1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
//
/// GenXRegionCollapsing
/// --------------------
///
/// GenX region collapsing pass is function pass that collapses nested
/// read regions or nested write regions.
///
/// Nested region accesses can occur in two ways (or a mixture of both):
///
/// 1. The front end compiler deliberately generates nested region access. The
/// CM compiler does this for a matrix select, generating a region access for
/// the rows and another one for the columns, safe in the knowledge that this
/// pass will combine them where it can.
///
/// 2. Two region accesses in different source code constructs (e.g. two select()
/// calls, either in the same or different source statements).
///
/// The combineRegions() function is what makes the decisions on whether two
/// regions can be collapsed, depending on whether they are 1D or 2D, how the
/// rows of one fit in the rows of the other, whether each is indirect, etc.
///
/// This pass makes an effort to combine two region accesses even if there are
/// multiple bitcasts (from CM format()) or up to one SExt/ZExt (from a cast) in
/// between.
///
//===----------------------------------------------------------------------===//
#include "GenX.h"
#include "GenXBaling.h"
#include "GenXUtil.h"
#include "vc/Utils/GenX/GlobalVariable.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/Local.h"
#include "Probe/Assertion.h"
#include "llvmWrapper/IR/DerivedTypes.h"
#define DEBUG_TYPE "GENX_RegionCollapsing"
using namespace llvm;
using namespace genx;
namespace {
// GenX region collapsing pass
class GenXRegionCollapsing : public FunctionPass {
const DataLayout *DL = nullptr;
const DominatorTree *DT = nullptr;
bool Modified = false;
public:
static char ID;
explicit GenXRegionCollapsing() : FunctionPass(ID) { }
StringRef getPassName() const override { return "GenX Region Collapsing"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DominatorTreeWrapperPass>();
AU.setPreservesCFG();
}
bool runOnFunction(Function &F) override;
private:
void runOnBasicBlock(BasicBlock *BB);
void processBitCast(BitCastInst *BC);
void processRdRegion(Instruction *InnerRd);
void splitReplicatingIndirectRdRegion(Instruction *Rd, Region *R);
void processWrRegionElim(Instruction *OuterWr);
Instruction *processWrRegionBitCast(Instruction *WrRegion);
void processWrRegionBitCast2(Instruction *WrRegion);
Instruction *processWrRegion(Instruction *OuterWr);
Instruction *processWrRegionSplat(Instruction *OuterWr);
bool normalizeElementType(Region *R1, Region *R2, bool PreferFirst = false);
bool combineRegions(const Region *OuterR, const Region *InnerR,
Region *CombinedR);
void calculateIndex(const Region *OuterR, const Region *InnerR,
Region *CombinedR, Value *InnerIndex, const Twine &Name,
Instruction *InsertBefore, const DebugLoc &DL);
Value *insertOp(Instruction::BinaryOps Opcode, Value *Lhs, unsigned Rhs,
const Twine &Name, Instruction *InsertBefore,
const DebugLoc &DL);
Value *insertOp(Instruction::BinaryOps Opcode, Value *Lhs, Value *Rhs,
const Twine &Name, Instruction *InsertBefore,
const DebugLoc &DL);
bool isSingleElementRdRExtract(Instruction *I);
};
}// end namespace llvm
char GenXRegionCollapsing::ID = 0;
namespace llvm { void initializeGenXRegionCollapsingPass(PassRegistry &); }
INITIALIZE_PASS_BEGIN(GenXRegionCollapsing, "GenXRegionCollapsing",
"GenXRegionCollapsing", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(GenXRegionCollapsing, "GenXRegionCollapsing",
"GenXRegionCollapsing", false, false)
// Publicly exposed interface to pass...
FunctionPass *llvm::createGenXRegionCollapsingPass()
{
initializeGenXRegionCollapsingPass(*PassRegistry::getPassRegistry());
return new GenXRegionCollapsing();
}
/***********************************************************************
* runOnFunction : run the region collapsing pass for this Function
*/
bool GenXRegionCollapsing::runOnFunction(Function &F)
{
DL = &F.getParent()->getDataLayout();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
// Track if there is any modification to the function.
bool Changed = false;
// This does a postordered depth first traversal of the CFG, processing
// instructions within a basic block in reverse, to ensure that we see a def
// after its uses (ignoring phi node uses).
for (po_iterator<BasicBlock *> i = po_begin(&F.getEntryBlock()),
e = po_end(&F.getEntryBlock());
i != e; ++i) {
// Iterate until there is no modification.
BasicBlock *BB = *i;
do {
Modified = false;
runOnBasicBlock(BB);
if (Modified)
Changed = true;
} while (Modified);
}
return Changed;
}
static bool lowerTrunc(TruncInst *Inst) {
Value *InValue = Inst->getOperand(0);
if (!GenXIntrinsic::isRdRegion(InValue))
return false;
Type *InElementTy = InValue->getType();
Type *OutElementTy = Inst->getType();
unsigned NumElements = 1;
if (auto *VT = dyn_cast<IGCLLVM::FixedVectorType>(InElementTy)) {
InElementTy = VT->getElementType();
OutElementTy = cast<VectorType>(OutElementTy)->getElementType();
NumElements = VT->getNumElements();
}
unsigned OutBitSize = OutElementTy->getPrimitiveSizeInBits();
IGC_ASSERT(OutBitSize);
// Do not touch truncations to i1 or vector of i1 types.
if (OutBitSize == 1)
return false;
unsigned Stride = InElementTy->getPrimitiveSizeInBits() / OutBitSize;
// Create the new bitcast.
Instruction *BC = CastInst::Create(
Instruction::BitCast, InValue,
IGCLLVM::FixedVectorType::get(OutElementTy, Stride * NumElements),
Inst->getName(), Inst /*InsertBefore*/);
BC->setDebugLoc(Inst->getDebugLoc());
// Create the new rdregion.
Region R(BC);
R.NumElements = NumElements;
R.Stride = Stride;
R.Width = NumElements;
R.VStride = R.Stride * R.Width;
Instruction *NewInst = R.createRdRegion(
BC, Inst->getName(), Inst /*InsertBefore*/, Inst->getDebugLoc(),
!isa<VectorType>(Inst->getType()) /*AllowScalar*/);
// Change uses and mark the old inst for erasing.
Inst->replaceAllUsesWith(NewInst);
return true;
}
void GenXRegionCollapsing::runOnBasicBlock(BasicBlock *BB) {
// Code simplification in block first.
for (auto BI = BB->begin(), E = --BB->end(); BI != E;) {
IGC_ASSERT(!BI->isTerminator());
Instruction *Inst = &*BI++;
if (Inst->use_empty())
continue;
// Turn trunc into bitcast followed by rdr. This helps region collapsing in
// a later stage.
if (auto TI = dyn_cast<TruncInst>(Inst)) {
Modified |= lowerTrunc(TI);
continue;
}
// Simplify
// %1 = call <1 x i32> @rdr(...)
// %2 = extractelement <1 x i32> %1, i32 0
// into
// %2 = call i32 @rdr(...)
//
if (auto EEI = dyn_cast<ExtractElementInst>(Inst)) {
Value *Src = EEI->getVectorOperand();
if (GenXIntrinsic::isRdRegion(Src) &&
cast<IGCLLVM::FixedVectorType>(Src->getType())->getNumElements() ==
1) {
// Create a new region with scalar output.
