1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2022 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
//
/// GenXDepressurizer
/// -----------------
///
/// GenXDepressurizer is a pass that identifies where register pressure is
/// excessive, and attempts to sink and/or clone definitions past that area to
/// reduce register pressure.
///
/// Currently the pass is enabled to handle only flag (predicate) values. It is
/// supposed to work for general values, but that is not yet enabled and it may
/// require some bug fixing and fine tuning before it is.
///
/// In fact this pass is now viewed as a dead end. The plan to replace it is a
/// pass that does register allocation as if into Gen's real registers, doing
/// live range splitting and rematerialization where required, to help undo the
/// register-pressure-increasing effects of CSE and LICM where it would cause a
/// spill.
///
/// The basic idea of the existing GenXDepressurizer pass:
///
/// 1. Scan the code backwards, keeping track of what values are live and what
/// the register pressure is (total size of all live values, also the total
/// size for flag (predicate) values).
///
/// 2. Where register pressure becomes excessive, look at currently live values
/// to see if any is a definition that could profitably be sunk to below the
/// current point.
///
/// 3. Sink any such instructions until register pressure is no longer
/// excessive.
///
/// 4. For a flag value, "profitably be sunk" includes the case that it
/// decreases flag register pressure but increases overall register pressure
/// (by, for instance, lengthening the live ranges of the inputs to a cmp),
/// but general register pressure is not high at the current point.
///
/// 5. A flag value that does not require cloning (all uses are dominated by the
/// current point) is sunk anyway, as long as it does not push an already
/// high general pressure up higher.
///
/// Point 5 means that this pass replaces GenXCodeSinking, which sank any single
/// use flag value.
///
/// There are some complications to the scheme:
///
/// * How do we scan code backwards in a way that keeps track of pressure when
/// there is control flow, particularly loops?
///
/// * When considering a definition to sink, we need to know whether a
/// particular use is reachable from the current point, and whether it is
/// dominated by it.
///
/// Backwards scanning order and pseudo CFG
/// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
///
/// In order to keep track of liveness and pressure as we scan backwards, we
/// want to scan the basic blocks in an order that ensures that we do not scan
/// a particular basic block until we have scanned all its successors. In that
/// way we can easily gather the live out set of the basic block from the live
/// in of each successor, modified by the incoming for our block in the phi
/// nodes in the successor. (If there are phi nodes, there is only one
/// successor, because critical edges have been split.)
///
/// A loop needs special consideration. We want to scan all of the blocks of a
/// loop (including inner loops) in one go, after scanning all possible
/// successors of the loop, and before scanning the predecessor(s) of the loop
/// header. Within the loop, we want to start at the backedge predecessor(s),
/// but we need to set up the liveness at the end of a backedge predecessor to
/// take account of
///
/// a. any value that is live in to the loop and live out of the loop at some
/// loop exit, and
///
/// b. any value that is defined in the loop and is live round the backedge.
///
/// Superbales
/// ^^^^^^^^^^
///
/// Sinking is performed in units of a superbale.
///
/// For a general value, a superbale is the bale that defines the value, and,
/// if that is a wrregion, the rest of the chain of wrregion bales that write
/// to other parts of that value and have the same inputs as the defining bale.
/// We consider such a superbale as a whole because considering and sinking
/// just the bale would not show any benefit, because it has an input to the
/// wrregion the same size as the result. Such a chain of wrregions typically
/// arises from legalization where vector decomposing has not subsequently been
/// able to split the big vector up.
///
/// For a flag value, a superbale is a tree where each non-leaf node is an
/// and/or/xor/not instruction acting on predicates. Again this is done because
/// sinking just an and/or/xor/not instruction would not show any benefit to
/// flag pressure.
///
//===----------------------------------------------------------------------===//
#include "FunctionGroup.h"
#include "GenX.h"
#include "GenXBaling.h"
#include "GenXGotoJoin.h"
#include "GenXIntrinsics.h"
#include "GenXLiveness.h"
#include "GenXModule.h"
#include "GenXUtil.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "Probe/Assertion.h"
using namespace llvm;
using namespace genx;
#define DEBUG_TYPE "GENX_DEPRESSURIZER"
static cl::opt<unsigned>
LimitGenXDepressurizer("limit-genx-depressurizer", cl::init(UINT_MAX),
cl::Hidden, cl::desc("Limit GenX depressurizer."));
STATISTIC(NumSunk, "Number of instructions sunk");
STATISTIC(NumCloned, "Number of instructions cloned");
namespace {
// PseudoCFG : the pseudo control flow graph for a function
//
// The pseudo CFG is a graph of the basic blocks in a function, similar to the
// real CFG, but with the following differences:
// * It is acyclic
// * Therefore there are no loop backedges
// * What was a loop backedge in the real CFG is replaced by special "loop
// exit" edges from what was the loop backedge predecessor of the loop
// header to each loop exit block, also pointing to the loop header.
// * This only works if the real CFG is reducible. Any unnatural loops in the
// real CFG are probably not properly represented in the pseudoCFG.
//
// The pseudo CFG also provides an ordering of blocks such that a block is not
// visited until all its predecessors have been. Because of the above changes
// in the pseudo CFG, this also has the property that, once we get to a
// (natural) loop header, all blocks in the loop are processed before anything
// else.
//
// The pseudo CFG provides a way to propagate liveness backwards through the
// function:
// * Visit blocks in the reverse of the pseudo CFG ordering, such that no
// block is visited until all its successors have been, and no part of a
// loop is visited until all of the loop exits have been.
// * For a block:
// 1. initialize the live out with (real CFG) successors' corresponding phi
// incomings;
// 2. for a normal edge, propagate the successor's live in to this block's
// live out;
// 3. for a "loop exit" edge, propagate the successor's live in to this
// block's live out, but only for values that are defined before the loop
// header, i.e. in a block that would be visited by the loop header in
// this visit order.
// This provides the correct liveness for any particular point within a loop
// for these cases:
// a. a value that is used after this point in the loop (from 2);
// b. a value that is live round any backedge reachable from this point
// (from 1);
// c. a value that is defined in the loop and used after the loop via a
// loop exit reachable from this point (from 2);
// d. a value that is defined before the loop and used after the loop, and
// is thus live through the whole loop (from 3).
//
// If the real CFG is irreducible, then this liveness information will be
// inaccurate.
//
class PseudoCFG {
public:
struct Node {
friend PseudoCFG;
SmallVector<BasicBlock *, 4> Preds;
SmallVector<BasicBlock *, 4> Succs;
BasicBlock *LoopHeader;
Node() : LoopHeader(nullptr) {}
public:
void removeSucc(BasicBlock *Succ);
void removePred(BasicBlock *Pred);
// getLoopHeader : normally returns 0. If this is a backedge node,
// returns the corresponding loop header block
BasicBlock *getLoopHeader() { return LoopHeader; }
// pred and succ iterators
typedef SmallVectorImpl<BasicBlock *>::iterator pred_iterator;
pred_iterator pred_begin() { return Preds.begin(); }
pred_iterator pred_end() { return Preds.end(); }
typedef SmallVectorImpl<BasicBlock *>::iterator succ_iterator;
succ_iterator succ_begin() { return Succs.begin(); }
succ_iterator succ_end() { return Succs.end(); }
};
private:
std::vector<BasicBlock *> Ordering;
std::map<BasicBlock *, Node> Nodes;
public:
void clear() {
Ordering.clear();
Nodes.clear();
}
// compute : compute the pseudo CFG for the function.
