1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
//
/// GenXPromotePredicate
/// --------------------
///
/// GenXPromotePredicate is an optimization pass that promotes vector operations
/// on predicates (n x i1) to operations on wider integer types (<n x i16>).
/// This often reduces flag register pressure and improves code quality.
///
//===----------------------------------------------------------------------===//
#include "GenX.h"
#include "GenXUtil.h"
#include "llvm/ADT/EquivalenceClasses.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/Pass.h"
#include "llvmWrapper/IR/DerivedTypes.h"
#define DEBUG_TYPE "GENX_PROMOTE_PREDICATE"
using namespace llvm;
using namespace genx;
static cl::opt<unsigned> LogicOpsThreshold(
"logical-ops-threshold", cl::init(5), cl::Hidden,
cl::desc("Number of logical predicate operations to apply GRF promotion"));
STATISTIC(NumCollectedPredicateWebs, "Number of collected predicate webs");
STATISTIC(NumPromotedPredicateWebs, "Number of GRF-promoted predicate webs");
namespace {
class GenXPromotePredicate : public FunctionPass {
public:
static char ID;
GenXPromotePredicate() : FunctionPass(ID) {}
bool runOnFunction(Function &F) override;
StringRef getPassName() const override { return "GenXPromotePredicate"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
}
};
} // namespace
char GenXPromotePredicate::ID = 0;
namespace llvm {
void initializeGenXPromotePredicatePass(PassRegistry &);
}
INITIALIZE_PASS_BEGIN(GenXPromotePredicate, "GenXPromotePredicate",
"GenXPromotePredicate", false, false)
INITIALIZE_PASS_END(GenXPromotePredicate, "GenXPromotePredicate",
"GenXPromotePredicate", false, false)
FunctionPass *llvm::createGenXPromotePredicatePass() {
initializeGenXPromotePredicatePass(*PassRegistry::getPassRegistry());
return new GenXPromotePredicate;
}
static constexpr unsigned PromotedPredicateWidth = 16;
// Get predicate value with grf type.
static Value *getExtendedValue(Value *Val, Instruction *InsertBefore) {
IGC_ASSERT(Val->getType()->isIntOrIntVectorTy(1));
IRBuilder<> IRB(InsertBefore);
Type *NewTy =
IGCLLVM::getWithNewBitWidth(Val->getType(), PromotedPredicateWidth);
return IRB.CreateSExt(Val, NewTy, Val->getName() + ".widened");
}
// Get grf value with predicate type.
static Value *getTruncatedValue(Value *Val, Instruction *InsertBefore) {
IGC_ASSERT(Val->getType()->isIntOrIntVectorTy(PromotedPredicateWidth));
IRBuilder<> IRB(InsertBefore);
Type *NewTy = IGCLLVM::getWithNewBitWidth(Val->getType(), 1);
return IRB.CreateTrunc(Val, NewTy, Val->getName() + ".truncated");
}
// Promote one predicate instruction to grf - promote all its operands and
// instruction itself, and then sink the result back to predicate.
static Value *promoteInst(Instruction *Inst) {
IRBuilder<> IRB(Inst);
// Special case - phi node.
if (auto *Phi = dyn_cast<PHINode>(Inst)) {
auto *WidenedPhi = IRB.CreatePHI(
IGCLLVM::getWithNewBitWidth(Phi->getType(), PromotedPredicateWidth),
Phi->getNumIncomingValues(), Phi->getName() + ".promoted");
for (unsigned i = 0; i < Phi->getNumIncomingValues(); ++i) {
auto IncomingValue = Phi->getIncomingValue(i);
auto IncomingBlock = Phi->getIncomingBlock(i);
WidenedPhi->addIncoming(
getExtendedValue(IncomingValue, IncomingBlock->getTerminator()),
IncomingBlock);
}
return getTruncatedValue(WidenedPhi, Phi->getParent()->getFirstNonPHI());
}
// Process binary operators.