Region R(Inst);
Instruction *NewInst =
R.createRdRegion(Src, Inst->getName(), Inst /*InsertBefore*/,
Inst->getDebugLoc(), true /*AllowScalar*/);
Inst->replaceAllUsesWith(NewInst);
Modified = true;
continue;
}
}
if (Value *V = simplifyRegionInst(Inst, DL)) {
Inst->replaceAllUsesWith(V);
Modified = true;
continue;
}
// sink index calculation before region collapsing. For collapsed regions,
// it is more difficult to lift constant offsets.
static const unsigned NOT_INDEX = 255;
unsigned Index = NOT_INDEX;
unsigned IID = GenXIntrinsic::getGenXIntrinsicID(Inst);
if (GenXIntrinsic::isRdRegion(IID))
Index = GenXIntrinsic::GenXRegion::RdIndexOperandNum;
else if (GenXIntrinsic::isWrRegion(IID))
Index = GenXIntrinsic::GenXRegion::WrIndexOperandNum;
else if (isa<InsertElementInst>(Inst))
Index = 2;
else if (isa<ExtractElementInst>(Inst))
Index = 1;
if (Index != NOT_INDEX) {
Use *U = &Inst->getOperandUse(Index);
Value *V = sinkAdd(*U);
if (V != U->get()) {
*U = V;
Modified = true;
}
}
}
Modified |= SimplifyInstructionsInBlock(BB);
// This loop processes instructions in reverse, tolerating an instruction
// being removed during its processing, and not re-processing any new
// instructions added during the processing of an instruction.
for (Instruction *Prev = BB->getTerminator(); Prev;) {
Instruction *Inst = Prev;
Prev = nullptr;
if (Inst != &BB->front())
Prev = Inst->getPrevNode();
switch (GenXIntrinsic::getGenXIntrinsicID(Inst)) {
case GenXIntrinsic::genx_rdregioni:
case GenXIntrinsic::genx_rdregionf:
processRdRegion(Inst);
break;
case GenXIntrinsic::genx_wrregioni:
case GenXIntrinsic::genx_wrregionf:
processWrRegionElim(Inst);
if (!Inst->use_empty()) {
if (auto NewInst = processWrRegionBitCast(Inst)) {
Modified = true;
Inst = NewInst;
}
auto NewInst1 = processWrRegionSplat(Inst);
if (Inst != NewInst1) {
Modified = true;
Inst = NewInst1;
}
auto NewInst = processWrRegion(Inst);
processWrRegionBitCast2(NewInst);
if (Inst != NewInst && NewInst->use_empty()) {
NewInst->eraseFromParent();
Modified = true;
}
}
if (Inst->use_empty()) {
Inst->eraseFromParent();
Modified = true;
}
break;
default:
if (auto BC = dyn_cast<BitCastInst>(Inst))
processBitCast(BC);
if (isa<CastInst>(Inst) && Inst->use_empty()) {
// Remove bitcast that has become unused due to changes in this pass.
Inst->eraseFromParent();
Modified = true;
}
break;
}
}
}
/***********************************************************************
* createBitCast : create a bitcast, combining bitcasts where applicable
*/
static Value *createBitCast(Value *Input, Type *Ty, const Twine &Name,
Instruction *InsertBefore, const DebugLoc &DL) {
if (Input->getType() == Ty)
return Input;
if (auto BC = dyn_cast<BitCastInst>(Input))
Input = BC->getOperand(0);
if (Input->getType() == Ty)
return Input;
auto NewBC = CastInst::Create(Instruction::BitCast, Input, Ty,
Name, InsertBefore);
NewBC->setDebugLoc(DL);
return NewBC;
}
/***********************************************************************
* createBitCastToElementType : create a bitcast to a vector with the
* specified element type, combining bitcasts where applicable
*/
static Value *createBitCastToElementType(Value *Input, Type *ElementTy,
const Twine &Name,
Instruction *InsertBefore,
const DataLayout &DL,
const DebugLoc &DbgLoc) {
unsigned ElBytes = vc::getTypeSize(ElementTy, &DL).inBytes();
unsigned InputBytes = vc::getTypeSize(Input->getType(), &DL).inBytes();
IGC_ASSERT_MESSAGE(!(InputBytes & (ElBytes - 1)), "non-integral number of elements");
auto Ty = IGCLLVM::FixedVectorType::get(ElementTy, InputBytes / ElBytes);
return createBitCast(Input, Ty, Name, InsertBefore, DbgLoc);
}
/***********************************************************************
* combineBitCastWithUser : if PossibleBC is a bitcast, and it has a single
* user that is also a bitcast, then combine them
*
* If combined, the two bitcast instructions are erased.
*
* This can happen because combining two rdregions with a bitcast between
* them can result in the bitcast being used by another bitcast that was
* already there.
*/
static void combineBitCastWithUser(Value *PossibleBC)
{
if (auto BC1 = dyn_cast<BitCastInst>(PossibleBC)) {
if (BC1->hasOneUse()) {
if (auto BC2 = dyn_cast<BitCastInst>(BC1->use_begin()->getUser())) {
Value *CombinedBC = BC1->getOperand(0);
if (CombinedBC->getType() != BC2->getType())
CombinedBC = createBitCast(BC1->getOperand(0), BC2->getType(),
BC2->getName(), BC2, BC2->getDebugLoc());
BC2->replaceAllUsesWith(CombinedBC);
BC2->eraseFromParent();
BC1->eraseFromParent();
}
}
}
}
/***********************************************************************
* debugPrintInnerOuter : debug print inner/outer of region with debug-locations
*/
static void debugPrintInnerOuter(std::string FuncName, Instruction *Inner,
Instruction *Outer) {
std::string OuterLine = Outer->getDebugLoc()
? std::to_string(Outer->getDebugLoc().getLine())
: "not-defined";
std::string InnerLine = Inner->getDebugLoc()
? std::to_string(Inner->getDebugLoc().getLine())
: "not-defined";
dbgs() << FuncName << " Outer (line " << OuterLine << "): " << *Outer
<< "\n Inner (line " << InnerLine << "): " << *Inner << "\n";
}
/***********************************************************************
* processBitCast : process a bitcast whose input is rdregion
*
* We put the bitcast before the rdregion, in the hope that it will enable
* the rdregion to be baled in to something later on.
*/
void GenXRegionCollapsing::processBitCast(BitCastInst *BC)
{
if (BC->getType()->getScalarType()->isIntegerTy(1))
return;
auto Rd = dyn_cast<Instruction>(BC->getOperand(0));
// check if skipping this optimization.
auto skip = [=] {
// Skip if this is not rdregion
if (!Rd || !GenXIntrinsic::isRdRegion(Rd))
return true;
Value *OldValue = Rd->getOperand(GenXIntrinsic::GenXRegion::OldValueOperandNum);
if (GenXIntrinsic::isReadWritePredefReg(OldValue))
return true;
// Single use, do optimization.
if (Rd->hasOneUse())
return false;
// More than one uses, we check if rdr is reading from a global.