// It is assumed that critical edges have been split.
void compute(Function *F, DominatorTree *DT,
LoopInfoBase<BasicBlock, Loop> *LI);
// getNode : get pseudo CFG node for basic block
Node *getNode(BasicBlock *BB) { return &Nodes[BB]; }
// iterators through the ordering
typedef std::vector<BasicBlock *>::iterator iterator;
iterator begin() { return Ordering.begin(); }
iterator end() { return Ordering.end(); }
typedef std::vector<BasicBlock *>::reverse_iterator reverse_iterator;
reverse_iterator rbegin() { return Ordering.rbegin(); }
reverse_iterator rend() { return Ordering.rend(); }
// Debug dump/print
void dump() { print(dbgs()); }
void print(raw_ostream &OS);
};
// Liveness : the liveness information at some point in the program
// This class is local to this source file and completely unrelated to
// GenXLiveness.
class Liveness {
public:
enum Category { GENERAL, FLAG, ADDR, NUMCATS };
private:
std::set<Value *> Values[NUMCATS];
unsigned Pressure; // overall register pressure
unsigned Pressures[NUMCATS]; // pressure for each individual category
public:
Liveness() : Pressure(0) {
for (unsigned Cat = 0; Cat != NUMCATS; ++Cat)
Pressures[Cat] = 0;
}
static bool isFlag(Value *V) {
return V->getType()->getScalarType()->isIntegerTy(1);
}
static bool isAddr(Value *V) {
if (!V->getType()->getScalarType()->isIntegerTy(16))
return false;
switch (GenXIntrinsic::getGenXIntrinsicID(V)) {
case GenXIntrinsic::genx_convert_addr:
case GenXIntrinsic::genx_add_addr:
return true;
default:
break;
}
return false;
}
static unsigned getValueSize(Value *V);
void copyFrom(Liveness *Other);
void addValue(Value *V);
bool removeValue(Value *V);
void copyValues(Liveness *Other);
unsigned getPressure(unsigned Cat) { return Pressures[Cat]; }
unsigned getPressure() { return Pressure; }
bool contains(Value *V) {
auto ValueSet = &Values[GENERAL];
if (isFlag(V))
ValueSet = &Values[FLAG];
else if (isAddr(V))
ValueSet = &Values[ADDR];
return ValueSet->find(V) != ValueSet->end();
}
// Iterator (over set of values)
typedef std::set<Value *>::iterator iterator;
iterator begin(unsigned Cat) { return Values[Cat].begin(); }
iterator end(unsigned Cat) { return Values[Cat].end(); }
unsigned cat_begin() { return 0; }
unsigned cat_end() { return NUMCATS; }
// Debug print and dump
void print(raw_ostream &OS);
void dump() { print(dbgs()); dbgs() << '\n'; }
};
// Superbale : a sequence of bales where each is headed by a wrregion whose
// "old value of vector" input is the previous bale, and the other operands of
// the bales are all the same.
struct Superbale {
// Instruction number of head instruction of superbale
unsigned Number;
// Bale head instructions, stored in reverse of code order
SmallVector<Instruction *, 8> Bales;
// Operands (some entries can be nullptr)
SmallVector<Value *, 8> Operands;
Instruction *getHead() { return Bales[0]; }
void print(raw_ostream &OS);
void dump() { print(dbgs()); dbgs() << '\n'; }
};
// SinkCandidate : a candidate superbale for sinking
struct SinkCandidate {
Superbale *SB;
int Benefit;
bool AllUsesDominatedByHere;
SinkCandidate(Superbale *SB, int Benefit, bool AUDBH)
: SB(SB), Benefit(Benefit), AllUsesDominatedByHere(AUDBH) {}
// Sort by whether all uses are dominated by here, then by best benefit, then
// by latest definition point.
bool operator<(const SinkCandidate &Rhs) const {
if (AllUsesDominatedByHere != Rhs.AllUsesDominatedByHere)
return AllUsesDominatedByHere > Rhs.AllUsesDominatedByHere;
if (Benefit != Rhs.Benefit)
return Benefit > Rhs.Benefit;
if (SB == nullptr)
return false;
if (Rhs.SB == nullptr)
return true;
return SB->Number > Rhs.SB->Number;
}
};
// GenX depressurizer pass
class GenXDepressurizer : public FGPassImplInterface,
public IDMixin<GenXDepressurizer> {
enum { FlagThreshold = 6, AddrThreshold = 32, GRFThreshold = 2560,
FlagGRFTolerance = 3840 };
bool Modified;
GenXGroupBaling *Baling;
DominatorTree *DT;
LoopInfoBase<BasicBlock, Loop> *LI;
PseudoCFG *PCFG;
unsigned MaxPressure;
std::map<Function *, unsigned> SubroutinePressures;
std::map<BasicBlock *, Liveness> LiveIn;
std::map<BasicBlock *, Liveness> LiveOut;
Liveness *Live;
// A numbering of instructions. Because of the way the basic block ordering
// is constructed, if instruction I2 is reachable from instruction I1, then
// InstNumbers[I1] < InstNumbers[I2], unless the reachability is via a
// loop backedge. The converse is not necessarily true.
std::map<Instruction *, unsigned> InstNumbers;
std::map<Value *, CallInst *> TwoAddrValueMap;
unsigned SunkCount = 0;
public:
explicit GenXDepressurizer() {}
static StringRef getPassName() { return "GenX register pressure reducer"; }
static void getAnalysisUsage(AnalysisUsage &AU);
bool runOnFunctionGroup(FunctionGroup &FG) override;
private:
void processFunction(Function *F);
void orderAndNumber(Function *F);
void processBasicBlock(BasicBlock *BB);
void getLiveOut(BasicBlock *BB, Liveness *Live);
void processInstruction(Instruction *Inst);
void attemptSinking(Instruction *InsertBefore, std::set<Value *> *Exclude,
Liveness::Category Cat, bool AllowClone);
bool sink(Instruction *InsertBefore, Superbale *SB, bool AllowClone = false);
BasicBlock *sinkOnce(Instruction *InsertBefore, Superbale *SB,
ArrayRef<Use *> Uses);
bool modifyLiveness(Liveness *Live, Superbale *SB);
int getSuperbaleKillSize(Superbale *SB);
int getSinkBenefit(Superbale *SB, Liveness::Category Cat, unsigned Headroom);
bool fillSuperbale(Superbale *SB, Instruction *Inst, bool IsFlag);
void MergeCandidate(SinkCandidate &Lhs, SinkCandidate &Rhs);
void fillTwoAddrValueMap(BasicBlock *BB);
};
} // end anonymous namespace
namespace llvm {
void initializeGenXDepressurizerWrapperPass(PassRegistry &);
using GenXDepressurizerWrapper = FunctionGroupWrapperPass<GenXDepressurizer>;
}
INITIALIZE_PASS_BEGIN(GenXDepressurizerWrapper, "GenXDepressurizerWrapper",
"GenXDepressurizerWrapper", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeGroupWrapperPassWrapper)
INITIALIZE_PASS_DEPENDENCY(GenXLivenessWrapper)
INITIALIZE_PASS_DEPENDENCY(GenXGroupBalingWrapper)
INITIALIZE_PASS_END(GenXDepressurizerWrapper, "GenXDepressurizerWrapper",
"GenXDepressurizerWrapper", false, false)
ModulePass *llvm::createGenXDepressurizerWrapperPass() {
initializeGenXDepressurizerWrapperPass(*PassRegistry::getPassRegistry());
return new GenXDepressurizerWrapper();
}
void GenXDepressurizer::getAnalysisUsage(AnalysisUsage &AU) {
AU.addRequired<DominatorTreeGroupWrapperPass>();
AU.addRequired<GenXGroupBaling>();
AU.addPreserved<DominatorTreeGroupWrapperPass>();
AU.addPreserved<GenXModule>();
AU.addPreserved<GenXLiveness>();
AU.addPreserved<GenXGroupBaling>();
AU.addPreserved<FunctionGroupAnalysis>();
AU.setPreservesCFG();
}
/***********************************************************************
* runOnFunctionGroup : run the register pressure reduction pass for
* this FunctionGroup
*/
bool GenXDepressurizer::runOnFunctionGroup(FunctionGroup &FG) {
if (skipOptWithLargeBlock(FG))
return false;
Modified = false;
SunkCount = 0;
Baling = &getAnalysis<GenXGroupBaling>();
// Process functions in the function group in reverse order, so we know the
// max pressure in a subroutine when we see a call to it.
for (auto fgi = FG.rbegin(), fge = FG.rend(); fgi != fge; ++fgi) {
Function *F = *fgi;
processFunction(F);
SubroutinePressures[F] = MaxPressure;
}
SubroutinePressures.clear();
return Modified;
}
/***********************************************************************
* processFunction : run depressurizer on one function
*/
void GenXDepressurizer::processFunction(Function *F) {
LLVM_DEBUG(dbgs() << "GenXDepressurizer on function " << F->getName() << '\n');
MaxPressure = 0;
DT = getAnalysis<DominatorTreeGroupWrapperPass>().getDomTree(F);
LI = new LoopInfoBase<BasicBlock, Loop>();
LI->analyze(*DT);
// Calculate the pseudo CFG.
