File: GenXSimdCFConformance.cpp

package info (click to toggle)
intel-graphics-compiler 1.0.12504.6-1%2Bdeb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 83,912 kB
  • sloc: cpp: 910,147; lisp: 202,655; ansic: 15,197; python: 4,025; yacc: 2,241; lex: 1,570; pascal: 244; sh: 104; makefile: 25
file content (4570 lines) | stat: -rw-r--r-- 183,389 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
/*========================== begin_copyright_notice ============================

Copyright (C) 2017-2021 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

//
/// GenXSimdCFConformance
/// ---------------------
///
/// This pass checks that the use of SIMD control flow (llvm.genx.simdcf.goto
/// and llvm.genx.simdcf.join) conforms to the rules required to allow us to
/// generate actual goto and join instructions. If not, the intrinsics are
/// lowered to code that implements the defined semantics for the intrinsics,
/// but does not use SIMD CF instructions, so is usually less efficient.
///
/// It also makes certain transformations to make goto/join legal in terms of its
/// position in the basic block. These can fail silently, in which case the
/// conformance check will fail on the goto/join in question:
///
/// * A goto and its extractvalues must be at the end of the block. (Actually, if
///   the !any result of the goto is used in a conditional branch at the end of
///   the block, then the goto being baled into the branch means that it is
///   treated as being at the end of the block anyway. The only reason we need
///   to sink it here is to ensure that isGotoBlock works.)
///
/// * For a join label block (a block that is the JIP of other gotos/joins), a
///   join must come at the start of the block.
///
/// * For a branching join block (one whose conditional branch condition is the
///   !any result from a join), the join must be at the end of the block.
///
/// * For a block that has one join with both of the above true, we need to move
///   all other code out of the block.
///
/// The pass is run twice: an "early SIMD CF conformance pass" (a module pass)
/// just before GenXLowering, and a "late SIMD CF conformance pass" (a function
/// group pass) just before second baling.
///
/// The early pass is the one that checks for conformance, and lowers the goto
/// and join intrinsics if the code is not conformant. The conformance checks
/// implement the rules listed in the documentation for the goto and join
/// intrinsics.
///
/// Lowering a goto issues a "failed to optimize SIMD control flow" warning. No
/// clue is given in the warning as to what caused the conformance failure,
/// however you (a compiler developer) can find out (for a test case submitted
/// by a compiler user) by turning on -debug and looking at the output from this
/// pass.
///
/// The late pass checks again for conformance, but if the code is not
/// conformant, it just errors. We could lower the gotos and joins there too,
/// but it would be more fiddly as we would have to ensure that the code
/// conforms with what is expected at that stage of compilation, and there is
/// no further chance to optimize it there.
///
/// We are not expecting this error to happen.
///
/// Otherwise, the late pass sets the register category of the EM and RM values
/// to "EM" and "RM", so they do not get any register allocated.
///
/// Conformance rules
/// ^^^^^^^^^^^^^^^^^
///
/// If the goto and join intrinsics are not used in a way that conforms to the
/// rules, then they will still have the semantics in their spec, but this pass
/// will lower at least some of them to equivalent but less efficient code.
///
/// The rules are:
///
/// 1. Because the hardware has a single EM (execution mask) register, all EM
///    values input to and generated by these intrinsics must not interfere with
///    each other; that is, they must have disjoint live ranges. For the
///    purposes of determining interference, if any EM value is a phi node
///    with incoming constant all ones, then the constant all ones value is
///    counted as being live from the start of the function and is not allowed
///    to interfere with other EM values (although it can interfere with other
///    such constant all ones values).
///
/// 2. An EM value is allowed to be defined:
///
///    a. as part of the struct returned by one of these intrinsics;
///
///    b. by a phi node, as long as each incoming is either an EM value or
///       a constant all ones;
///
///    c. by an extractvalue extracting it from a struct containing an EM value;
///
///    d. as a function argument, as long as an EM value is also returned by the
///       function (perhaps as part of a struct);
///
///    e. by an insertvalue as part of a return value struct;
///
///    f. as the return value of a non-intrinsic call (perhaps as part of a struct),
