File: GenXIntrinsics.cpp

package info (click to toggle)
intel-graphics-compiler 1.0.12504.6-1%2Bdeb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 83,912 kB
  • sloc: cpp: 910,147; lisp: 202,655; ansic: 15,197; python: 4,025; yacc: 2,241; lex: 1,570; pascal: 244; sh: 104; makefile: 25
file content (193 lines) | stat: -rw-r--r-- 7,169 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
/*========================== begin_copyright_notice ============================

Copyright (C) 2017-2021 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

//
// This file contains a table of extra information about the llvm.genx.*
// intrinsics, used by the vISA register allocator and function writer to
// decide exactly what operand type to use. The more usual approach in an LLVM
// target is to have an intrinsic map to an instruction in instruction
// selection, then have register category information on the instruction. But
// we are not using the target independent code generator, we are generating
// code directly from LLVM IR.
//
//===----------------------------------------------------------------------===//
#include "IGC/common/StringMacros.hpp"
#include "GenXIntrinsics.h"
#include "IsaDescription.h"
#include "visa_igc_common_header.h"
#include "llvm/GenXIntrinsics/GenXIntrinsics.h"
#include "llvm/IR/Constants.h"
#include "llvmWrapper/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"

#include "llvmWrapper/IR/DerivedTypes.h"

#include "Probe/Assertion.h"

using namespace llvm;

// In this table:
//
// Each ALU and shared function intrinsic has a record giving information
// about its operands, and how it is written as a vISA instruction. The
// record has an initial field giving the intrinsic ID, then a number of
// fields where each corresponds to a field in the vISA instruction.
//
// A field may be several values combined with the | operator. The first
// value is the operand category (GENERAL etc), or one of a set of
// non-register operand categories (LITERAL, BYTE), or END to terminate
// the record. Other modifier values may be combined, such as SIGNED.
// The LLVM IR argument index plus 1 is also combined in, or 0 for the
// return value.

// Video Analytics intrinsic helper macros, mainly to avoid large blocks
// of near-identical code in the intrinsics look-up table and also to
// aid readability.

// Region access intrinsics do not appear in this table
const GenXIntrinsicInfo::TableType &GenXIntrinsicInfo::getTable() {
  static TableType Table = {
#include "GenXIntrinsicInfoTable.inc"
  };
  return Table;
}

// Get the category and modifier for an arg idx (-1 means return value).
// The returned ArgInfo struct contains just the short read from the table,
// and has methods for accessing the various fields.
GenXIntrinsicInfo::ArgInfo GenXIntrinsicInfo::getArgInfo(int Idx) const {
  // Read through the fields in the table to find the one with the right
  // arg index...
  for (auto AI : getInstDesc())
    if (AI.isRealArgOrRet() && AI.getArgIdx() == Idx)
      return AI;
  // Field with requested arg index was not found.
  return ArgInfo{};
}

// Return the starting point of any trailing null (zero) arguments
// for this call. If the intrinsic does not have a ARGCOUNT descriptor
// this will always return the number of operands to the call (ie, there
// is no trailing null zone), even if there are some trailing nulls.
unsigned GenXIntrinsicInfo::getTrailingNullZoneStart(CallInst *CI) const {
  auto AI =
      std::find_if(getInstDesc().begin(), getInstDesc().end(),
                   [](auto Arg) { return Arg.getCategory() == ARGCOUNT; });
  if (AI == getInstDesc().end())
    return CI->getNumOperands();
  unsigned BaseArg = AI->getArgIdx();
  unsigned TrailingNullStart = BaseArg;
  for (unsigned Idx = BaseArg; Idx < IGCLLVM::getNumArgOperands(CI); ++Idx) {
    if (auto CA = dyn_cast<Constant>(CI->getArgOperand(Idx)))
      if (CA->isNullValue())
        continue;
    TrailingNullStart = Idx + 1;
  }
  return std::max(TrailingNullStart, BaseArg + AI->getArgCountMin());
}