PCFG = new PseudoCFG();
PCFG->compute(F, DT, LI);
// Order and number the instructions.
orderAndNumber(F);
// Visit each basic block.
MaxPressure = 0;
for (auto ri = PCFG->rbegin(), re = PCFG->rend(); ri != re; ++ri) {
processBasicBlock(*ri);
}
delete PCFG;
delete LI;
LLVM_DEBUG(dbgs() << "max pressure " << MaxPressure << " for function "
<< F->getName() << '\n');
SubroutinePressures[F] = MaxPressure;
}
/***********************************************************************
* orderAndNumber : order and number the instructions
*
* This has three purposes:
*
* 1. ensure the instructions in a bale are adjacent;
*
* 2. for a boolean and/or, ensure that a tree of bales (where each bale has
* a single use that is its parent in the tree, in the same basic block) is
* adjacent and in depth first order to minimize flag pressure in a tree of
* boolean ops;
*
* 3. number the instructions, with each instruction in a bale given the same
* number.
*
* This scans the code backwards, so numbers backwards starting at a high
* number.
*/
void GenXDepressurizer::orderAndNumber(Function *F) {
unsigned InstNum = 1000000000;
for (auto fi = PCFG->rbegin(), fe = PCFG->rend(); fi != fe; ++fi) {
BasicBlock *BB = *fi;
auto Inst = &BB->back();
for (;;) {
--InstNum;
if (isa<PHINode>(Inst))
InstNumbers[Inst] = InstNum;
else {
Bale B;
Baling->buildBale(Inst, &B);
auto InsertBefore = Inst;
// Move the bale instructions to a contiguous lump, and number them.
Instruction *GotoJoin = nullptr;
for (auto ii = B.begin(), ie = B.end(); ii != ie; ++ii) {
Inst = ii->Inst;
InstNumbers[Inst] = InstNum;
if (Inst == InsertBefore)
continue;
switch (GenXIntrinsic::getGenXIntrinsicID(Inst)) {
case GenXIntrinsic::genx_simdcf_goto:
case GenXIntrinsic::genx_simdcf_join:
GotoJoin = Inst;
break;
default:
break;
}
Inst->removeFromParent();
Inst->insertBefore(InsertBefore);
}
if (GotoJoin) {
// For a goto/join, check that its outside-bale uses are also moved,
// and number the instructions.
// This is the only case of an inside-bale instruction having
// outside-bale uses.
// This is a bit of a bodge, which we'll tolerate for now on the
// basis that this pass will go away once we have a better pass for
// detecting register pressure and alleviating it by moving code and
// rematerializing.
SmallVector<Instruction *, 2> Users;
for (auto ui = GotoJoin->use_begin(), ue = GotoJoin->use_end();
ui != ue; ++ui)
Users.push_back(cast<Instruction>(ui->getUser()));
Instruction *InsertBefore = GotoJoin->getNextNode();
for (auto ui = Users.begin(), ue = Users.end(); ui != ue; ++ui) {
Instruction *User = *ui;
if (!isa<VectorType>(User->getType())) {
// Skip the use that is in the bale. We are relying on the use in
// the bale being the only extractvalue that is scalar; the other
// two (for goto) or one (for join) are vector (the EM and RM
// values).
continue;
}
if (User->getParent() == GotoJoin->getParent()) {
// Only move the extractvalue if it is in the same basic block.
User->removeFromParent();
User->insertBefore(InsertBefore);
InstNumbers[User] = InstNum;
}
}
}
Inst = B.getHead()->Inst;
if (Inst->getType()->getScalarType()->isIntegerTy(1) &&
(Inst->getOpcode() == Instruction::And ||
Inst->getOpcode() == Instruction::Or)) {
// Now look at the operands. Any that is a single use instruction in
// the same basic block is moved. The rest of its bale, and that
// bale's own operands, get moved when it is later processed in the
// loop.
InsertBefore = B.begin()->Inst;
for (auto ii = B.begin(), ie = B.end(); ii != ie; ++ii) {
Inst = ii->Inst;
for (unsigned oi = 0, oe = Inst->getNumOperands(); oi != oe; ++oi) {
if (ii->Info.isOperandBaled(oi))
continue; // only consider out-of-bale operands
auto OpndInst = dyn_cast<Instruction>(Inst->getOperand(oi));
if (!OpndInst)
continue;
if (OpndInst->getParent() != BB)
continue;
if (isa<PHINode>(OpndInst))
continue;
if (!OpndInst->hasOneUse())
continue;
OpndInst->removeFromParent();
OpndInst->insertBefore(InsertBefore);
}
}
}
// On to the previous instruction, which is now the one before the first
// instruction in the current bale.
Inst = B.begin()->Inst;
}
if (Inst == &BB->front())
break;
Inst = Inst->getPrevNode();
}
}
}
/***********************************************************************
* processBasicBlock : process one basic block
*/
void GenXDepressurizer::processBasicBlock(BasicBlock *BB) {
// Create a new empty entry for this BB in the LiveIn map, and use it for
// keeping track of liveness as we scan backwards through the block.
Live = &LiveIn[BB];
// Populate Live with the live out values.
getLiveOut(BB, Live);
fillTwoAddrValueMap(BB);
// Scan backwards through the block, excluding phi nodes.
auto Inst = &BB->back();
for (;;) {
if (isa<PHINode>(Inst))
break;
processInstruction(Inst);
if (Inst == &BB->front())
break;
Inst = Inst->getPrevNode();
}
// Just before the first (non-phi) instruction, attempt sinking of flag
// values, as long as non-flag pressure is low, and as long as this is not a
// join label.
if (!GotoJoin::isJoinLabel(BB) && FlagGRFTolerance > Live->getPressure())
attemptSinking(BB->getFirstNonPHI(), nullptr, Liveness::FLAG,
/*AllowClone=*/false);
}
/***********************************************************************
* getLiveOut : populate empty Liveness with the live out of the BB
*/
void GenXDepressurizer::getLiveOut(BasicBlock *BB, Liveness *Live) {
// Get each successor's live in values into our liveness. If getLoopHeader
// returns non-0, then we are looking at a loop backedge and we only want
// to get successors' live in values if they are defined before the loop
// header.
unsigned LoopHeaderNum = 0;
auto BBNode = PCFG->getNode(BB);
if (auto LoopHeader = BBNode->getLoopHeader())
LoopHeaderNum = InstNumbers[&LoopHeader->front()];
for (auto si = BBNode->succ_begin(), se = BBNode->succ_end(); si != se;
++si) {
auto LI = &LiveIn[*si];
for (auto ci = LI->cat_begin(), ce = LI->cat_end(); ci != ce; ++ci)
for (auto vi = LI->begin(ci), ve = LI->end(ci); vi != ve; ++vi) {
Value *V = *vi;
if (auto Inst = dyn_cast<Instruction>(V))
if (LoopHeaderNum && LoopHeaderNum <= InstNumbers[Inst])
continue; // Ignore instruction defined in loop from loop exit succ
Live->addValue(V);
}
}
// Now adjust the liveness for the phi nodes of each real CFG successor. This
// includes the case that this is a backedge and the real CFG successor is
// the loop header; this is how we get defs inside the loop into our
// liveness.
auto TI = BB->getTerminator();
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
auto Succ = TI->getSuccessor(i);
for (auto ii = Succ->begin();; ++ii) {
auto Phi = dyn_cast<PHINode>(&*ii);
if (!Phi)
break;
Live->removeValue(Phi);
Live->addValue(Phi->getIncomingValue(Phi->getBasicBlockIndex(BB)));
}
}
if (MaxPressure < Live->getPressure()) {
MaxPressure = Live->getPressure();
LLVM_DEBUG(dbgs() << "max pressure now " << MaxPressure << '\n');
}
LLVM_DEBUG(dbgs() << "getLiveOut(" << BB->getName() << "): "; Live->print(dbgs());
dbgs() << '\n');
// Copy the liveness to the LiveOut entry for this BB.