///       as long as there is also a call arg that is an EM value, and the called
///       function has the corresponding function arg and return value as EM values;
///
///    g. since shufflevector from EM does not change EM and only makes it shorter
///       to create implicit predication of desired width, it's also considered
///       as an EM definition, but it can only be used by wrregion and select;
///
/// 3. An EM value is allowed to be used:
///
///    a. as the OldEM input to one of these intrinsics;
///
///    b. in a phi node, as long as the result of the phi node is an EM value;
///
///    c. as the condition in a wrregion or select;
///
///    d. as the input to a shufflevector whose effect is to slice part of the EM
///       value starting at index 0, as long as the result of that slice is only
///       used as the condition in a wrregion or select;
///
///    e. as a call argument, as long as the corresponding function argument is an
///       EM value, and the call has an EM return value;
///
///    f. in a return (perhaps as part of a struct), as long as the function also
///       has an argument that is an EM value.
///
///    For an EM value defined in a goto, or a join whose scalar BranchCond result
///    is used in a conditional branch, or in an extractvalue out of
///    the result of such a goto or join, the only use allowed in the same basic block
///    as the goto/join is such an extractvalue.
///
/// 4. The OldEM input to the two intrinsics must be either an EM value or
///    constant all ones. In the latter case, and in the case of a constant incoming
///    to an EM phi node, its live range is considered to reach
///    back through all paths to the function entry for the purposes of rule (1).
///
/// 5. Each join point has a web of RM (resume mask) values, linked as by rules (6)
///    and (7). All RM values within one join point's web must not interfere with
///    each other; that is, they must have disjoint live ranges. For the
///    purposes of determining interference, if an RM value is a phi node with
///    incoming constant all zeros, then the constant all zeros value is
///    counted as being live from the start of the function and is not allowed
///    to interfere with other RM values for this join (although it can
///    interfere with other such constant all zeros values).
///
/// 6. An RM value is allowed to be defined:
///
///    a. as part of the struct returned by ``llvm.genx.simdcf.goto``;
///
///    b. by a phi node, as long as each incoming is either an RM value or
///       a constant all zeros.
///
/// 7. An RM value is allowed to be used:
///
///    a. as the OldRM input to ``llvm.genx.simdcf.goto``;
///
///    b. as the RM input to ``llvm.genx.simdcf.join``, but only to one join in the
///       whole web;
///
///    c. in a phi node, as long as the result of the phi node is an RM value.
///
/// 8. The OldRM input to ``llvm.genx.simdcf.goto``, or the RM input to
///    ``llvm.genx.simdcf.join``, must be either an RM value, or constant all
///    zeros. In the latter case, and in the case of a constant incoming to an RM
///    phi node, its live range is considered to reach back through all paths
///    to the function entry or to the web's ``llvm.genx.simdcf.join`` for the
///    purposes of rule (5).
///
/// 9. The BranchCond struct element of the result of ``llvm.genx.simdcf.goto``
///    must either be unused (unextracted), or, after being extractvalued,
///    must have exactly one use, which is in a
///    conditional branch terminating the same basic block. In the unused case,
///    the basic block must end with an unconditional branch. (This is a goto
///    that is immediately followed by a join.)
///
/// 10. The BranchCond struct element of the result of ``llvm.genx.simdcf.join``
///     must either be unused (unextracted), or, after being extractvalued,
///     have exactly one use, which is in a conditional branch terminating the
///     same basic block.
///
/// 11. It must be possible to derive an ordering for the basic blocks in a
///     function such that, in the conditional branch using the result of any goto
///     or join, the "false" successor is fall-through and the "true" successor is
///     to a join later on in the sequence. For a goto followed by an
///     unconditional branch, the successor is fall-through _and_ the next join
///     in sequence.
///
/// **IR restriction**: goto and join intrinsics must conform to these rules
/// (since this pass lowers any that do not).
///
//===----------------------------------------------------------------------===//
#include "FunctionGroup.h"
#include "GenX.h"
#include "GenXConstants.h"
#include "GenXGotoJoin.h"
#include "GenXLiveness.h"
#include "GenXModule.h"
#include "GenXTargetMachine.h"
#include "GenXUtil.h"