// If yes, still do such conversion, as bitcast could be folded into g_load.
while (auto CI = dyn_cast<BitCastInst>(OldValue))
OldValue = CI->getOperand(0);
auto LI = dyn_cast<LoadInst>(OldValue);
if (LI && vc::getUnderlyingGlobalVariable(LI->getPointerOperand()))
return false;
// skip otherwise;
return true;
};
if (skip())
return;
// skip call above shall check for RdRegion among other things
IGC_ASSERT(Rd);
IGC_ASSERT(GenXIntrinsic::isRdRegion(Rd));
// We have a single use rdregion as the input to the bitcast.
// Adjust the region parameters if possible so the element type is that of
// the result of the bitcast, instead of the input.
Region ROrig = makeRegionFromBaleInfo(Rd, BaleInfo());
Region R = makeRegionFromBaleInfo(Rd, BaleInfo());
auto ElTy = BC->getType()->getScalarType();
IGC_ASSERT(DL);
if (!R.changeElementType(ElTy, DL))
return;
// we do not want this optimization to be applied if resulting indirect
// region will have non-zero stride or non-single width
// this will require ineffective legalization in those cases
bool OrigCorr = ((ROrig.Width == 1) || (ROrig.Stride == 0));
bool ChangedWrong = ((R.Width != 1) && (R.Stride != 0));
if (OrigCorr && ChangedWrong && R.Indirect)
return;
// Create the new bitcast.
IGC_ASSERT(vc::getTypeSize(ElTy, DL).inBits());
auto Input = Rd->getOperand(GenXIntrinsic::GenXRegion::OldValueOperandNum);
auto NewBCTy = IGCLLVM::FixedVectorType::get(
ElTy, vc::getTypeSize(Input->getType(), DL).inBits() /
vc::getTypeSize(ElTy, DL).inBits());
auto NewBC = CastInst::Create(Instruction::BitCast, Input, NewBCTy, "", Rd);
NewBC->takeName(BC);
NewBC->setDebugLoc(BC->getDebugLoc());
// Create the new rdregion.
auto NewRd = R.createRdRegion(NewBC, "", Rd, Rd->getDebugLoc(),
/*AllowScalar=*/!isa<VectorType>(BC->getType()));
NewRd->takeName(Rd);
// Replace uses.
BC->replaceAllUsesWith(NewRd);
// Caller removes BC.
Modified = true;
}
/***********************************************************************
* processRdRegion : process a rdregion
*
* 1. If this rdregion is unused, it probably became so in the processing
* of a later rdregion. Erase it.
*
* 2. Otherwise, see if the input to this rdregion is the result of
* an earlier rdregion, and if so see if they can be combined. This can
* work even if there are bitcasts and up to one sext/zext between the
* two rdregions.
*/
void GenXRegionCollapsing::processRdRegion(Instruction *InnerRd)
{
if (InnerRd->use_empty()) {
InnerRd->eraseFromParent();
Modified = true;
return;
}
// We use genx::makeRegionWithOffset to get a Region object for a
// rdregion/wrregion throughout this pass, in order to ensure that, with an
// index that is V+const, we get the V and const separately
// (in Region::Indirect and Region::Offset).
// Then our index calculations can ensure that the constant add remains th
// last thing that happens in the calculation.
Region InnerR = genx::makeRegionWithOffset(InnerRd,
/*WantParentWidth=*/true);
// Prevent region collapsing for specific src replication pattern,
// in order to enable swizzle optimization for Align16 instruction
if (InnerRd->hasOneUse()) {
if (auto UseInst = dyn_cast<Instruction>(InnerRd->use_begin()->getUser())) {
if (UseInst->getOpcode() == Instruction::FMul) {
auto NextInst = dyn_cast<Instruction>(UseInst->use_begin()->getUser());
if (NextInst &&
(NextInst->getOpcode() == Instruction::FAdd ||
NextInst->getOpcode() == Instruction::FSub) &&
InnerR.ElementTy->getPrimitiveSizeInBits() == 64U &&
InnerR.Width == 2 &&
InnerR.Stride == 0 &&
InnerR.VStride == 2)
return;
}
}
}
for (;;) {
Instruction *OuterRd = dyn_cast<Instruction>(InnerRd->getOperand(0));
// Go through any bitcasts and up to one sext/zext if necessary to find the
// outer rdregion.
Instruction *Extend = nullptr;
bool HadElementTypeChange = false;
for (;;) {
if (!OuterRd)
break; // input not result of earlier rdregion
if (GenXIntrinsic::isRdRegion(OuterRd)) {
Value *OldValue =
OuterRd->getOperand(GenXIntrinsic::GenXRegion::OldValueOperandNum);
// Do not optimize predefined register regions.
if (GenXIntrinsic::isReadWritePredefReg(OldValue))
OuterRd = nullptr;
break; // found the outer rdregion
}
if (isa<SExtInst>(OuterRd) || isa<ZExtInst>(OuterRd)) {
if (OuterRd->getOperand(0)->getType()->getScalarType()->isIntegerTy(1)) {
OuterRd = nullptr;
break; // input not result of earlier rdregion
}
if (Extend || HadElementTypeChange) {
OuterRd = nullptr;
break; // can only have one sext/zext between the rdregions, and
// sext/zext not allowed if it is then subject to a bitcast
// that changes the element type
}
// Remember the sext/zext instruction.
Extend = OuterRd;
} else if (isa<BitCastInst>(OuterRd)) {
if (OuterRd->getType()->getScalarType()
!= OuterRd->getOperand(0)->getType()->getScalarType())
HadElementTypeChange = true;
} else {
OuterRd = nullptr;
break; // input not result of earlier rdregion
}
OuterRd = dyn_cast<Instruction>(OuterRd->getOperand(0));
}
if (!OuterRd)
break; // no outer rdregion that we can combine with
Region OuterR = genx::makeRegionWithOffset(OuterRd);
// There was a sext/zext. Because we are going to put that after the
// collapsed region, we want to modify the inner region to the
// extend's input element type without changing the region parameters
// (other than scaling the offset). We know that there is no element
// type changing bitcast between the extend and the inner rdregion.
if (Extend) {
if (InnerR.Indirect)
return; // cannot cope with indexed inner region and sext/zext
InnerR.ElementTy = Extend->getOperand(0)->getType()->getScalarType();
unsigned ExtInputElementBytes
= InnerR.ElementTy->getPrimitiveSizeInBits() / 8U;
InnerR.Offset = InnerR.getOffsetInElements() * ExtInputElementBytes;
InnerR.ElementBytes = ExtInputElementBytes;
}
// See if the regions can be combined. We call normalizeElementType with
// InnerR as the first arg so it prefers to normalize to that region's
// element type if possible. That can avoid a bitcast being put after the
// combined rdregion, which can help baling later on.
LLVM_DEBUG(debugPrintInnerOuter("GenXRegionCollapsing::processRdRegion:\n",
InnerRd, OuterRd));
if (!normalizeElementType(&InnerR, &OuterR, /*PreferFirst=*/true)) {
LLVM_DEBUG(dbgs() << "Cannot normalize element type\n");
return;
}
// If it's a signle element extract from an indirect region
// then check if there exist some other extracts
if (OuterR.Indirect && (OuterR.NumElements != 1) &&
isSingleElementRdRExtract(InnerRd)) {
auto NumExtracts = llvm::count_if(OuterRd->uses(), [this](Use &U) {
return isSingleElementRdRExtract(cast<Instruction>(U.getUser()));
});
// If there are some more extracts except this one (InnerRd)
// then not combine these regions to prevent generation
// of extra address conversions for a combined region
if (NumExtracts > 1)
return;
}
Region CombinedR;
if (!combineRegions(&OuterR, &InnerR, &CombinedR))
return; // cannot combine
// If the combined region is both indirect and splat, then do not combine.