LiveOut[BB].copyFrom(Live);
}
/***********************************************************************
* processInstruction : process one instruction in backwards scan of BB
*
* Return: Prev = previous instruction, i.e. next one to scan
*/
void GenXDepressurizer::processInstruction(Instruction *Inst) {
if (!Inst)
return;
if (Baling->isBaled(Inst))
return; // Not head of bale, ignore
if (isa<DbgInfoIntrinsic>(Inst))
return; // debug info intrinsics are ignored
if (isa<ExtractValueInst>(Inst))
return; // Too confusing to consider sinking when we get to an extractvalue
// out of a goto/join, so ignore.
Bale B;
Baling->buildBale(Inst, &B);
LLVM_DEBUG(dbgs() << '[' << InstNumbers[Inst] << ']';
if (Inst->getDebugLoc())
dbgs() << " {line " << Inst->getDebugLoc().getLine() << '}';
B.print(dbgs()));
unsigned OldFlagPressure = Live->getPressure(Liveness::FLAG);
// Remove the result of the bale from liveness.
Live->removeValue(Inst);
// If this is a non-intrisic call, add the max pressure from inside the call.
if (auto CI = dyn_cast<CallInst>(Inst)) {
if (!GenXIntrinsic::isAnyNonTrivialIntrinsic(CI)) {
LLVM_DEBUG(dbgs() << "pressure inside subroutine: "
<< SubroutinePressures[CI->getCalledFunction()] << '\n');
unsigned AddedPressure =
Live->getPressure() + SubroutinePressures[CI->getCalledFunction()];
if (MaxPressure < AddedPressure) {
MaxPressure = AddedPressure;
LLVM_DEBUG(dbgs() << "max pressure now " << MaxPressure << '\n');
}
}
}
// Add operands from outside the bale to liveness. Also keep them in a
// separate set for the use of attemptSinking.
std::set<Value *> BaleOperands;
for (auto bi = B.rbegin(), be = B.rend(); bi != be; ++bi) {
BaleInst *BI = &*bi;
for (unsigned ii = 0, ie = BI->Inst->getNumOperands(); ii != ie; ++ii) {
if (!BI->Info.isOperandBaled(ii)) {
Value *Opnd = BI->Inst->getOperand(ii);
if (isa<Argument>(Opnd) || isa<Instruction>(Opnd)) {
Live->addValue(Opnd);
BaleOperands.insert(Opnd);
}
}
}
}
LLVM_DEBUG(Live->print(dbgs()); dbgs() << '\n');
if (Inst && Inst->isTerminator())
return; // Do not attempt to sink past last instruction in block.
// FIXME: This does not deal with a subroutine call instruction, where
// pressure goes up during the call and then comes back down again on
// return. I think the last remaining flag spill in HEVCEnc_PB is because
// of this; a CSEd flag is live over a subroutine call but we do not notice
// that increased flag pressure inside the call should force the flag def
// to be cloned and sunk.
// Attempt sinking of flag values if necessary. Do not do that if non-flag
// pressure is already high. If flag pressure has just gone high, sink any
// flag value (with a benefit). Otherwise, only sink single use flag values.
if (FlagGRFTolerance > Live->getPressure()) {
bool AllowClone = OldFlagPressure <= FlagThreshold &&
Live->getPressure(Liveness::FLAG) > FlagThreshold;
attemptSinking(Inst->getNextNode(), &BaleOperands, Liveness::FLAG,
AllowClone);
}
// Attemp sinking of address values if necessary.
if (Live->getPressure(Liveness::ADDR) > AddrThreshold)
attemptSinking(Inst->getNextNode(), &BaleOperands, Liveness::ADDR,
/*AllowClone=*/false);
// Attempt sinking of non-flag value(s) if necessary.
if (Live->getPressure() > GRFThreshold)
attemptSinking(Inst->getNextNode(), &BaleOperands, Liveness::GENERAL,
/*AllowClone=*/false);
if (MaxPressure < Live->getPressure()) {
MaxPressure = Live->getPressure();
LLVM_DEBUG(dbgs() << "max pressure up to " << MaxPressure << '\n');
}
}
/***********************************************************************
* attemptSinking : attempt some sinking to reduce pressure
*
* Enter: InsertBefore = instruction to insert sunk instruction before
* Exclude = 0 else exclude any sink candidate in this set (used to
* exclude superbales used in the present bale)
* FlagSinking = true to sink flags
* AllowClone = true to sink anything suitable, false to only sink
* when cloning is not required, used to sink flag defs
* even when flag pressure is low.
*
* This is called in three different ways:
*
* FlagSinking, !AllowClone: sink any flag def whose uses are all dominated by
* the current position (quit if normal pressure gets too high)
*
* FlagSinking, AllowClone: sink any flag def, preferring ones that do not need
* a clone, but switch to !AllowClone mode once flag pressure is low enough
* (and quit if normal pressure gets too high)
*
* !FlagSinking, AllowClone: sink normal (non-flag) def if it provides a
* benefit to pressure, until pressure is low enough.
*/
void GenXDepressurizer::attemptSinking(Instruction *InsertBefore,
std::set<Value *> *Exclude,
Liveness::Category Cat,
bool AllowClone) {
LLVM_DEBUG(dbgs() << "attemptSinking(Cat=" << (Cat == Liveness::FLAG ? "flag" :
Cat == Liveness::ADDR ? "addr" :
"general")
<< ", AllowClone=" << AllowClone << ")\n");
if (!InsertBefore)
return;
// Gather the currently live superbales with a sink benefit.
// Exclude any that is used in the present bale.
SmallVector<SinkCandidate, 8> Candidates;
SmallVector<SinkCandidate, 8> SecondRound;
std::map<Instruction *, Superbale> Superbales;
unsigned CurNumber = InstNumbers[InsertBefore];
int Headroom = 0;
switch (Cat) {
case Liveness::FLAG:
Headroom = FlagGRFTolerance - Live->getPressure();
break;
default:
break;
}
for (auto i = Live->begin(Cat), e = Live->end(Cat); i != e; ++i) {
if (Exclude && Exclude->find(*i) != Exclude->end())
continue;
auto Inst = dyn_cast<Instruction>(*i);
if (!Inst)
continue; // only instructions can sink, not args
if (isa<PHINode>(Inst))
continue; // cannot sink phi node
if (isa<ExtractValueInst>(Inst))
continue; // Don't sink extractvalue from a goto/join.
if (Inst->mayHaveSideEffects() || Inst->mayReadOrWriteMemory())
continue;
// For this candidate, determine where its uses are, one of these cases:
//
// 1. All uses are dominated by here. This is the preferred case as the
// instruction can simply be sunk, with no cloning.
// 2. Not all uses are reachable from here, but all uses that are reachable
// from here are dominated by here. This can be handled by a clone of
// the instruction, where the cloned instruction takes on the uses that
// are reachable from here.
// 3. Other cases. We do not handle that, although we could enhance it in
// the future to handle this case by finding multiple sites to clone
// the instruction to.