#include "vc/Utils/GenX/KernelInfo.h"
#include "vc/Utils/GenX/RegCategory.h"

#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/GenXIntrinsics/GenXIntrinsics.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvmWrapper/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/Local.h"

#include "Probe/Assertion.h"
#include "llvmWrapper/IR/DerivedTypes.h"
#include "llvmWrapper/IR/InstrTypes.h"
#include "llvmWrapper/IR/IntrinsicInst.h"
#include "llvmWrapper/Support/TypeSize.h"

#define DEBUG_TYPE "GENX_SIMDCFCONFORMANCE"

using namespace llvm;
using namespace genx;

static cl::opt<bool> EnableGenXGotoJoin("enable-genx-goto-join", cl::init(true), cl::Hidden,
                                        cl::desc("Enable use of Gen goto/join instructions for SIMD control flow."));

namespace {

// Diagnostic information for error/warning relating to SIMD control flow.
class DiagnosticInfoSimdCF : public DiagnosticInfoOptimizationBase {
private:
  static const int KindID;

  static int getKindID() { return KindID; }

public:
  static void emit(Instruction *Inst, StringRef Msg, DiagnosticSeverity Severity = DS_Error);
  DiagnosticInfoSimdCF(DiagnosticSeverity Severity, const Function &Fn,
      const DebugLoc &DLoc, StringRef Msg)
      : DiagnosticInfoOptimizationBase((DiagnosticKind)getKindID(), Severity,
          /*PassName=*/nullptr, Msg, Fn, DLoc) {}
  // This kind of message is always enabled, and not affected by -rpass.
  bool isEnabled() const override { return true; }
  static bool classof(const DiagnosticInfo *DI) {
    return DI->getKind() == getKindID();
  }

  // TODO: consider changing format
  void print(DiagnosticPrinter &DP) const override { DP << "GenXSimdCFConformance: " << RemarkName; }
};

const int DiagnosticInfoSimdCF::KindID =
    llvm::getNextAvailablePluginDiagnosticKind();

// GenX SIMD control flow conformance pass -- common data between early and
// late passes.
class GenXSimdCFConformance {
protected:
  Module *M = nullptr;
  FunctionGroup *FG = nullptr;
  FunctionGroupAnalysis *FGA = nullptr;
  DominatorTreeGroupWrapperPass *DTWrapper = nullptr;
  std::map<Function *, DominatorTree *> DTs;
  GenXLiveness *Liveness = nullptr;
  bool Modified = false;
  SetVector<SimpleValue> EMVals;
  std::map<CallInst *, SetVector<SimpleValue>> RMVals;
  bool lowerSimdCF = false;
private:

  // GotoJoinEVs: container for goto/join Extract Value (EV) info. Also
  // allowes to remove duplication of EVs. Performs it in construction
  // and moves EVs right after goto/join. Hoisting can be performed
  // again with hoistEVs method. For instance, it is used on join
  // hoisting to save correct EM liveranges.
  class GotoJoinEVs {
  private:
    enum ValPos {
      EMPos = 0,
      RMPos = 1,
      JoinCondPos = 1,
      GotoCondPos = 2,
      PosNum
    };

    bool testPosCorrectness(const unsigned Index) const;

    ExtractValueInst *EVs[PosNum] = { nullptr, nullptr, nullptr };
    bool IsGoto;
    Value *GotoJoin;

    std::string getNameForMissingEV(unsigned EVIndex) const;
    void CanonicalizePHIs();
    void CollectEVs();

  public:

    GotoJoinEVs(Value *GJ = nullptr);
    ExtractValueInst *getEMEV() const;
    ExtractValueInst *getRMEV() const;
    ExtractValueInst *getCondEV() const;
    Value *getGotoJoin() const;
    Instruction *getSplitPoint() const;
    void setCondEV(ExtractValueInst *CondEV);
    bool isGoto() const;
    bool isJoin() const;
    void hoistEVs() const;

  };

  class JoinPointOptData {
  private:
    BasicBlock *FalsePred;
    Instruction *EM;

  public:
    JoinPointOptData(BasicBlock *FalsePred = nullptr, Instruction *EM = nullptr)
        : FalsePred(FalsePred), EM(EM) {}
    BasicBlock *getTruePred() const { return EM->getParent(); }
    BasicBlock *getFalsePred() const { return FalsePred; }
    Instruction *getRealEM() const { return EM; }
  };