// Otherwise, this leads to an infinite loop as later on we split such
// region reads.
auto isIndirectSplat = [](const Region &R) {
if (!R.Indirect)
return false;
if (R.Width != R.NumElements && !R.VStride &&
!isa<VectorType>(R.Indirect->getType()))
return true;
if (R.Width == 1 || R.Stride)
return false;
return true;
};
if (isIndirectSplat(CombinedR))
return;
// Calculate index if necessary.
if (InnerR.Indirect) {
calculateIndex(&OuterR, &InnerR, &CombinedR,
InnerRd->getOperand(GenXIntrinsic::GenXRegion::RdIndexOperandNum),
InnerRd->getName() + ".indexcollapsed",
InnerRd, InnerRd->getDebugLoc());
}
IGC_ASSERT(DL);
// If the element type of the combined region does not match that of the
// outer region, we need to do a bitcast first.
Value *Input = OuterRd->getOperand(GenXIntrinsic::GenXRegion::OldValueOperandNum);
// InnerR.ElementTy not always equal to InnerRd->getType()->getScalarType() (look above)
if (InnerR.ElementTy != OuterRd->getType()->getScalarType())
Input = createBitCastToElementType(Input, InnerR.ElementTy,
Input->getName() +
".bitcast_before_collapse",
OuterRd, *DL, OuterRd->getDebugLoc());
// Create the combined rdregion.
Instruction *CombinedRd = CombinedR.createRdRegion(Input,
InnerRd->getName() + ".regioncollapsed", InnerRd, InnerRd->getDebugLoc(),
!isa<VectorType>(InnerRd->getType()));
// If we went through sext/zext, re-instate it here.
Value *NewVal = CombinedRd;
if (Extend) {
auto NewCI = CastInst::Create((Instruction::CastOps)Extend->getOpcode(),
NewVal, InnerRd->getType(), Extend->getName(), InnerRd);
NewCI->setDebugLoc(Extend->getDebugLoc());
NewVal = NewCI;
}
// If we still don't have the right type due to bitcasts in the original
// code, add a bitcast here.
NewVal = createBitCast(NewVal, InnerRd->getType(),
NewVal->getName() + ".bitcast_after_collapse", InnerRd,
InnerRd->getDebugLoc());
// Replace the inner read with the new value, and erase the inner read.
// any other instructions between it and the outer read (inclusive) that
// become unused.
InnerRd->replaceAllUsesWith(NewVal);
InnerRd->eraseFromParent();
Modified = true;
// Check whether we just created a bitcast that can be combined with its
// user. If so, combine them.
combineBitCastWithUser(NewVal);
InnerRd = CombinedRd;
InnerR = genx::makeRegionWithOffset(InnerRd, /*WantParentWidth=*/true);
// Because the loop in runOnFunction does not re-process the new rdregion,
// loop back here to re-process it.
}
// InnerRd and InnerR are now the combined rdregion (or the original one if
// no combining was done).
// Check whether we have a rdregion that is both indirect and replicating,
// that we want to split.
splitReplicatingIndirectRdRegion(InnerRd, &InnerR);
}
/***********************************************************************
* splitReplicatingIndirectRdRegion : if the rdregion is both indirect and
* replicating, split out the indirect part so it is read only once
*/
void GenXRegionCollapsing::splitReplicatingIndirectRdRegion(
Instruction *Rd, Region *R)
{
if (!R->Indirect)
return;
if (R->Width != R->NumElements && !R->VStride
&& !isa<VectorType>(R->Indirect->getType())) {
// Replicating rows. We want an indirect region that just reads
// one row
Region IndirR = *R;
IndirR.NumElements = IndirR.Width;
auto Indir = IndirR.createRdRegion(Rd->getOperand(0),
Rd->getName() + ".split_replicated_indir", Rd, Rd->getDebugLoc());
// ... and a direct region that replicates the row.
R->Indirect = nullptr;
R->Offset = 0;
R->Stride = 1;
auto NewRd = R->createRdRegion(Indir, "", Rd, Rd->getDebugLoc());
NewRd->takeName(Rd);
Rd->replaceAllUsesWith(NewRd);
Rd->eraseFromParent();
Modified = true;
return;
}
if (R->Width == 1 || R->Stride)
return;
// Replicating columns. We want an indirect region that just reads
// one column
Region IndirR = *R;
IndirR.NumElements = IndirR.NumElements / IndirR.Width;
IndirR.Width = 1;
auto Indir = IndirR.createRdRegion(Rd->getOperand(0),
Rd->getName() + ".split_replicated_indir", Rd, Rd->getDebugLoc());
// ... and a direct region that replicates the column.
R->Indirect = nullptr;
R->Offset = 0;
R->VStride = 1;
auto NewRd = R->createRdRegion(Indir, "", Rd, Rd->getDebugLoc());
NewRd->takeName(Rd);
Rd->replaceAllUsesWith(NewRd);
Rd->eraseFromParent();
}
/***********************************************************************
* processWrRegionElim : process a wrregion and eliminate redundant writes
*
* This detects the following code:
*
* B = wrregion(A, V1, R)
* C = wrregion(B, V2, R)
*
* (where "R" is a region that is identical in the two versions
* this can be collapsed to
*
* D = wrregion(A, V2, R)
*
*/
void GenXRegionCollapsing::processWrRegionElim(Instruction *OuterWr)
{
auto InnerWr = dyn_cast<Instruction>(
OuterWr->getOperand(GenXIntrinsic::GenXRegion::OldValueOperandNum));
if (!GenXIntrinsic::isWrRegion(InnerWr))
return;
// Only perform this optimisation if the only use is with outer - otherwise
// this seems to make the code spill more
IGC_ASSERT(InnerWr);
if (!InnerWr->hasOneUse())
return;
Region InnerR = genx::makeRegionFromBaleInfo(InnerWr, BaleInfo(),
/*WantParentWidth=*/true);
Region OuterR = genx::makeRegionFromBaleInfo(OuterWr, BaleInfo());
if (OuterR != InnerR)
return;
// Create the combined wrregion.
Instruction *CombinedWr = OuterR.createWrRegion(
InnerWr->getOperand(0),
OuterWr->getOperand(GenXIntrinsic::GenXRegion::NewValueOperandNum),
OuterWr->getName() + ".regioncollapsed", OuterWr, OuterWr->getDebugLoc());
OuterWr->replaceAllUsesWith(CombinedWr);
// Do not erase OuterWr here -- it gets erased by the caller.
Modified = true;
}
/***********************************************************************
* processWrRegionBitCast : handle a wrregion whose "new value" is a
* bitcast (before processing wrregion for region collapsing)
*
* Enter: Inst = the wrregion
*
* Return: replacement wrregion if any, else 0
*
* If the "new value" operand of the wrregion is a bitcast from scalar to
* 1-vector, or vice versa, then we can replace the wrregion with one that
* uses the input to the bitcast directly. This may enable later baling
* that would otherwise not happen.
*
* The bitcast typically arises from GenXLowering lowering an insertelement.