//
// We are using "has a higher instruction number than" as a proxy for "is
// reachable from", which in fact could include some uses that are not
// reachable.
bool AllUsesDominatedByHere = true;
bool AllReachableUsesDominatedByHere = true;
for (auto ui = Inst->use_begin(), ue = Inst->use_end(); ui != ue; ++ui) {
Instruction *user = cast<Instruction>(ui->getUser());
if (InstNumbers[user] < CurNumber) {
// Unreachable use.
AllUsesDominatedByHere = false;
continue;
}
if (InsertBefore->getParent() != user->getParent() &&
!DT->dominates(InsertBefore->getParent(), user->getParent())) {
AllReachableUsesDominatedByHere = false;
break;
}
}
if (!AllReachableUsesDominatedByHere)
continue; // exclude case 3
if (!AllowClone && !AllUsesDominatedByHere)
continue; // exclude case 2 if !AllowClone
bool IsFlag = Liveness::isFlag(Inst);
bool IsAddr = Liveness::isAddr(Inst);
if (!IsFlag && !IsAddr &&
Inst->getType()->getPrimitiveSizeInBits() < 32 * 8) {
// don't bother with anything smaller than a GRF unless it is a flag
continue;
}
Superbale *SB = &Superbales[Inst];
IGC_ASSERT(SB->Bales.empty());
if (!fillSuperbale(SB, Inst, IsFlag))
continue;
// Check whether the sink of this SB will cross its operands' two-addr
// instructions, i.e.
//
// ... := use(v0); // SB.Head
//
// v1 := twoaddr(v0); // two-addr instruction.
//
// x <--- here this SB could be sunk to.
//
// In such case, sinking this SB should be avoided as it creates
// overlapping between v0 and v1; otherwise, additional copy of v0 has to
// be inserted. That won't alleviate the register pressure.
bool CrossTwoAddr = false;
for (auto OI = SB->Operands.begin(),
OE = SB->Operands.end(); OI != OE; ++OI) {
Value *Opnd = *OI;
if (!TwoAddrValueMap.count(Opnd))
continue;
unsigned TwoAddrNum = InstNumbers[TwoAddrValueMap[Opnd]];
unsigned SBNum = InstNumbers[SB->getHead()];
// Ignore the case where the SB itself is a two-addr instruction or part
// of chain of two-addr instructions.
if (TwoAddrNum <= SBNum)
continue;
// Skip sinking/cloning if the current sinking point is beyond where the
// two-addr instruction overwriting the same register.
if (CurNumber > TwoAddrNum) {
LLVM_DEBUG(dbgs() << "could not sink/clone as it will cross the two-addr "
<< "instruction sharing the same operand!");
CrossTwoAddr = true;
break;
}
}
if (CrossTwoAddr)
continue;
// Add the candidate.
int Benefit = getSinkBenefit(SB, Cat, Headroom);
LLVM_DEBUG(dbgs() << "candidate " << SB->getHead()->getName()
<< " with benefit " << Benefit
<< " and AllUsesDominatedByHere " << AllUsesDominatedByHere
<< '\n');
if (Benefit > 0)
Candidates.push_back(SinkCandidate(SB, Benefit, AllUsesDominatedByHere));
else if (AllUsesDominatedByHere)
SecondRound.push_back(SinkCandidate(SB, Benefit, true));
}
if (!Candidates.empty()) {
// Sort the candidates.
std::sort(Candidates.begin(), Candidates.end());
// Try each candidate.
for (auto i = Candidates.begin(), e = Candidates.end(); i != e; ++i) {
if (!AllowClone && !i->AllUsesDominatedByHere)
continue; // Ignore candidate that needs cloning if AllowClone has
// switched to false (i.e. flag pressure is low)
if (sink(InsertBefore, i->SB)) {
switch (Cat) {
case Liveness::FLAG:
if (Live->getPressure(Liveness::FLAG) <= FlagThreshold) {
// Flag pressure is now low so we can stop sinking when a clone
// is needed.
AllowClone = false;
}
Headroom = FlagGRFTolerance - Live->getPressure();
if (Headroom <= 0)
return;
break;
case Liveness::ADDR:
if (Live->getPressure(Liveness::ADDR) < AddrThreshold)
return;
break;
default:
if (Live->getPressure() < GRFThreshold)
return;
break;
}
} else if (i->AllUsesDominatedByHere) {
SecondRound.push_back(*i);
}
}
}
if (AllowClone) {
LLVM_DEBUG(dbgs() << "could not do enough sinking to alleviate pressure\n");
if (Cat == Liveness::FLAG) {
for (auto i = Candidates.begin(), e = Candidates.end(); i != e; ++i) {
(void)sink(InsertBefore, i->SB, true);
}
}
} else {
// Try to sink a group of candidates to reduce register pressure.
// Do NOT Allow Clone for now.
for (auto i = SecondRound.begin(), ie = SecondRound.end(); i != ie; ++i) {
if (i->SB == nullptr)
continue;
auto SB = i->SB;
SmallSet<Value *, 8> OperandSet;
for (auto k = SB->Operands.begin(), ke = SB->Operands.end(); k != ke; ++k)
OperandSet.insert(*k);
// find a group that shares the same input
auto j = i;
for (++j; j != ie; ++j) {
if (j->SB == nullptr)
continue;
auto SB2 = j->SB;
bool EqualInputs = (SB2->Operands.size() == SB->Operands.size());
for (auto k = SB2->Operands.begin(), ke = SB2->Operands.end();
EqualInputs && k != ke; ++k) {
if (OperandSet.count(*k) == 0)
EqualInputs = false;
}
// merge superbale if i covers j
if (EqualInputs) {
MergeCandidate(*i, *j);
}
}
}
// Sort the candidates.
std::sort(SecondRound.begin(), SecondRound.end());
// Try each candidate.
for (auto i = SecondRound.begin(), e = SecondRound.end(); i != e; ++i) {
if (i->Benefit <= 0 || i->SB == nullptr)
break;
bool status = sink(InsertBefore, i->SB);
IGC_ASSERT(status);
(void)status;
}
}
}
// Merge the Rhs into the Lhs candidate assuming that Rhs input operands
// are covered by the Lhs candidate
void GenXDepressurizer::MergeCandidate(SinkCandidate &Lhs, SinkCandidate &Rhs) {
// update the benefit
Lhs.Benefit += getSuperbaleKillSize(Rhs.SB);
// merge superbale
SmallVector<Instruction *, 8> Merge;
auto a = Lhs.SB->Bales.begin();
auto ae = Lhs.SB->Bales.end();
auto b = Rhs.SB->Bales.begin();
auto be = Rhs.SB->Bales.end();
while (1) {
if (a == ae && b == be)
break;
if (b == be) {
Merge.push_back(*a);
++a;
} else if (a == ae) {
Merge.push_back(*b);
++b;
} else if (InstNumbers[*b] > InstNumbers[*a]) {
Merge.push_back(*b);
++b;
} else {
Merge.push_back(*a);
++a;
}
}
Lhs.SB->Number = InstNumbers[Merge[0]];
std::swap(Lhs.SB->Bales, Merge);
Rhs.SB = nullptr;
Rhs.Benefit = (-1);
}
void GenXDepressurizer::fillTwoAddrValueMap(BasicBlock *BB) {
TwoAddrValueMap.clear();
// Build two-addr operand -> instruction map for checking against two-addr
// instructions.
for (auto I = BB->rbegin(), E = BB->rend(); I != E; ++I) {
auto CI = dyn_cast<CallInst>(&*I);
if (!CI)
continue;
auto OpndNum = getTwoAddressOperandNum(CI);
if (!OpndNum)
continue;
TwoAddrValueMap[I->getOperand(*OpndNum)] = CI;
}
}
/***********************************************************************
* sink : sink the superbale if possible
*
* Enter: InsertBefore = instruction to insert before
* SB = the superbale to sink
*
* Return: whether succeeded
*/
bool GenXDepressurizer::sink(Instruction *InsertBefore, Superbale *SB,
bool AllowClone) {
if (++SunkCount > LimitGenXDepressurizer)
return false;
if (LimitGenXDepressurizer != UINT_MAX)
dbgs() << "genx depressurizer " << SunkCount << '\n';
unsigned CurNumber = InstNumbers[InsertBefore];
LLVM_DEBUG(dbgs() << "sink(" << SB->getHead()->getName() << ")\n");
// Gather the uses that we are going to modify.
