1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2019-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
//
// \file
// Lower aggregate copies, memset, memcpy, memmov intrinsics into loops when
// the size is large or is not a compile-time constant.
//
//===----------------------------------------------------------------------===//
#include "GenXLowerAggrCopies.h"
#include "GenX.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/StackProtector.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/LowerMemIntrinsics.h"
#include "Probe/Assertion.h"
#include "llvmWrapper/IR/DerivedTypes.h"
#include "llvmWrapper/Support/Alignment.h"
#include <tuple>
#include <vector>
#define DEBUG_TYPE "GENX_LOWERAGGRCOPIES"
using namespace llvm;
// 8 * 8 * 16 = 8 instructions each read 8 OWords
static cl::opt<unsigned>
ExpandLimitOpt("lower-aggr-copies-expand-limit",
cl::desc("max memcpy/memset/memmove length (in bytes) that "
"is lowered as scalar code"),
cl::init(8 * 8 * 16));
namespace {
// actual analysis class, which is a functionpass
struct GenXLowerAggrCopies : public FunctionPass {
// TODO: more advance analysis
// (at least different values for different arch)
const int ExpandLimit;
static char ID;
GenXLowerAggrCopies() : FunctionPass(ID), ExpandLimit(ExpandLimitOpt) {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addPreserved<StackProtector>();
AU.addRequired<TargetTransformInfoWrapperPass>();
}
bool runOnFunction(Function &F) override;
static const unsigned MaxAggrCopySize = 1; // 128;
StringRef getPassName() const override {
return "Lower aggregate copies/intrinsics into loops";
}
template <typename T> void expandMemMov2VecLoadStore(T *MemCall);
};
char GenXLowerAggrCopies::ID = 0;
namespace {
struct SliceInfo {
int Offset;
int Width;
int Align;
};
} // namespace
static std::vector<SliceInfo> getLegalLengths(int TotalLength, int Align) {
std::vector<SliceInfo> Slices;
for (int Offset = 0; TotalLength;) {
int Width = PowerOf2Floor(TotalLength);
Slices.push_back({Offset, Width, Align});
Offset += Width;
TotalLength -= Width;
if (Width != Align) {
Align = std::min(Width, Align);
}
}
return std::move(Slices);
}
// Original memset intrinsic fills memory with 8-bit values.
// This function checks whether bigger type can be used (e.g. storing by 32-bit
// values).
// Desired type size is provided with \p CoalescedTySize parametr and given in
// bytes.
static bool memSetCanBeCoalesced(MemSetInst &MemSet, int CoalescedTySize) {
auto OrigLength = cast<ConstantInt>(MemSet.getLength())->getSExtValue();
IGC_ASSERT_MESSAGE(MemSet.getValue()->getType()->getScalarSizeInBits() ==
genx::ByteBits,
"memset is expected to store by bytes");
IGC_ASSERT_MESSAGE(CoalescedTySize >= 1 && isPowerOf2_32(CoalescedTySize),
"wrong argument: invalid CoalescedTySize");
return OrigLength % CoalescedTySize == 0 &&
static_cast<int>(MemSet.getDestAlignment()) >= CoalescedTySize;
}
// Original memset intrinsic fills memory with 8-bit values.
// This function checks whether bigger type can be used (e.g. storing by 32-bit
// values).
// New coalesced value and corresponding base address and length are returned
// respectively.
// New instructions may be inserted before the \p MemSet to produce these new
// values.
static std::tuple<Value &, Value &, int>
defineOptimalValueAndLength(MemSetInst &MemSet) {
auto OrigLength = cast<ConstantInt>(MemSet.getLength())->getSExtValue();
Value &OrigSetVal = *MemSet.getValue();
Value &OrigBaseAddr = *MemSet.getRawDest();
// Because DWord is better than Byte and causes minimal problems.
// OWord can be better but but it requires more code.
constexpr int CoalescedTySize = genx::DWordBytes;
if (!memSetCanBeCoalesced(MemSet, CoalescedTySize))
return {OrigSetVal, OrigBaseAddr, OrigLength};
IRBuilder<> IRB{&MemSet};
auto *PreNewSetVal = IRB.CreateVectorSplat(
CoalescedTySize, &OrigSetVal, OrigSetVal.getName() + ".pre.coalesce");
auto *NewSetVal = IRB.CreateBitCast(PreNewSetVal, IRB.getInt32Ty(),
OrigSetVal.getName() + ".coalesce");
auto DstAS = cast<PointerType>(OrigBaseAddr.getType())->getAddressSpace();
auto *NewBaseAddr =
IRB.CreateBitCast(&OrigBaseAddr, IRB.getInt32Ty()->getPointerTo(DstAS),
OrigBaseAddr.getName() + ".align");
return {*NewSetVal, *NewBaseAddr, OrigLength / CoalescedTySize};
}
// Fills memory section/slice defined by \p Slice and \p BaseAddr parameters
// with \p SetVal values. Memory is filled by a vector store instruction.