*/
Instruction *GenXRegionCollapsing::processWrRegionBitCast(Instruction *WrRegion)
{
IGC_ASSERT(GenXIntrinsic::isWrRegion(WrRegion));
if (auto BC = dyn_cast<BitCastInst>(WrRegion->getOperand(
GenXIntrinsic::GenXRegion::NewValueOperandNum))) {
if (BC->getType()->getScalarType()
== BC->getOperand(0)->getType()->getScalarType()) {
// The bitcast is from scalar to 1-vector, or vice versa.
Region R = makeRegionFromBaleInfo(WrRegion, BaleInfo());
auto NewInst =
R.createWrRegion(WrRegion->getOperand(0), BC->getOperand(0), "",
WrRegion, WrRegion->getDebugLoc());
NewInst->takeName(WrRegion);
WrRegion->replaceAllUsesWith(NewInst);
WrRegion->eraseFromParent();
return NewInst;
}
}
return nullptr;
}
/***********************************************************************
* processWrRegionBitCast2 : handle a wrregion whose "new value" is a
* bitcast (after processing wrregion for region collapsing)
*
* Enter: WrRegion = the wrregion
*
* This does not erase WrRegion even if it becomes unused.
*
*
* If the "new value" operand of the wrregion is some other bitcast, then we
* change the wrregion to the pre-bitcast type and add new bitcasts for the
* "old value" input and the result. This makes it possible for the new value
* to be baled in to the wrregion.
*/
void GenXRegionCollapsing::processWrRegionBitCast2(Instruction *WrRegion)
{
auto BC = dyn_cast<BitCastInst>(WrRegion->getOperand(
GenXIntrinsic::GenXRegion::NewValueOperandNum));
if (!BC)
return;
Type *BCInputElementType = BC->getOperand(0)->getType()->getScalarType();
if (BCInputElementType->isIntegerTy(1))
return;
Value *OldValue = WrRegion->getOperand(GenXIntrinsic::GenXRegion::OldValueOperandNum);
if (GenXIntrinsic::isReadWritePredefReg(OldValue))
return;
// Get the region params for the replacement wrregion, checking if that
// fails.
Region R = makeRegionFromBaleInfo(WrRegion, BaleInfo());
if (!R.changeElementType(BCInputElementType, DL))
return;
IGC_ASSERT(DL);
// Bitcast the "old value" input.
Value *OldVal = createBitCastToElementType(
OldValue, BCInputElementType, WrRegion->getName() + ".precast", WrRegion,
*DL, WrRegion->getDebugLoc());
// Create the replacement wrregion.
auto NewInst = R.createWrRegion(OldVal, BC->getOperand(0), "", WrRegion,
WrRegion->getDebugLoc());
NewInst->takeName(WrRegion);
// Cast it.
Value *Res = createBitCast(NewInst, WrRegion->getType(),
WrRegion->getName() + ".postcast", WrRegion, WrRegion->getDebugLoc());
WrRegion->replaceAllUsesWith(Res);
}
// Check whether two values are bitwise identical.
static bool isBitwiseIdentical(Value *V1, Value *V2, const DominatorTree *DT) {
IGC_ASSERT_MESSAGE(V1, "null value");
IGC_ASSERT_MESSAGE(V2, "null value");
if (V1 == V2)
return true;
if (BitCastInst *BI = dyn_cast<BitCastInst>(V1))
V1 = BI->getOperand(0);
if (BitCastInst *BI = dyn_cast<BitCastInst>(V2))
V2 = BI->getOperand(0);
// Special case arises from vload/vstore.
if (GenXIntrinsic::isVLoad(V1) && GenXIntrinsic::isVLoad(V2)) {
auto L1 = cast<CallInst>(V1);
auto L2 = cast<CallInst>(V2);
// Loads from global variables.
auto *GV1 = vc::getUnderlyingGlobalVariable(L1->getOperand(0));
auto *GV2 = vc::getUnderlyingGlobalVariable(L2->getOperand(0));
Value *Addr = L1->getOperand(0);
if (GV1 && GV1 == GV2)
// OK.
Addr = GV1;
else if (L1->getOperand(0) != L2->getOperand(0))
// Check if loading from the same location.
return false;
else if (!isa<AllocaInst>(Addr))
// Check if this pointer is local and only used in vload/vstore.
return false;
// Check if there is no store to the same location in between.
return !genx::hasMemoryDeps(L1, L2, Addr, DT);
}
// Cannot prove.
return false;
}
/***********************************************************************
* processWrRegion : process a wrregion
*
* Enter: OuterWr = the wrregion instruction that we will attempt to use as
* the outer wrregion and collapse with inner ones
*
* Return: the replacement wrregion if any, otherwise OuterWr
*
* This detects the following code:
*
* B = rdregion(A, OuterR)
* C = wrregion(B, V, InnerR)
* D = wrregion(A, C, OuterR)
*
* (where "InnerR" and "OuterR" are the region parameters). This code can
* be collapsed to
*
* D = wrregion(A, V, CombinedR)
*
* We want to do innermost wrregion combining first, but this pass visits
* instructions in the wrong order for that. So, when we see a wrregion
* here, we use recursion to scan back to find the innermost one and then work
* forwards to where we started.
*/
Instruction *GenXRegionCollapsing::processWrRegion(Instruction *OuterWr)
{
IGC_ASSERT(OuterWr);
// Find the inner wrregion, skipping bitcasts.
auto InnerWr = dyn_cast<Instruction>(
OuterWr->getOperand(GenXIntrinsic::GenXRegion::NewValueOperandNum));
while (InnerWr && isa<BitCastInst>(InnerWr))
InnerWr = dyn_cast<Instruction>(InnerWr->getOperand(0));
if (!GenXIntrinsic::isWrRegion(InnerWr))
return OuterWr;
// Process inner wrregions first, recursively.
InnerWr = processWrRegion(InnerWr);
// Now process this one.
// Find the associated rdregion of the outer region, skipping bitcasts,
// and check it has the right region parameters.
IGC_ASSERT(InnerWr);
auto OuterRd = dyn_cast<Instruction>(InnerWr->getOperand(0));
while (OuterRd && isa<BitCastInst>(OuterRd))
OuterRd = dyn_cast<Instruction>(OuterRd->getOperand(0));
if (!GenXIntrinsic::isRdRegion(OuterRd))
return OuterWr;
IGC_ASSERT(OuterRd);
if (!isBitwiseIdentical(OuterRd->getOperand(0), OuterWr->getOperand(0), DT))
return OuterWr;
if (GenXIntrinsic::isReadPredefReg(OuterRd->getOperand(0)))
return OuterWr;
Region InnerR = genx::makeRegionWithOffset(InnerWr, /*WantParentWidth=*/true);
Region OuterR = genx::makeRegionWithOffset(OuterWr);
if (OuterR != genx::makeRegionWithOffset(OuterRd))
return OuterWr;
// See if the regions can be combined.
LLVM_DEBUG(debugPrintInnerOuter("GenXRegionCollapsing::processWrRegion\n",
InnerWr, OuterWr));
if (!normalizeElementType(&OuterR, &InnerR)) {
LLVM_DEBUG(dbgs() << "Cannot normalize element type\n");
return OuterWr;
}
Region CombinedR;
if (!combineRegions(&OuterR, &InnerR, &CombinedR))
return OuterWr; // cannot combine
// Calculate index if necessary.
if (InnerR.Indirect) {
calculateIndex(&OuterR, &InnerR, &CombinedR,
InnerWr->getOperand(GenXIntrinsic::GenXRegion::WrIndexOperandNum),
InnerWr->getName() + ".indexcollapsed", OuterWr, InnerWr->getDebugLoc());
}
IGC_ASSERT(DL);
// Bitcast inputs if necessary.