/***********************************************************************
 * getExecSizeAllowedBits : get bitmap of which execsize values are allowed
 *                          for this intrinsic
 *
 * Return:  bit N set if execution size 1<<N is allowed
 */
unsigned GenXIntrinsicInfo::getExecSizeAllowedBits() const {
  for (auto AI : getInstDesc()) {
    if (!AI.isGeneral()) {
      switch (AI.getCategory()) {
      case EXECSIZE:
        return 0x3f;
      case EXECSIZE_GE2:
        return 0x3e;
      case EXECSIZE_GE4:
        return 0x3c;
      case EXECSIZE_GE8:
        return 0x38;
      case EXECSIZE_NOT2:
        return 0x3d;
      }
    }
  }
  return 0x3f;
}

/***********************************************************************
 * getPredAllowed : determine if this intrinsic is allowed to have
 *                  a predicated destination mask.
 *
 * Return:  true if it permitted, false otherwise.
 */
bool GenXIntrinsicInfo::getPredAllowed() const {
  // Simply search the intrinsic description for an IMPLICITPRED
  // entry. Not very efficient, but the situations where this
  // check is needed are expected to be infrequent.
  return any_of(getInstDesc(),
                [](auto AI) { return AI.getCategory() == IMPLICITPRED; });
}

/***********************************************************************
 * isElementWise : determine if this intrinsic has element-wise semantics.
 */
bool GenXIntrinsicInfo::isElementWise() const {
  return any_of(getInstDesc(),
                [](auto AI) { return AI.getCategory() == ELEMENTWISE; });
}

unsigned GenXIntrinsicInfo::getOverridedExecSize(CallInst *CI,
                                                 const GenXSubtarget *ST) {
  auto CalledF = CI->getCalledFunction();
  IGC_ASSERT(CalledF);
  auto ID = GenXIntrinsic::getGenXIntrinsicID(CalledF);
  if (isGenXIntrinsic(ID)) {
    // We check the lsc intrinsic by name or we need to introduce a range of lsc
    // intrinsics.
    if (ID == GenXIntrinsic::genx_lsc_load2d_stateless ||
        ID == GenXIntrinsic::genx_lsc_store2d_stateless)
      return 1;

    StringRef Name = CalledF->getName();
    StringRef LSCPrefix = "llvm.genx.lsc.";
    if (Name.startswith(LSCPrefix))
      // Check if this is a block message from predicate type.
      return !CI->getArgOperand(0)->getType()->isVectorTy();
  }

  switch (ID) {
  default:
    break;
  // Exec size of intrinsics with channels are inferred from address operand.
  case GenXIntrinsic::genx_gather4_scaled2:
  case GenXIntrinsic::genx_gather4_masked_scaled2:
  case GenXIntrinsic::genx_gather4_masked_scaled2_predef_surface:
    return cast<IGCLLVM::FixedVectorType>(
               CI->getArgOperand(4 /*address operand idx*/)->getType())
        ->getNumElements();
  case GenXIntrinsic::genx_raw_send:
  case GenXIntrinsic::genx_raw_sends:
  case GenXIntrinsic::genx_raw_send_noresult:
  case GenXIntrinsic::genx_raw_sends_noresult:
    return 16;
  case GenXIntrinsic::genx_subb:
  case GenXIntrinsic::genx_addc:
    if (auto *VT =
            dyn_cast<IGCLLVM::FixedVectorType>(CI->getOperand(0)->getType()))
      return VT->getNumElements();
    return 1;
  case GenXIntrinsic::genx_dpas:
  case GenXIntrinsic::genx_dpas2:
  case GenXIntrinsic::genx_dpas_nosrc0:
  case GenXIntrinsic::genx_dpasw:
  case GenXIntrinsic::genx_dpasw_nosrc0: {
    unsigned Width = ST ? ST->dpasWidth() : 8;
    return Width;
  }
  }

  return 0;
}