  SetVector<SimpleValue> EMValsStack;
  MapVector<Value *, GotoJoinEVs> GotoJoinEVsMap;
  MapVector<BasicBlock *, JoinPointOptData> BlocksToOptimize;
  std::map<CallInst *, CallInst *> GotoJoinMap;
  std::map<Value *, Value *> EMProducers;
  std::map<Value *, Value *> LoweredEMValsMap;

protected:
  GenXSimdCFConformance() :
    M(0), FG(0), FGA(0), DTWrapper(0), Liveness(0), lowerSimdCF(false) {}
  void gatherEMVals();
  void gatherRMVals();
  void removeFromEMRMVals(Value *V);
  void moveCodeInGotoBlocks(bool hoistGotoUsers = false);
  void moveCodeInJoinBlocks();
  void ensureConformance();
  void lowerAllSimdCF();
  void canonicalizeEM();
  void splitGotoJoinBlocks();
  void lowerUnsuitableGetEMs();
  void optimizeRestoredSIMDCF();
  void clear() {
    DTs.clear();
    EMVals.clear();
    RMVals.clear();
    GotoJoinMap.clear();
    GotoJoinEVsMap.clear();
    EMProducers.clear();
    LoweredEMValsMap.clear();
    BlocksToOptimize.clear();
  }
  DominatorTree *getDomTree(Function *F);
private:
  bool isLatePass() const { return FG != nullptr; }
  void emptyBranchingJoinBlocksInFunc(Function *F);
  void emptyBranchingJoinBlock(CallInst *Join);
  bool hoistJoin(CallInst *Join);
  bool checkEMVal(SimpleValue EMVal);
  bool checkGoto(SimpleValue EMVal);
  bool checkJoin(SimpleValue EMVal);
  bool checkGotoJoin(SimpleValue EMVal);
  void removeBadEMVal(SimpleValue EMVal);
  void pushValues(Value *V);
  bool getConnectedVals(SimpleValue Val, vc::RegCategory Cat,
                        bool IncludeOptional, CallInst *OkJoin,
                        SmallVectorImpl<SimpleValue> *ConnectedVals,
                        bool LowerBadUsers = false);
  void checkEMInterference();
  void checkInterference(SetVector<SimpleValue> *Vals, SetVector<Value *> *BadDefs, Instruction *ConstStop);
  bool hoistGotoUser(Instruction *Inst, CallInst *Goto, unsigned operandNo);
  void gatherGotoJoinEMVals(bool IncludeIncoming = true);
  void handleEVs();
  void resolveBitCastChains();
  Value *eliminateBitCastPreds(Value *Val, std::set<Value *> &DeadInst, std::set<Value *> &Visited);
  Value *getEMProducer(Value *Inst, std::set<Value *> &Visited, bool BitCastAllowed = false);
  void handleCondValue(Value *GotoJoin);
  void handleNoCondEVCase(GotoJoinEVs &GotoJoinData);
  void handleOptimizedBranchCase(GotoJoinEVs &GotoJoinData, BasicBlock *&TrueSucc, BasicBlock *&FalseSucc);
  void handleExistingBranchCase(GotoJoinEVs &GotoJoinData, BasicBlock *&TrueSucc, BasicBlock *&FalseSucc, BranchInst *ExistingBranch);
  void addNewPhisIncomings(BasicBlock *BranchingBlock, BasicBlock *TrueSucc, BasicBlock *FalseSucc);
  void collectCondEVUsers(ExtractValueInst *CondEV, std::vector<Value *> &BadUsers, BranchInst *&CorrectUser);
  void updateBadCondEVUsers(GotoJoinEVs &GotoJoinData, std::vector<Value *> &BadUsers, BasicBlock *TrueSucc, BasicBlock *FalseSucc);
  Value *findGotoJoinVal(vc::RegCategory Cat, BasicBlock *Loc,
                         Instruction *CondEV, BasicBlockEdge &TrueEdge,
                         BasicBlockEdge &FalseEdge, Value *TrueVal,
                         Value *FalseVal,
                         std::map<BasicBlock *, Value *> &foundVals);
  bool canUseLoweredEM(Instruction *Val);
  bool canUseRealEM(Instruction *Inst, unsigned opNo);
  void replaceUseWithLoweredEM(Instruction *Val, unsigned opNo, SetVector<Value *> &ToRemove);
  Value *findLoweredEMValue(Value *Val);
  Value *buildLoweringViaGetEM(Value *Val, Instruction *InsertBefore);
  Value *getGetEMLoweredValue(Value *Val, Instruction *InsertBefore);
  Value *lowerEVIUse(ExtractValueInst *EVI, Instruction *User,
                     BasicBlock *PhiPredBlock = nullptr);
  Value *lowerPHIUse(PHINode *PN, SetVector<Value *> &ToRemove);
  Value *lowerArgumentUse(Argument *Arg);
  Value *insertCond(Value *OldVal, Value *NewVal, const Twine &Name, Instruction *InsertBefore, const DebugLoc &DL);
  Value *truncateCond(Value *In, Type *Ty, const Twine &Name, Instruction *InsertBefore, const DebugLoc &DL);
  void lowerGoto(CallInst *Goto);
  void lowerJoin(CallInst *Join);
  void replaceGotoJoinUses(CallInst *GotoJoin, ArrayRef<Value *> Vals);
  void optimizeLinearization(BasicBlock *BB, JoinPointOptData &JPData);
  bool isActualStoredEM(Instruction *Inst, JoinPointOptData &JPData);
  bool canBeMovedUnderSIMDCF(Value *Val, BasicBlock *CurrBB,
                             JoinPointOptData &JPData,
                             std::set<Instruction *> &Visited);
  bool isSelectConditionCondEV(SelectInst *Sel, JoinPointOptData &JPData);
  void replaceGetEMUse(Instruction *Inst, JoinPointOptData &JPData);
};