SmallVector<Use *, 4> UsesDominatedByHere;
for (auto ui = SB->getHead()->use_begin(), ue = SB->getHead()->use_end();
ui != ue; ++ui) {
Use *U = &*ui;
Instruction *user = cast<Instruction>(U->getUser());
LLVM_DEBUG(dbgs() << " used in [" << InstNumbers[user] << "] "
<< user->getName() << '\n');
unsigned UserNumber = InstNumbers[user];
if (UserNumber < CurNumber) {
// Skip this user if cloning is allowed.
if (AllowClone)
continue;
LLVM_DEBUG(dbgs() << " rejecting: less than CurNumber " << CurNumber << '\n');
// This code was originally designed to cope with some uses not being
// dominated by the sink site by cloning the superbale. But this gives an
// assertion test on frc_iteration6_4x8_ipa. So I am disabling the cloning
// functionality for now by rejecting the whole sink unless all uses are
// dominated by the sink site. This also gives a few minor code size
// improvements in examples too.
return false;
}
UsesDominatedByHere.push_back(U);
}
if (UsesDominatedByHere.empty())
return false;
// Do the sinking.
BasicBlock *DefBB = sinkOnce(InsertBefore, SB, UsesDominatedByHere);
IGC_ASSERT(DefBB == InsertBefore->getParent());
(void)DefBB;
// We need to modify liveness at the current point.
modifyLiveness(Live, SB);
LLVM_DEBUG(dbgs() << "Successfully sunk "<< SB->getHead()->getName() << '\n';
Live->print(dbgs());
dbgs() << '\n');
return true;
}
/***********************************************************************
* sinkOnce : do one sinking of a superbale for a group of uses
*
* Enter: InsertBefore = instruction to insert before
* SB = superbale to sink
* Uses = uses in the group
*
* Return: basic block where sunk superbale was inserted
*
* Currently this only copes with the case that the uses are all dominated
* by InsertBefore, and the moved or cloned def is inserted before InsertBefore
* and the function returns the basic block containing InsertBefore.
*
* However it could be extended to sink for a group of uses that are not
* dominated by InsertBefore but are reachable from it. Then it would insert
* the def at a place that is a common dominator of the uses, and return that
* basic block.
*/
BasicBlock *GenXDepressurizer::sinkOnce(Instruction *InsertBefore,
Superbale *SB, ArrayRef<Use *> Uses) {
LLVM_DEBUG(dbgs() << "sinkOnce with uses:";
for (auto i = Uses.begin(), e = Uses.end(); i != e; ++i)
dbgs() << " ["
<< InstNumbers[cast<Instruction>((*i)->getUser())]
<< ']' << (*i)->getUser()->getName();
dbgs() << '\n');
// Insert after the current instruction.
BasicBlock *InsertBB = InsertBefore->getParent();
unsigned InsertNum = InstNumbers[InsertBefore];
IGC_ASSERT(InsertNum != 0);
LLVM_DEBUG(dbgs() << "InsertBefore: " << InsertBefore->getName() << '\n');
// Remove this group of uses from the superbale.
auto Undef = UndefValue::get(SB->getHead()->getType());
for (auto i = Uses.begin(), e = Uses.end(); i != e; ++i)
**i = Undef;
Instruction *Changed = nullptr;
if (SB->getHead()->use_empty()) {
// The superbale now has no uses. So we can simply move the instructions.
for (auto i = SB->Bales.rbegin(), e = SB->Bales.rend(); i != e; ++i) {
Bale B;
Baling->buildBale(*i, &B);
for (auto j = B.begin(), je = B.end(); j != je; ++j) {
Changed = j->Inst;
Changed->removeFromParent();
Changed->insertBefore(InsertBefore);
InstNumbers[Changed] = InsertNum - 1;
++NumSunk;
}
}
} else {
// The superbale still has uses, so we need to clone it.
std::map<Instruction *, Instruction *> ClonedInsts;
for (auto i = SB->Bales.rbegin(), e = SB->Bales.rend(); i != e; ++i) {
Bale B;
Baling->buildBale(*i, &B);
Instruction *InstToClone = nullptr;
for (auto j = B.begin(), je = B.end(); j != je; ++j) {
InstToClone = j->Inst;
Changed = InstToClone->clone();
Changed->insertBefore(InsertBefore);
Changed->setName(InstToClone->getName() + ".cloned");
// Ensure new instruction has the same baling.
Baling->setBaleInfo(Changed, j->Info);
for (unsigned k = 0, ke = Changed->getNumOperands(); k != ke; ++k) {
if (auto O = dyn_cast<Instruction>(Changed->getOperand(k))) {
auto it = ClonedInsts.find(O);
if (it != ClonedInsts.end())
Changed->setOperand(k, it->second);
}
}
ClonedInsts[InstToClone] = Changed;
InstNumbers[Changed] = InsertNum - 1;
++NumCloned;
}
}
}
// Change our uses to use the moved/cloned superbale.
for (auto i = Uses.begin(), e = Uses.end(); i != e; ++i)
**i = Changed;
if (Changed) {
LLVM_DEBUG(dbgs() << "Sunk/cloned superbale head is " << Changed->getName()
<< '\n');
} else {
LLVM_DEBUG(dbgs() << "Warning: Changed is nullptr\n");
}
return InsertBB;
}
/***********************************************************************
* modifyLiveness : modify liveness (at some point) to reflect the sinking
* of the superbale past it
*
* Enter: Live = the liveness to modify
* SB = the superbale
*
* Return: true if the result of the superbale was removed from liveness,
* false if it was not live already
*/
bool GenXDepressurizer::modifyLiveness(Liveness *Live, Superbale *SB) {
// Remove the superbale's result from liveness.
for (auto i = SB->Bales.begin(), e = SB->Bales.end(); i != e; ++i) {
Live->removeValue(*i);
}
for (auto i = SB->Operands.begin(), e = SB->Operands.end(); i != e; ++i)
if (*i)
Live->addValue(*i);
return true;
}
int GenXDepressurizer::getSuperbaleKillSize(Superbale *SB) {
int sum = 0;
for (auto i = SB->Bales.rbegin(), e = SB->Bales.rend(); i != e; ++i) {
if (GenXIntrinsic::isWrRegion(*i))
sum += Liveness::getValueSize((*i)->getOperand(GenXIntrinsic::GenXRegion::NewValueOperandNum));
else
sum += Liveness::getValueSize(*i);
}
return sum;
}
/***********************************************************************
* getSinkBenefit : calculate the benefit of sinking this Superbale
*
* Enter: SB = superbale to consider
* Cat = category of value being sunk
* Headroom = if flag sinking, the headroom in normal register
* pressure
*
* For normal (non-flag) sinking, the benefit is the size of the result
* minus the total size of the superbale's operands.
*
* For flag sinking, the benefit is the size of the flag result minus the
* total size of any flag operands to the superbale.