Value *OldValInput = OuterRd->getOperand(GenXIntrinsic::GenXRegion::OldValueOperandNum);
OldValInput = createBitCastToElementType(
OldValInput, InnerR.ElementTy,
OldValInput->getName() + ".bitcast_before_collapse", OuterWr, *DL,
OuterWr->getDebugLoc());
Value *NewValInput = InnerWr->getOperand(GenXIntrinsic::GenXRegion::NewValueOperandNum);
NewValInput = createBitCastToElementType(
NewValInput, InnerR.ElementTy,
NewValInput->getName() + ".bitcast_before_collapse", OuterWr, *DL,
OuterWr->getDebugLoc());
// Create the combined wrregion.
Instruction *CombinedWr = CombinedR.createWrRegion(
OldValInput, NewValInput, InnerWr->getName() + ".regioncollapsed",
OuterWr, InnerWr->getDebugLoc());
// Bitcast to the original type if necessary.
Value *Res = createBitCast(CombinedWr, OuterWr->getType(),
CombinedWr->getName() + ".cast", OuterWr,
InnerWr->getDebugLoc());
// Replace all uses.
OuterWr->replaceAllUsesWith(Res);
// Do not erase OuterWr here, as (if this function recursed to process an
// inner wrregion first) OuterWr might be the same as Prev in the loop in
// runOnFunction(). For a recursive call of processWrRegion, it will
// eventually get visited and then erased as it has no uses. For an outer
// call of processWrRegion, OuterWr is erased by the caller.
Modified = true;
return CombinedWr;
}
/***********************************************************************
* processWrRegionSplat : process a wrregion
*
* Enter: OuterWr = the wrregion instruction that we will attempt to use as
* the outer wrregion and collapse with inner ones
*
* Return: the replacement wrregion if any, otherwise OuterWr
*
* This detects the following code:
*
* C = wrregion(undef, V, InnerR)
* D = wrregion(undef, C, OuterR)
*
* (where "InnerR" and "OuterR" are the region parameters). This code can
* be collapsed to
*
* D = wrregion(undef, V, CombinedR)
*
* We want to do innermost wrregion combining first, but this pass visits
* instructions in the wrong order for that. So, when we see a wrregion
* here, we use recursion to scan back to find the innermost one and then work
* forwards to where we started.
*/
Instruction *GenXRegionCollapsing::processWrRegionSplat(Instruction *OuterWr)
{
IGC_ASSERT(OuterWr);
// Find the inner wrregion, skipping bitcasts.
auto InnerWr = dyn_cast<Instruction>(
OuterWr->getOperand(GenXIntrinsic::GenXRegion::NewValueOperandNum));
while (InnerWr && isa<BitCastInst>(InnerWr))
InnerWr = dyn_cast<Instruction>(InnerWr->getOperand(0));
if (!GenXIntrinsic::isWrRegion(InnerWr))
return OuterWr;
// Process inner wrregions first, recursively.
InnerWr = processWrRegionSplat(InnerWr);
// Now process this one.
auto InnerSrc = dyn_cast<Constant>(InnerWr->getOperand(GenXIntrinsic::GenXRegion::OldValueOperandNum));
if (!InnerSrc)
return OuterWr;
// Ensure that the combined region is well-defined.
if (InnerSrc->getType()->getScalarSizeInBits() !=
OuterWr->getType()->getScalarSizeInBits())
return OuterWr;
auto OuterSrc = dyn_cast<Constant>(OuterWr->getOperand(GenXIntrinsic::GenXRegion::OldValueOperandNum));
if (!OuterSrc)
return OuterWr;
if (isa<UndefValue>(InnerSrc)) {
// OK.
} else {
auto InnerSplat = InnerSrc->getSplatValue();
auto OuterSplat = OuterSrc->getSplatValue();
if (!InnerSplat || !OuterSplat || InnerSplat != OuterSplat)
return OuterWr;
}
Region InnerR = genx::makeRegionWithOffset(InnerWr, /*WantParentWidth=*/true);
Region OuterR = genx::makeRegionWithOffset(OuterWr);
Region CombinedR;
if (!combineRegions(&OuterR, &InnerR, &CombinedR))
return OuterWr; // cannot combine
if (genx::isPredefRegSource(
InnerWr->getOperand(GenXIntrinsic::GenXRegion::NewValueOperandNum)))
return OuterWr;
// Calculate index if necessary.
if (InnerR.Indirect) {
calculateIndex(&OuterR, &InnerR, &CombinedR,
InnerWr->getOperand(GenXIntrinsic::GenXRegion::WrIndexOperandNum),
InnerWr->getName() + ".indexcollapsed", OuterWr, InnerWr->getDebugLoc());
}
// Bitcast inputs if necessary.
Value *OldValInput = OuterSrc;
Value *NewValInput = InnerWr->getOperand(1);
IGC_ASSERT(DL);
NewValInput = createBitCastToElementType(
NewValInput, OuterWr->getType()->getScalarType(),
NewValInput->getName() + ".bitcast_before_collapse", OuterWr, *DL,
OuterWr->getDebugLoc());
// Create the combined wrregion.
Instruction *CombinedWr = CombinedR.createWrRegion(
OldValInput, NewValInput, InnerWr->getName() + ".regioncollapsed",
OuterWr, InnerWr->getDebugLoc());
// Bitcast to the original type if necessary.
Value *Res = createBitCast(CombinedWr, OuterWr->getType(),
CombinedWr->getName() + ".cast", OuterWr,
InnerWr->getDebugLoc());
// Replace all uses.
OuterWr->replaceAllUsesWith(Res);
// Do not erase OuterWr here, as (if this function recursed to process an
// inner wrregion first) OuterWr might be the same as Prev in the loop in
// runOnFunction(). For a recursive call of processWrRegionSplat, it will
// eventually get visited and then erased as it has no uses. For an outer
// call of processWrRegionSplat, OuterWr is erased by the caller.
Modified = true;
return CombinedWr;
}
/***********************************************************************
* normalizeElementType : where two regions have different element size,
* make them the same if possible
*
* Enter: R1 = first region
* R2 = second region
* PreferFirst = true to prefer the first region's element type
*
* Return: false if failed
*
* If PreferFirst is false, this uses the larger element size if everything is
* suitably aligned and the region with the smaller element size can be
* converted to the larger element size.
*
* Otherwise, it uses the smaller element size if the region with the
* larger element size can be converted to the smaller element size.