// GenX early SIMD control flow conformance pass
class GenXEarlySimdCFConformance
    : public GenXSimdCFConformance, public ModulePass {
public:
  static char ID;
  explicit GenXEarlySimdCFConformance() : ModulePass(ID) { }
  StringRef getPassName() const override {
    return "GenX early SIMD control flow conformance";
  }
  void getAnalysisUsage(AnalysisUsage &AU) const override {
    ModulePass::getAnalysisUsage(AU);
  }
  bool runOnModule(Module &M) override;
};

// GenX late SIMD control flow conformance pass
class GenXLateSimdCFConformance : public FGPassImplInterface,
                                  public IDMixin<GenXLateSimdCFConformance>,
                                  public GenXSimdCFConformance {
public:
  explicit GenXLateSimdCFConformance() {}
  static StringRef getPassName() {
    return "GenX late SIMD control flow conformance";
  }
  static void getAnalysisUsage(AnalysisUsage &AU) {
    AU.addRequired<DominatorTreeGroupWrapperPass>();
    AU.addRequired<GenXLiveness>();
    AU.addRequired<TargetPassConfig>();
    AU.addPreserved<GenXModule>();
    AU.addPreserved<GenXLiveness>();
    AU.addPreserved<FunctionGroupAnalysis>();
  }
  void releaseMemory() override { clear(); }
  bool runOnFunctionGroup(FunctionGroup &FG) override;

private:
  void setCategories();
  void modifyEMUses(Value *EM);
  void hoistExtractEMInstructions();
};

/***********************************************************************
 * Local function for testing one assertion statement.
 * It returns true if intrinsic is GOTO or JOIN as expected.
 */
bool testIsGotoJoin(const llvm::Value *const GotoJoin) {
  bool Result = false;
  IGC_ASSERT(GotoJoin);
  const llvm::GenXIntrinsic::ID ID = llvm::GenXIntrinsic::getGenXIntrinsicID(GotoJoin);
  switch(ID)
  {
    case llvm::GenXIntrinsic::genx_simdcf_goto:
    case llvm::GenXIntrinsic::genx_simdcf_join:
      Result = true;
      break;
    default:
      IGC_ASSERT(0);
      Result = false;
      break;
  }
  return Result;
}

/***********************************************************************
 * Local function for testing one assertion statement.
 * It returns true if intrinsic is JOIN as expected.
 */
bool testIsJoin(const llvm::Value *const GotoJoin) {
  bool Result = false;
  IGC_ASSERT(GotoJoin);
  const llvm::GenXIntrinsic::ID ID = llvm::GenXIntrinsic::getGenXIntrinsicID(GotoJoin);
  switch(ID)
  {
    case llvm::GenXIntrinsic::genx_simdcf_join:
      Result = true;
      break;
    default:
      IGC_ASSERT(0);
      Result = false;
      break;
  }
  return Result;
}