*/
int GenXDepressurizer::getSinkBenefit(Superbale *SB, Liveness::Category Cat,
unsigned Headroom) {
int Benefit = getSuperbaleKillSize(SB);
unsigned FlagOperandSize = 0, AddrOperandSize = 0, OperandSize = 0;
for (auto i = SB->Operands.begin(), e = SB->Operands.end(); i != e; ++i) {
Value *Operand = *i;
if (!Operand || isa<Constant>(Operand))
continue;
if (Live->contains(Operand))
continue;
if (Liveness::isFlag(Operand))
FlagOperandSize += Liveness::getValueSize(Operand);
else if (Liveness::isAddr(Operand))
AddrOperandSize += Liveness::getValueSize(Operand);
else
OperandSize += Liveness::getValueSize(Operand);
}
switch (Cat) {
case Liveness::FLAG:
return Benefit - FlagOperandSize; // Flag sinking.
case Liveness::ADDR:
return Benefit - AddrOperandSize; // Addr sinking.
default:
break;
}
return Benefit - OperandSize;
}
/***********************************************************************
* fillSuperbale : find a chain of instruction to move
*
* Return: false is the chain has side-effect, cannot be moved.
*
* For a vector-of-i1 and/or/not instruction, the superbale contains the
* tree of boolean and/or/not instructions plus the bales for the cmp
* instructions that created the booleans.
*
* For a wrregion, the superbale contains the bale for each wrregion in
* the chain of wrregion bales with the same inputs.
*
* Otherwise, it contains just the present instruction's bale.
*
* A bale with an indirect operand also includes the address generating
* instruction(s) in the superbale, so that, where a superbale is cloned,
* we maintain the constraint that an address generating instruction has
* exactly one use between GenXCategory and GenXAddressCommoning.
*/
bool GenXDepressurizer::fillSuperbale(Superbale *SB, Instruction *Inst,
bool IsFlag) {
// This is a new Superbale. Gather the bale(s) that make the superbale,
// and record the operands. First get the out-of-bale operands of the bale
// headed by Inst. We do this in the order such that the "old value of
// vector" operand of any wrregion heading the bale is the first operand
// pushed into SB->Operands.
SB->Number = InstNumbers[Inst];
SB->Bales.push_back(Inst);
SmallSet<Value *, 8> OperandSet;
Bale B;
Baling->buildBale(Inst, &B);
bool OnlyRdWrRegion = true;
for (auto bi = B.rbegin(), be = B.rend(); bi != be; ++bi) {
BaleInst *BI = &*bi;
if (BI->Inst->mayHaveSideEffects() || BI->Inst->mayReadOrWriteMemory())
return false; // not safe to sink
if (OnlyRdWrRegion && // Only chk the following conds if still required.
!GenXIntrinsic::isWrRegion(BI->Inst) && !GenXIntrinsic::isRdRegion(BI->Inst) &&
!isa<BitCastInst>(BI->Inst) &&
GenXIntrinsic::getGenXIntrinsicID(BI->Inst) != GenXIntrinsic::genx_add_addr)
OnlyRdWrRegion = false;
for (unsigned oi = 0, oe = BI->Inst->getNumOperands(); oi != oe; ++oi) {
if (BI->Info.isOperandBaled(oi))
continue;
Value *Opnd = BI->Inst->getOperand(oi);
if (!isa<Instruction>(Opnd) && !isa<Argument>(Opnd))
continue;
if (OperandSet.insert(Opnd).second)
SB->Operands.push_back(Opnd);
}
}
if (OnlyRdWrRegion || SB->Operands.empty()) {
return false; // moving this kind of bale may mess up coalescing
}
if (IsFlag) {
// Boolean operation. For any boolean input, include the instruction that
// generates it in the bale, as long as this is the only use. A superbale
// is then potentially a tree of boolean operations combined by and/or/not,
// and then at each leaf of the tree a cmp or a chain of cmps linked by
// wrpredregion (i.e. multiple cmps writing to different parts of the same
// flag register).
for (unsigned i = 0; i != SB->Operands.size(); ++i) {
Inst = dyn_cast_or_null<Instruction>(SB->Operands[i]);
if (!Inst)
continue;
if (!Liveness::isFlag(Inst))
continue;
if (!Inst->hasOneUse())
continue;
if (isa<PHINode>(Inst))
continue;
Bale B2;
Baling->buildBale(Inst, &B2);
SB->Operands[i] = nullptr;
SB->Bales.push_back(Inst);
for (auto bi = B2.rbegin(), be = B2.rend(); bi != be; ++bi) {
BaleInst *BI = &*bi;
for (unsigned oi = 0, oe = BI->Inst->getNumOperands(); oi != oe; ++oi) {
if (BI->Info.isOperandBaled(oi))
continue;
Value *Opnd = BI->Inst->getOperand(oi);
if (OperandSet.insert(Opnd).second)
SB->Operands.push_back(Opnd);
}
}
}
} else if (GenXIntrinsic::isWrRegion(Inst)) {
// Non-boolean operation headed by a wrregion.
Value *Opnd0 = SB->Operands[0];
for (;;) {
if (!GenXIntrinsic::isWrRegion(Opnd0))
break;
Inst = cast<Instruction>(Opnd0);
if (!Inst->hasOneUse())
break;
// The "old value of vector" input is another wrregion. Check that all
// the operands are the same, except the "old value of vector" input
// to that one.
Bale B2;
Baling->buildBale(Inst, &B2);
Opnd0 = Inst->getOperand(GenXIntrinsic::GenXRegion::OldValueOperandNum);
for (auto bi = B2.rbegin(), be = B2.rend(); bi != be; ++bi) {
BaleInst *BI = &*bi;
for (unsigned oi = 0, oe = BI->Inst->getNumOperands(); oi != oe; ++oi) {
if (BI->Info.isOperandBaled(oi))
continue;
Value *Opnd = BI->Inst->getOperand(oi);
if (Opnd == Opnd0)
continue;
if (!isa<Instruction>(Opnd) && !isa<Argument>(Opnd))
continue;
if (OperandSet.insert(Opnd).second)
SB->Operands.push_back(Opnd);
}
}
SB->Bales.push_back(Inst);
// Replace the previous "old value of vector" in SB->Operands.
SB->Operands[0] = Opnd0; // Opnd0 could be "undef"
}
}
// Now check whether any operand is an address. If so, include the address
// generating instruction in the superbale, so that, where a superbale is
// cloned, we maintain the constraint that an address generating instruction
// has exactly one use between GenXCategory and GenXAddressCommoning.
for (unsigned oi = 0, oe = SB->Operands.size(); oi != oe; /*EMPTY*/) {
Value *Opnd = SB->Operands[oi];
switch (GenXIntrinsic::getGenXIntrinsicID(Opnd)) {
case GenXIntrinsic::genx_convert_addr:
case GenXIntrinsic::genx_add_addr: {
auto Addr = cast<Instruction>(Opnd);
SB->Bales.push_back(Addr);
SB->Operands[oi] = Addr->getOperand(0);
continue;
}
default:
break;
}
++oi;
}
return true;
}
/***********************************************************************
* Superbale::print : debug print
*/
void Superbale::print(raw_ostream &OS) {
OS << "Superbale[" << Number << ']';
for (auto i = Bales.begin(), e = Bales.end(); i != e; ++i)
OS << ' ' << (*i)->getName();
OS << ", operands:";
for (auto i = Operands.begin(), e = Operands.end(); i != e; ++i)
if (*i)
OS << ' ' << (*i)->getName();
}
/***********************************************************************
* copyFrom : copy this Liveness from the other one
*/
void Liveness::copyFrom(Liveness *Other) {
for (auto ci = cat_begin(), ce = cat_end(); ci != ce; ++ci) {
Values[ci].clear();
Pressures[ci] = Other->Pressures[ci];
}
Pressure = Other->Pressure;
copyValues(Other);
}
/***********************************************************************
* getValueSize : get the byte size of a value
*
* We round up to an even number of bytes as that's what we need for counting
* flag pressure, and we may as well do the same for normal pressure.
