisaRegAllocs.push_back(
        &(getAnalysis<GenXVisaRegAllocWrapper>().getFGPassImpl(currentFG)));
    GenXBaling *Baling =
        &(getAnalysis<GenXGroupBalingWrapper>().getFGPassImpl(currentFG));
    BalingList.push_back(Baling);
  }

  GenXFunctionPtrList GFPointers =
      initializeDebugEmitter(*Emitter, DebugOpts, PI,
                             translateProgramInfoToGenXFunctionObjects(
                                 GOW, PI, ST, VisaRegAllocs, BalingList));

  auto &KF = GOW.getEntryPoint();
  IGC_ASSERT(ElfOutputs.count(&KF) == 0);
  auto &ElfBin = ElfOutputs[&KF];

  for (auto *GF : GFPointers) {
    LLVM_DEBUG(dbgs() << "\n--- Processing GenXFunction:  "
                      << GF->getFunction()->getName().str() << " ---\n");
    LLVM_DEBUG(GF->printVisaMapping(dbgs()));
    IGC_ASSERT(validateVisaMapping(GF->getVisaMapping().V2I));
    processGenXFunction(*Emitter, *GF);
    bool ExpectMore = GF != GFPointers.back();
    LLVM_DEBUG(dbgs() << "--- Starting Debug Info Finalization (final:  "
                      << !ExpectMore << ") ---\n");
    auto Out = Emitter->Finalize(!ExpectMore, GF->getVISADebugInfo());
    if (!ExpectMore) {
      ElfBin = std::move(Out);
    } else {
      IGC_ASSERT(Out.empty());
    }
    LLVM_DEBUG(dbgs() << "---     \\ Debug Info Finalized /     ---\n");
  }

  const auto &KernelName = KF.getName();
  LLVM_DEBUG(dbgs() << "got Debug Info for <" << KernelName.str() << "> "
                    << "- " << ElfBin.size() << " bytes\n");

  const auto &BC = getAnalysis<GenXBackendConfig>();
  if (BC.dbgInfoDumpsEnabled()) {
    const auto &ErrLog = Emitter->getErrors();
    dumpDebugInfo(BC, GOW, GFPointers, ElfBin, {ErrLog.data(), ErrLog.size()});
  }

  return;
}

void GenXDebugInfo::cleanup() {
  ElfOutputs.clear();
}

void GenXDebugInfo::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<FunctionGroupAnalysis>();
  AU.addRequired<GenXBackendConfig>();
  AU.addRequired<GenXModule>();
  AU.addRequired<TargetPassConfig>();
  AU.addRequired<GenXVisaRegAllocWrapper>();
  AU.addRequired<CallGraphWrapperPass>();
  AU.addRequired<GenXGroupBaling>();
  AU.setPreservesAll();
}

void GenXDebugInfo::processPrimaryFunction(
    const IGC::DebugEmitterOpts &Opts, const ModuleToVisaTransformInfo &MVTI,
    const GenXModule &GM, VISABuilder &VB, const Function &PF) {
  LLVM_DEBUG(dbgs() << "DbgInfo: processing <" << PF.getName() << ">\n");
  IGC_ASSERT(MVTI.isKernelFunction(&PF));
  VISAKernel *VKEntry = MVTI.getSpawnedVISAKernel(&PF);
  IGC_ASSERT(VKEntry);

  using FunctionInfo = ProgramInfo::FunctionInfo;
  std::vector<FunctionInfo> FIs;
  FIs.push_back(FunctionInfo{*GM.getVisaMapping(&PF), PF});
  auto SecondaryFunctions = MVTI.getSecondaryFunctions(&PF);
  // Sorting by visa-elements, because finalizer expect sorted sequence
  // for emmiting correct debug hi/low pc for functions
  std::sort(SecondaryFunctions.begin(), SecondaryFunctions.end(),
            [&GM](const Function *L, const Function *R) {
              const auto &V2IL = GM.getVisaMapping(L)->V2I;
              const auto &V2IR = GM.getVisaMapping(R)->V2I;
              return visaMapComparer(L, R, V2IL, V2IR);
            });
  std::transform(SecondaryFunctions.begin(), SecondaryFunctions.end(),
                 std::back_inserter(FIs), [&GM](const Function *F) {
                   const auto &Mapping = *GM.getVisaMapping(F);
                   return FunctionInfo{Mapping, *F};
                 });
  processKernel(Opts, ProgramInfo{MVTI, *VKEntry, std::move(FIs)});
}

static void fillDbgInfoOptions(const GenXBackendConfig &BC,
                               IGC::DebugEmitterOpts &DebugOpts) {
  DebugOpts.DebugEnabled = true;
  DebugOpts.EmitDebugLoc = true;

  if (BC.emitDWARFDebugInfoForZeBin() || DbgOpt_ZeBinCompatible) {
    DebugOpts.ZeBinCompatible = true;
    DebugOpts.EnableRelocation = true;
    DebugOpts.EnforceAMD64Machine = true;
  }
  if (BC.enableDebugInfoValidation() || DbgOpt_ValidationEnable) {
    DebugOpts.EnableDebugInfoValidation = true;
  }
}

bool GenXDebugInfo::runOnModule(Module &M) {
  auto &GM = getAnalysis<GenXModule>();
  // Note: we check that MVTI dumps were not requested here,
  // since it is possible to request those without the presence of
  // debug information
  if (!GM.emitDebugInformation() && DbgOpt_VisaTransformInfoPath.empty())
    return false;

  const auto &BC = getAnalysis<GenXBackendConfig>();
  const FunctionGroupAnalysis &FGA = getAnalysis<FunctionGroupAnalysis>();

  VISABuilder *VB = GM.GetCisaBuilder();
  if (GM.HasInlineAsm() || !BC.getVISALTOStrings().empty())
    VB = GM.GetVISAAsmReader();
  IGC_ASSERT(VB);

  const auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
  ModuleToVisaTransformInfo MVTI(*VB, FGA, CG);
  if (!DbgOpt_VisaTransformInfoPath.empty()) {
    std::string SerializedMVTI;
    llvm::raw_string_ostream OS(SerializedMVTI);
    MVTI.print(OS);
    vc::produceAuxiliaryShaderDumpFile(BC, DbgOpt_VisaTransformInfoPath,
                                       OS.str());
  }
  LLVM_DEBUG(MVTI.print(dbgs()); dbgs() << "\n");

  if (!GM.emitDebugInformation())
    return false;

  IGC::DebugEmitterOpts DebugInfoOpts;
  fillDbgInfoOptions(BC, DebugInfoOpts);

  for (const Function *PF : MVTI.getPrimaryFunctions())
    processPrimaryFunction(DebugInfoOpts, MVTI, GM, *VB, *PF);

  return false;
}

char GenXDebugInfo::ID = 0;

namespace llvm {

ModulePass *createGenXDebugInfoPass() {
  initializeGenXDebugInfoPass(*PassRegistry::getPassRegistry());
  return new GenXDebugInfo;
}

} // namespace llvm

INITIALIZE_PASS_BEGIN(GenXDebugInfo, "GenXDebugInfo", "GenXDebugInfo", false,
                      true /*analysis*/)
INITIALIZE_PASS_DEPENDENCY(FunctionGroupAnalysis)
INITIALIZE_PASS_DEPENDENCY(GenXBackendConfig)
INITIALIZE_PASS_DEPENDENCY(GenXModule)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_DEPENDENCY(GenXVisaRegAllocWrapper)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
INITIALIZE_PASS_END(GenXDebugInfo, "GenXDebugInfo", "GenXDebugInfo", false,
                    true /*analysis*/)