*/
bool GenXRegionCollapsing::normalizeElementType(Region *R1, Region *R2,
bool PreferFirst)
{
if (R1->ElementBytes == R2->ElementBytes)
return true; // nothing to do
LLVM_DEBUG(dbgs() << "Before normalizeElementType:\n"
" R1: " << *R1 << "\n"
" R2: " << *R2 << "\n");
// Set BigR to the region with the bigger element size, and SmallR to the
// region with the smaller element size.
bool PreferSmall = false;
Region *BigR = nullptr, *SmallR = nullptr;
if (R1->ElementBytes > R2->ElementBytes) {
BigR = R1;
SmallR = R2;
} else {
BigR = R2;
SmallR = R1;
PreferSmall = PreferFirst;
}
// Try the smaller element size first if it is preferred by the caller.
if (PreferSmall)
if (!BigR->Indirect) // big region not indirect
if (BigR->changeElementType(SmallR->ElementTy, DL))
return true;
// Then try the bigger element size.
if (!SmallR->Indirect) // small region not indirect
if (SmallR->changeElementType(BigR->ElementTy, DL))
return true;
// Then try the smaller element size.
if (!PreferSmall)
if (!BigR->Indirect) // big region not indirect
if (BigR->changeElementType(SmallR->ElementTy, DL))
return true;
return false;
}
/***********************************************************************
* combineRegions : combine two regions if possible
*
* Enter: OuterR = Region struct for outer region
* InnerR = Region struct for inner region
* CombinedR = Region struct to write combined region into
*
* Return: true if combining is possible
*
* If combining is possible, this function sets up CombinedR. However,
* CombinedR->Offset and CombinedR->Indirect are set assuming that the
* inner region is direct.
*
* If OuterR->ElementTy != InnerR->ElementTy, this algo cannot determine
* CombinedR->ElementTy, as the type depends on the order of respective
* wr/rd regions (it should be the type of the last one).
*/
bool GenXRegionCollapsing::combineRegions(const Region *OuterR,
const Region *InnerR, Region *CombinedR)
{
LLVM_DEBUG(dbgs() << "GenXRegionCollapsing::combineRegions\n"
" OuterR: " << *OuterR << "\n"
" InnerR: " << *InnerR << "\n");
if (InnerR->isMultiIndirect())
return false; // multi indirect not supported
if (OuterR->isMultiIndirect())
return false; // multi indirect not supported
if (OuterR->Mask)
return false; // outer region predicated, cannot combine
*CombinedR = *InnerR;
CombinedR->Indirect = OuterR->Indirect;
CombinedR->Stride *= OuterR->Stride;
CombinedR->VStride *= OuterR->Stride;
unsigned ElOffset = InnerR->getOffsetInElements();
if (OuterR->is2D()) {
// Outer region is 2D: create the combined offset. For outer 2D
// and inner indirect, what CombinedR->Offset is set to here is
// ignored and overwritten by calculateIndex(), so it does not matter
// that it is incorrect in that case.
ElOffset = ElOffset / OuterR->Width * OuterR->VStride
+ ElOffset % OuterR->Width * OuterR->Stride;
} else {
// Outer region is 1D: create the combined offset. For the benefit
// of inner indirect, where InnerR->Offset is just an offset from
// InnerR->Indirect, we cope with InnerR->Offset being apparently
// out of range (negative or too big).
ElOffset *= OuterR->Stride;
}
CombinedR->Offset = OuterR->Offset + ElOffset * InnerR->ElementBytes;
if (!OuterR->is2D()) {
LLVM_DEBUG(dbgs() << "outer 1D: CombinedR: " << *CombinedR << "\n");
return true; // outer region is 1D, can always combine
}
if (InnerR->isScalar()) {
LLVM_DEBUG(dbgs() << "inner scalar/splat: CombinedR: " << *CombinedR << "\n");
return true; // inner region is scalar/splat, can always combine
}
if (InnerR->Indirect) {
// Indirect inner region. Can combine as long as inner vstride is a
// multiple of outer width, and it in turn is a multiple of inner parent
// width.
if (InnerR->ParentWidth && !(InnerR->VStride % (int)OuterR->Width)
&& !(OuterR->Width % InnerR->ParentWidth)) {
CombinedR->VStride = InnerR->VStride / OuterR->Width * OuterR->VStride;
LLVM_DEBUG(dbgs() << "inner indirect: CombinedR: " << *CombinedR << "\n");
return true;
}
LLVM_DEBUG(dbgs() << "inner indirect: failed\n");
return false;
}
// Inner region is not indirect.
unsigned StartEl = InnerR->getOffsetInElements();
unsigned StartRow = StartEl / OuterR->Width;
if (!InnerR->is2D()) {
// Inner region is 1D but outer region is 2D.
unsigned EndEl = StartEl + (InnerR->NumElements - 1) * InnerR->Stride;
unsigned EndRow = EndEl / OuterR->Width;
if (StartRow == EndRow) {
// The whole 1D inner region fits in a row of the outer region.
LLVM_DEBUG(dbgs() << "inner 1D outer 2D, fits in row: CombinedR: " << *CombinedR << "\n");
return true;
}
if (EndRow == StartRow + 1 && !(InnerR->NumElements % 2)) {
unsigned MidEl = StartEl + InnerR->NumElements / 2 * InnerR->Stride;
if (InnerR->Stride > 0 && (unsigned)(MidEl - (EndRow * OuterR->Width))
< (unsigned)InnerR->Stride) {
// The 1D inner region is evenly split between two adjacent rows of
// the outer region.
CombinedR->VStride = (MidEl % OuterR->Width - StartEl % OuterR->Width)
* OuterR->Stride + OuterR->VStride;
CombinedR->Width = InnerR->NumElements / 2;
LLVM_DEBUG(dbgs() << "inner 1D outer 2D, split between two rows: CombinedR: " << *CombinedR << "\n");
return true;
}
}
unsigned BeyondEndEl = EndEl + InnerR->Stride;
if (BeyondEndEl % OuterR->Width == StartEl % OuterR->Width
&& !(OuterR->Width % InnerR->Stride)) {
// The 1D inner region is evenly split between N adjacent rows of the
// outer region, starting in the same column for each row.
CombinedR->Width = OuterR->Width / InnerR->Stride;
CombinedR->VStride = OuterR->VStride;
LLVM_DEBUG(dbgs() << "inner 1D outer 2D, split between N rows: CombinedR: " << *CombinedR << "\n");
return true;
}
LLVM_DEBUG(dbgs() << "inner 1D outer 2D, fail\n");
return false; // All other 1D inner region cases fail.
}
if (!(InnerR->VStride % (int)OuterR->Width)) {
// Inner vstride is a whole number of outer rows.
CombinedR->VStride = OuterR->VStride * InnerR->VStride / (int)OuterR->Width;
if (!InnerR->Indirect) {
// For a direct inner region, calculate whether we can combine.
unsigned StartEl = InnerR->getOffsetInElements();
unsigned StartRow = StartEl / OuterR->Width;
unsigned EndRowOfFirstRow = (StartEl + (InnerR->Width - 1) * InnerR->Stride)
/ OuterR->Width;
if (StartRow == EndRowOfFirstRow) {
// Each row of inner region is within a row of outer region, starting
// at the same column.