*/
unsigned Liveness::getValueSize(Value *V) {
if (isAddr(V))
switch (GenXIntrinsic::getGenXIntrinsicID(V)) {
case GenXIntrinsic::genx_add_addr:
return 0;
default:
break;
}
return (V->getType()->getPrimitiveSizeInBits() + 15) / 8U & -2U;
}
/***********************************************************************
* Liveness::addValue : add value to this liveness
*/
void Liveness::addValue(Value *V) {
auto Cat = GENERAL;
if (isFlag(V))
Cat = FLAG;
else if (isAddr(V))
Cat = ADDR;
if (Values[Cat].insert(V).second) {
Pressure += getValueSize(V);
Pressures[Cat] += getValueSize(V);
}
}
/***********************************************************************
* Liveness::removeValue : remove value from this liveness
*
* Return: true if the value was removed, false if it was not live anyway
*/
bool Liveness::removeValue(Value *V) {
auto Cat = GENERAL;
if (isFlag(V))
Cat = FLAG;
else if (isAddr(V))
Cat = ADDR;
if (!Values[Cat].erase(V))
return false;
Pressure -= getValueSize(V);
Pressures[Cat] -= getValueSize(V);
return true;
}
/***********************************************************************
* Liveness::copyValues : copy values from Other into this liveness
*/
void Liveness::copyValues(Liveness *Other) {
for (auto ci = cat_begin(), ce = cat_end(); ci != ce; ++ci) {
for (auto i = Other->Values[ci].begin(), e = Other->Values[ci].end();
i != e; ++i)
addValue(*i);
}
}
/***********************************************************************
* Liveness::print : debug print
*/
void Liveness::print(raw_ostream &OS) {
OS << "[addrpressure=" << Pressures[ADDR]
<< ",flagpressure=" << Pressures[FLAG] << ",pressure=" << Pressure << ']';
for (unsigned Cat = NUMCATS; Cat--; /*EMPTY*/) {
if (!Values[Cat].empty()) {
const char *CatName = (Cat == FLAG ? "flag." :
Cat == ADDR ? "addr." : "");
OS << ' ' << CatName << "live:";
for (auto i = begin(Cat), e = end(Cat); i != e; ++i)
OS << ' ' << (*i)->getName();
}
}
}
/***********************************************************************
* PseudoCFG::Node::removeSucc : remove block from the node's successor
* list (if it is in the list at all)
*
* This is only used when removing edges to unstick ourselves when there is
* irreducible flow.
*/
void PseudoCFG::Node::removeSucc(BasicBlock *Succ) {
for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
if (Succ == Succs[i]) {
Succs[i] = Succs[Succs.size() - 1];
Succs.pop_back();
break;
}
}
}
/***********************************************************************
* PseudoCFG::Node::removePred : remove block from the node's predecessor
* list (if it is in the list at all)
*
* The only case when this is possibly called with a Pred that is not on the
* list is when attempting to remove loop backedges but flow is irreducible.
* This happens in compute_first_def_bug_5.
*/
void PseudoCFG::Node::removePred(BasicBlock *Pred) {
for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
if (Pred == Preds[i]) {
Preds[i] = Preds[Preds.size() - 1];
Preds.pop_back();
break;
}
}
}
/***********************************************************************
* PseudoCFG::compute : compute the pseudo CFG for the function
*/
void PseudoCFG::compute(Function *F, DominatorTree *DT,
LoopInfoBase<BasicBlock, Loop> *LI) {
clear();
// Initialize the graph to the same as the CFG. While we're scanning the
// CFG, remember the natural loop backedges.
SmallVector<BasicBlock *, 4> Backedges;
for (auto fi = F->begin(), fe = F->end(); fi != fe; ++fi) {
BasicBlock *BB = &*fi;
auto TI = BB->getTerminator();
// Remember BB if it is a backedge.
if (TI->getNumSuccessors() == 1 && DT->dominates(TI->getSuccessor(0), BB))
Backedges.push_back(BB);
// Add the edges out of BB.
auto BBNode = getNode(BB);
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
BasicBlock *Succ = TI->getSuccessor(i);
BBNode->Succs.push_back(Succ);
getNode(Succ)->Preds.push_back(BB);
}
}
// For each natural loop backedge, remove the backedge and add the loop
// exit edges. This is all the changes we need to make if the CFG is
// reducible. If it is irreducible, we will need to remove more edges
// when we derive the ordering.
for (unsigned i = 0, e = Backedges.size(); i != e; ++i) {
BasicBlock *BB = Backedges[i];
auto BBNode = getNode(BB);
IGC_ASSERT_MESSAGE(BBNode->Succs.size() == 1,
"expecting backedge to have one successor as we have split critical edges");
BasicBlock *Header = BBNode->Succs[0];
BBNode->LoopHeader = Header;
BBNode->Succs.clear(); // This removes Header as BB's only successor.
getNode(Header)->removePred(BB);
Loop *L = LI->getLoopFor(Header);
SmallVector<BasicBlock *, 4> ExitBlocks;
IGC_ASSERT(L);
L->getExitBlocks(ExitBlocks);
for (unsigned j = 0, je = ExitBlocks.size(); j != je; ++j) {
BasicBlock *Exit = ExitBlocks[j];
BBNode->Succs.push_back(Exit);
getNode(Exit)->Preds.push_back(BB);
}
}
// Derive the ordering.
std::map<BasicBlock *, unsigned> Pending;
SmallVector<BasicBlock *, 4> Ready;
std::set<BasicBlock *> Done;
Ready.push_back(&F->front());
for (;;) {
if (Ready.empty()) {
if (Pending.empty())
break; // finished
// We have got stuck. The CFG must be irreducible. Unstick ourselves
// by choosing the pending block that is earliest in the function,
// removing any pending edges from it, and making it ready.
BasicBlock *BB = nullptr;
for (auto fi = F->begin();; ++fi) {
BB = &*fi;
if (Pending.find(BB) != Pending.end())
break;
}
std::set<BasicBlock *> UnseenPreds;
std::copy_if(
getNode(BB)->pred_begin(), getNode(BB)->pred_end(),
std::inserter(UnseenPreds, UnseenPreds.begin()),
[&Done](BasicBlock *BB) { return Done.find(BB) == Done.end(); });
for (auto i = UnseenPreds.begin(), e = UnseenPreds.end(); i != e; ++i) {
getNode(BB)->removePred(*i);
getNode(*i)->removeSucc(BB);
}
Pending.erase(BB);
Ready.push_back(BB);
continue;
}
// Pop a ready block off the stack.
auto BB = Ready.back();
Ready.pop_back();
Ordering.push_back(BB);
Done.insert(BB);
// For each successor, decrement the pending count. If it becomes 0, the
// successor becomes ready.
auto BBNode = getNode(BB);
for (auto si = BBNode->succ_begin(), se = BBNode->succ_end();
si != se; ++si) {
BasicBlock *Succ = *si;
auto PendingEntry = &Pending[Succ];
if (!*PendingEntry) {
// New entry in the pending map. Count the predecessors.
for (auto pi = getNode(Succ)->pred_begin(),
pe = getNode(Succ)->pred_end(); pi != pe; ++pi)
++*PendingEntry;
}
if (--*PendingEntry)
continue;
// Successor needs to become ready.
Pending.erase(Succ);
Ready.push_back(Succ);
IGC_ASSERT_MESSAGE(Done.find(Succ) == Done.end(),
"Adding already handled node!");
}
}
}
/***********************************************************************
* PseudoCFG::print : print the pseudo-CFG
*/
void PseudoCFG::print(raw_ostream &OS) {
OS << "PseudoCFG:\n";
for (auto i = Ordering.begin(), e = Ordering.end(); i != e; ++i) {
auto BB = *i;
auto Node = getNode(BB);
OS << BB->getName();
if (Node->LoopHeader)
OS << " loop header " << Node->LoopHeader->getName();
OS << "\n preds:";
for (auto pi = Node->pred_begin(), pe = Node->pred_end(); pi != pe; ++pi)
OS << ' ' << (*pi)->getName();
OS << "\n succs:";
for (auto si = Node->succ_begin(), se = Node->succ_end(); si != se; ++si)
OS << ' ' << (*si)->getName();
OS << '\n';
}
}
|