static void setMemorySliceWithVecStore(SliceInfo Slice, Value &SetVal,
Value &BaseAddr,
Instruction *InsertionPt) {
IGC_ASSERT_MESSAGE(
InsertionPt,
"wrong argument: insertion point must be a valid instruction");
IGC_ASSERT_MESSAGE(Slice.Offset >= 0 && isPowerOf2_32(Slice.Width),
"illegal slice is provided");
IGC_ASSERT_MESSAGE(SetVal.getType() ==
BaseAddr.getType()->getPointerElementType(),
"value and pointer types must correspond");
auto *VecTy = IGCLLVM::FixedVectorType::get(SetVal.getType(), Slice.Width);
IRBuilder<> IRB(InsertionPt);
Value *WriteOut = IRB.CreateVectorSplat(Slice.Width, &SetVal);
auto *DstAddr = &BaseAddr;
if (Slice.Offset != 0)
DstAddr = IRB.CreateGEP(BaseAddr.getType()->getPointerElementType(),
&BaseAddr, IRB.getInt32(Slice.Offset),
BaseAddr.getName() + ".addr.offset");
auto DstAS = cast<PointerType>(DstAddr->getType())->getAddressSpace();
auto *StoreVecPtr = IRB.CreateBitCast(DstAddr, VecTy->getPointerTo(DstAS));
auto *Store = IRB.CreateStore(WriteOut, StoreVecPtr);
Store->setAlignment(IGCLLVM::getAlign(Slice.Align));
Store->setDebugLoc(InsertionPt->getDebugLoc());
}
bool GenXLowerAggrCopies::runOnFunction(Function &F) {
SmallVector<MemIntrinsic *, 4> MemCalls;
const TargetTransformInfo &TTI =
getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
// Collect all aggregate loads and mem* calls.
for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;
++II) {
if (MemIntrinsic *IntrCall = dyn_cast<MemIntrinsic>(II)) {
// Convert intrinsic calls with variable size or with constant size
// larger than the MaxAggrCopySize threshold.
if (ConstantInt *LenCI = dyn_cast<ConstantInt>(IntrCall->getLength())) {
if (LenCI->getZExtValue() >= MaxAggrCopySize) {
MemCalls.push_back(IntrCall);
}
} else {
MemCalls.push_back(IntrCall);
}
}
}
}
if (MemCalls.size() == 0) {
return false;
}
// Transform mem* intrinsic calls.
for (MemIntrinsic *MemCall : MemCalls) {
bool doLinearExpand =
!MemCall->isVolatile() && isa<ConstantInt>(MemCall->getLength()) &&
cast<ConstantInt>(MemCall->getLength())->getSExtValue() <= ExpandLimit;
if (MemCpyInst *Memcpy = dyn_cast<MemCpyInst>(MemCall)) {
if (doLinearExpand) {
expandMemMov2VecLoadStore(Memcpy);
} else {
expandMemCpyAsLoop(Memcpy, TTI);
}
} else if (MemMoveInst *Memmove = dyn_cast<MemMoveInst>(MemCall)) {
if (doLinearExpand) {
expandMemMov2VecLoadStore(Memmove);
} else {
expandMemMoveAsLoop(Memmove);
}
} else if (MemSetInst *MemSet = dyn_cast<MemSetInst>(MemCall)) {
if (doLinearExpand) {
auto &&[SetVal, BaseAddr, Len] = defineOptimalValueAndLength(*MemSet);
auto Align = MemSet->getDestAlignment();
std::vector<SliceInfo> LegalLengths =
getLegalLengths(Len, Align ? Align : 1);
for (SliceInfo Slice : LegalLengths)
setMemorySliceWithVecStore(Slice, SetVal, BaseAddr, MemSet);
} else {
expandMemSetAsLoop(MemSet);
}
}
MemCall->eraseFromParent();
}
return true;
}
template <typename T>
void GenXLowerAggrCopies::expandMemMov2VecLoadStore(T *MemCall) {
IRBuilder<> IRB(MemCall);
auto *LenVal = MemCall->getLength();
IGC_ASSERT(isa<Constant>(LenVal));
unsigned Len = cast<ConstantInt>(LenVal)->getZExtValue();
auto DL = MemCall->getDebugLoc();
auto *DstAddr = MemCall->getRawDest();
auto *I8Ty = cast<PointerType>(DstAddr->getType())->getPointerElementType();
IGC_ASSERT(I8Ty->isIntegerTy(8));
auto *VecTy = IGCLLVM::FixedVectorType::get(I8Ty, Len);
auto *SrcAddr = MemCall->getRawSource();
unsigned SrcAddrSpace =
cast<PointerType>(SrcAddr->getType())->getAddressSpace();
auto *LoadPtrV = IRB.CreateBitCast(SrcAddr, VecTy->getPointerTo(SrcAddrSpace));
Type *Ty = LoadPtrV->getType()->getPointerElementType();
auto *Load = IRB.CreateLoad(Ty, LoadPtrV);
Load->setAlignment(IGCLLVM::getSourceAlign(*MemCall));
Load->setDebugLoc(DL);
unsigned DstAddrSpace = cast<PointerType>(DstAddr->getType())->getAddressSpace();
auto *StorePtrV = IRB.CreateBitCast(DstAddr, VecTy->getPointerTo(DstAddrSpace));
auto *Store = IRB.CreateStore(Load, StorePtrV);
Store->setAlignment(IGCLLVM::getDestAlign(*MemCall));
Store->setDebugLoc(DL);
}
} // namespace
namespace llvm {
void initializeGenXLowerAggrCopiesPass(PassRegistry &);
}
INITIALIZE_PASS_BEGIN(
GenXLowerAggrCopies, "genx-lower-aggr-copies",
"Lower aggregate copies, and llvm.mem* intrinsics into loops", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(
GenXLowerAggrCopies, "genx-lower-aggr-copies",
"Lower aggregate copies, and llvm.mem* intrinsics into loops", false, false)
FunctionPass *llvm::createGenXLowerAggrCopiesPass() {
initializeGenXLowerAggrCopiesPass(*PassRegistry::getPassRegistry());
return new GenXLowerAggrCopies();
}
|