IGC_ASSERT(isa<BinaryOperator>(Inst));
Value *Op1 = getExtendedValue(Inst->getOperand(0), Inst),
*Op2 = getExtendedValue(Inst->getOperand(1), Inst);
Value *PromotedInst =
IRB.CreateBinOp(cast<BinaryOperator>(Inst)->getOpcode(), Op1, Op2,
Inst->getName() + ".promoted");
return getTruncatedValue(PromotedInst, Inst);
}
// Cleanup trunc->sext chains and lower trunc if there are remaining uses:
// trunc <n x i16> %val to <n x i1> => icmp %val, 0
// This is done in assumption that all bits in truncated value are the same
// (this is always true in predicate web).
static void foldTruncAndSExt(TruncInst *TI) {
Value *SrcVal = TI->getOperand(0);
Type *SrcTy = TI->getSrcTy();
SmallVector<Instruction *, 4> ToErase;
for (auto U : TI->users()) {
auto *SI = dyn_cast<SExtInst>(U);
if (!SI || SI->getDestTy() != SrcTy)
continue;
ToErase.push_back(SI);
}
for (auto SI : ToErase) {
SI->replaceAllUsesWith(SrcVal);
SI->eraseFromParent();
}
if (!TI->user_empty()) {
auto Cmp =
IRBuilder<>(TI).CreateICmpNE(SrcVal, Constant::getNullValue(SrcTy));
TI->replaceAllUsesWith(Cmp);
}
TI->eraseFromParent();
}
class PredicateWeb {
public:
template <class InputIt>
PredicateWeb(InputIt first, InputIt last) : Web(first, last) {}
void print(llvm::raw_ostream &O) const {
for (auto Inst : Web)
O << *Inst << '\n';
}
void dump() const { print(dbgs()); }
bool isBeneficialToPromote() const {
unsigned NumBinaryOps =
std::count_if(Web.begin(), Web.end(),
[](auto *Inst) { return isa<BinaryOperator>(Inst); });
return NumBinaryOps >= LogicOpsThreshold;
}
void doPromotion() const {
// Do promotion.
SmallVector<TruncInst *, 8> Worklist;
for (auto Inst : Web) {
auto PromotedInst = promoteInst(Inst);
if (auto TI = dyn_cast<TruncInst>(PromotedInst))
Worklist.push_back(TI);
Inst->replaceAllUsesWith(PromotedInst);
Inst->eraseFromParent();
}
// Do cleanup.
for (auto TI : Worklist)
foldTruncAndSExt(TI);
}
private:
std::set<Instruction *> Web;
};
bool GenXPromotePredicate::runOnFunction(Function &F) {
// Put every predicate instruction into its own equivalence class.
llvm::EquivalenceClasses<Instruction *> PredicateWebs;
for (auto &I : instructions(F)) {
if (!genx::isPredicate(&I))
continue;
if (!I.isBitwiseLogicOp() && !isa<PHINode>(&I))
continue;
PredicateWebs.insert(&I);
}
// Connect data-flow related instructions together.
for (auto &EC : PredicateWebs) {
Instruction *Inst = EC.getData();
for (auto &Op : Inst->operands()) {
Instruction *In = dyn_cast<Instruction>(Op);
if (!In || PredicateWebs.findValue(In) == PredicateWebs.end())
continue;
PredicateWebs.unionSets(Inst, In);
}
}
// Promote web if it is big enough (likely to cause flag spills).
bool Modified = false;
for (auto I = PredicateWebs.begin(), E = PredicateWebs.end(); I != E; ++I) {
if (!I->isLeader())
continue;
PredicateWeb Web(PredicateWebs.member_begin(I), PredicateWebs.member_end());
LLVM_DEBUG(dbgs() << "Predicate web:\n"; Web.dump());
++NumCollectedPredicateWebs;
if (!Web.isBeneficialToPromote())
continue;
LLVM_DEBUG(dbgs() << "Beneficial to promote\n");
Web.doPromotion();
++NumPromotedPredicateWebs;
Modified = true;
}
return Modified;
}
|