LLVM_DEBUG(dbgs() << "row within row: CombinedR: " << *CombinedR << "\n");
return true;
}
} else {
// For an indirect inner region, use parent width to tell whether we can
// combine.
if (InnerR->ParentWidth && !(OuterR->Width % InnerR->ParentWidth)) {
LLVM_DEBUG(dbgs() << "inner indirect, parentwidth ok: CombinedR: " << *CombinedR << "\n");
return true;
}
}
}
// We could handle other cases like:
// - each row of inner region enclosed in a row of outer region
// but with a different column offset
LLVM_DEBUG(dbgs() << "failed\n");
return false;
}
/***********************************************************************
* calculateIndex : calculate index in the case that the inner region is
* indirect
*
* Enter: OuterR, InnerR = outer and inner regions
* CombinedR = combined region set up by combineRegions()
* InnerIndex = variable index for inner region, including the
* constant offset add that was extracted by the Region
* constructor into InnerR->Offset
* Name = name for new instruction(s)
* InsertBefore = insert before this instruction
* DL = debug loc for new instruction(s)
*
* This sets up CombinedR->Indirect and CombinedR->Offset.
*
* A Region has the offset set up as follows:
*
* - For a direct region, R.Offset is the constant offset in bytes and
* R.Indirect is 0.
*
* - Normally, for an indirect region, R.Offset is 0 and R.Indirect is the
* Value used for the offset (in bytes).
*
* - But if the Value used for the offset is an add constant, then R.Offset
* is the constant offset and R.Indirect is the other operand of the add.
*
* In some code paths, this function needs the actual index of the inner region,
* rather than the R.Offset and R.Indirect parts separated out by the Region
* constructor. Thus it is passed InnerIndex, which is that actual index value.
*/
void GenXRegionCollapsing::calculateIndex(const Region *OuterR,
const Region *InnerR, Region *CombinedR, Value *InnerIndex,
const Twine &Name, Instruction *InsertBefore, const DebugLoc &DL)
{
if (!OuterR->is2D()) {
// Outer region is 1D. We can leave CombinedR->Offset as
// set by combineRegions, but we need to add the indices together, scaling
// the inner one by the outer region's stride.
Value *Idx = InnerR->Indirect;
if (OuterR->Stride != 1) {
Idx = insertOp(Instruction::Mul, Idx, OuterR->Stride, Name,
InsertBefore, DL);
LLVM_DEBUG(dbgs() << " calculateIndex: " << *Idx << "\n");
}
if (OuterR->Indirect) {
Idx = insertOp(Instruction::Add, Idx, OuterR->Indirect, Name,
InsertBefore, DL);
LLVM_DEBUG(dbgs() << " calculateIndex: " << *Idx << "\n");
}
CombinedR->Indirect = Idx;
LLVM_DEBUG(dbgs() << " calculateIndex result(1d): CombinedR: " << *CombinedR << "\n");
return;
}
// Outer region is 2D. We need to split the inner region's index into row
// and column of the outer region, then recombine. We are using InnerIndex,
// which includes any constant offset add, so we need to adjust
// CombinedR->Offset so it does not include InnerR->Offset.
CombinedR->Offset = OuterR->Offset;
LLVM_DEBUG(dbgs() << " calculateIndex: Offset now " << CombinedR->Offset << "\n");
Value *Col = insertOp(Instruction::URem, InnerIndex,
OuterR->Width * OuterR->ElementBytes,
Name, InsertBefore, DL);
LLVM_DEBUG(dbgs() << " calculateIndex: " << *Col << "\n");
Value *Row = insertOp(Instruction::UDiv, InnerIndex,
OuterR->Width * OuterR->ElementBytes,
Name, InsertBefore, DL);
LLVM_DEBUG(dbgs() << " calculateIndex: " << *Row << "\n");
Value *Idx = nullptr;
if (!(OuterR->VStride % OuterR->Stride)) {
// We need to multply Row by VStride and Col by Stride. However, Stride
// divides VStride evenly, so we can common up the multiply by Stride.
Idx = insertOp(Instruction::Mul, Row,
OuterR->VStride * OuterR->ElementBytes / OuterR->Stride,
Name, InsertBefore, DL);
LLVM_DEBUG(dbgs() << " calculateIndex: " << *Idx << "\n");
Idx = insertOp(Instruction::Add, Idx, Col, Name, InsertBefore, DL);
LLVM_DEBUG(dbgs() << " calculateIndex: " << *Idx << "\n");
Idx = insertOp(Instruction::Mul, Idx, OuterR->Stride, Name, InsertBefore, DL);
LLVM_DEBUG(dbgs() << " calculateIndex: " << *Idx << "\n");
} else {
// Need to do Row*VStride and Col*Stride separately.
Idx = insertOp(Instruction::Mul, Row,
OuterR->VStride * OuterR->ElementBytes, Name, InsertBefore, DL);
LLVM_DEBUG(dbgs() << " calculateIndex: " << *Idx << "\n");
Col = insertOp(Instruction::Mul, Col, OuterR->Stride, Name, InsertBefore, DL);
LLVM_DEBUG(dbgs() << " calculateIndex: " << *Col << "\n");
Idx = insertOp(Instruction::Add, Idx, Col, Name, InsertBefore, DL);
LLVM_DEBUG(dbgs() << " calculateIndex: " << *Idx << "\n");
}
if (OuterR->Indirect) {
Idx = insertOp(Instruction::Add, Idx, OuterR->Indirect,
Name, InsertBefore, DL);
LLVM_DEBUG(dbgs() << " calculateIndex: " << *Idx << "\n");
}
CombinedR->Indirect = Idx;
LLVM_DEBUG(dbgs() << " calculateIndex result(2d): CombinedR: " << *CombinedR << "\n");
}
/***********************************************************************
* insertOp : insert a binary op
*/
Value *GenXRegionCollapsing::insertOp(Instruction::BinaryOps Opcode, Value *Lhs,
unsigned Rhs, const Twine &Name, Instruction *InsertBefore, const DebugLoc &DL)
{
auto I16Ty = Type::getInt16Ty(InsertBefore->getContext());
return insertOp(Opcode, Lhs,
Constant::getIntegerValue(I16Ty, APInt(16, Rhs)),
Name, InsertBefore, DL);
}
Value *GenXRegionCollapsing::insertOp(Instruction::BinaryOps Opcode, Value *Lhs,
Value *Rhs, const Twine &Name, Instruction *InsertBefore, const DebugLoc &DL)
{
if (auto C = dyn_cast<ConstantInt>(Rhs)) {
int RhsVal = C->getZExtValue();
int LogVal = genx::exactLog2(RhsVal);
if (LogVal >= 0) {
switch (Opcode) {
case Instruction::Mul:
// multiply by power of 2 -> shl
if (!LogVal)
return Lhs;
Rhs = Constant::getIntegerValue(C->getType(), APInt(16, LogVal));
Opcode = Instruction::Shl;
break;
case Instruction::UDiv:
// divide by power of 2 -> lshr
if (!LogVal)
return Lhs;
Rhs = Constant::getIntegerValue(C->getType(), APInt(16, LogVal));
Opcode = Instruction::LShr;
break;
case Instruction::URem:
// remainder by power of 2 -> and
Rhs = Constant::getIntegerValue(C->getType(), APInt(16, RhsVal - 1));
Opcode = Instruction::And;
break;
default:
break;
}
}
}
auto Inst = BinaryOperator::Create(Opcode, Lhs, Rhs, Name, InsertBefore);
Inst->setDebugLoc(DL);
return Inst;
}
bool GenXRegionCollapsing::isSingleElementRdRExtract(Instruction *I) {
if (!GenXIntrinsic::isRdRegion(I))
return false;
Region R = genx::makeRegionWithOffset(I, /*WantParentWidth=*/true);
return R.NumElements == 1 && !R.Indirect;
}
|