/***********************************************************************
 * Local function for testing one assertion statement.
 * It returns true if all is ok.
 */
bool testIsValidEMUse(const llvm::Value *const User,
  const llvm::Value::use_iterator& ui) {
  bool Result = false;
  IGC_ASSERT(User);
  const unsigned int ID = vc::getAnyIntrinsicID(User);
  switch(ID)
  {
    case llvm::GenXIntrinsic::genx_rdpredregion:
    case llvm::GenXIntrinsic::genx_simdcf_goto:
    case llvm::GenXIntrinsic::genx_simdcf_join:
    case llvm::GenXIntrinsic::genx_simdcf_get_em:
    case llvm::GenXIntrinsic::genx_wrpredpredregion:
      Result = true;
      break;
    case llvm::GenXIntrinsic::genx_wrregioni:
    case llvm::GenXIntrinsic::genx_wrregionf:
      Result = (ui->getOperandNo() ==
        llvm::GenXIntrinsic::GenXRegion::PredicateOperandNum);
      IGC_ASSERT(Result);
      break;
    case llvm::GenXIntrinsic::not_any_intrinsic:
      Result = (isa<PHINode>(User) ||
        isa<InsertValueInst>(User) ||
        isa<CallInst>(User) ||
        isa<ReturnInst>(User) ||
        isa<ShuffleVectorInst>(User));
      IGC_ASSERT_MESSAGE(Result, "unexpected use of EM");
      break;
    default:
      Result = (isa<ReturnInst>(User) ||
        isa<InsertValueInst>(User) ||
        isa<ExtractValueInst>(User) ||
        !cast<CallInst>(User)->getCalledFunction()->doesNotAccessMemory());
      IGC_ASSERT_MESSAGE(Result, "unexpected ALU intrinsic use of EM");
      break;
  }
  return Result;
}

/***********************************************************************
 * Local function for testing one assertion statement.
 * It returns true if Pos is correct.
 */
bool GenXSimdCFConformance::GotoJoinEVs::testPosCorrectness(
  const unsigned Index) const {
  bool Result = false;
  switch (Index)
  {
    case EMPos:
    case RMPos: // same as JoinCondPos
      Result = true;
      break;
    case GotoCondPos:
      Result = IsGoto;
      IGC_ASSERT_MESSAGE(Result, "Bad index in ExtractValue for goto/join!");
      break;
    default:
      Result = false;
      IGC_ASSERT_MESSAGE(0, "Bad index in ExtractValue for goto/join!");
      break;
  }
  return Result;
}

} // end anonymous namespace

char GenXEarlySimdCFConformance::ID = 0;
namespace llvm { void initializeGenXEarlySimdCFConformancePass(PassRegistry &); }
INITIALIZE_PASS_BEGIN(GenXEarlySimdCFConformance, "GenXEarlySimdCFConformance", "GenXEarlySimdCFConformance", false, false)
INITIALIZE_PASS_END(GenXEarlySimdCFConformance, "GenXEarlySimdCFConformance", "GenXEarlySimdCFConformance", false, false)

ModulePass *llvm::createGenXEarlySimdCFConformancePass()
{
  initializeGenXEarlySimdCFConformancePass(*PassRegistry::getPassRegistry());
  return new GenXEarlySimdCFConformance();
}

namespace llvm {
void initializeGenXLateSimdCFConformanceWrapperPass(PassRegistry &);
using GenXLateSimdCFConformanceWrapper =
    FunctionGroupWrapperPass<GenXLateSimdCFConformance>;
} // namespace llvm
INITIALIZE_PASS_BEGIN(GenXLateSimdCFConformanceWrapper,
                      "GenXLateSimdCFConformanceWrapper",
                      "GenXLateSimdCFConformanceWrapper", false, false)
INITIALIZE_PASS_DEPENDENCY(FunctionGroupAnalysis)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeGroupWrapperPassWrapper)
INITIALIZE_PASS_DEPENDENCY(GenXLivenessWrapper)
INITIALIZE_PASS_DEPENDENCY(GenXModule)
INITIALIZE_PASS_END(GenXLateSimdCFConformanceWrapper,
                    "GenXLateSimdCFConformanceWrapper",
                    "GenXLateSimdCFConformanceWrapper", false, false)

ModulePass *llvm::createGenXLateSimdCFConformanceWrapperPass() {
  initializeGenXLateSimdCFConformanceWrapperPass(
      *PassRegistry::getPassRegistry());
  return new GenXLateSimdCFConformanceWrapper();
}

static bool hasStackCall(const Module &M) {
  return std::any_of(M.begin(), M.end(),
                     [](const auto &F) { return vc::requiresStackCall(&F); });
}

/***********************************************************************
 * runOnModule : run the early SIMD control flow conformance pass for this
 *  module
 */
bool GenXEarlySimdCFConformance::runOnModule(Module &ArgM)
{
  LLVM_DEBUG(dbgs() << "Early SIMD CF Conformance starts\n");

  Modified = false;
  M = &ArgM;
  FG = nullptr;
  FGA = nullptr;
  DTWrapper = nullptr;
  lowerSimdCF = hasStackCall(ArgM);
  // Perform actions to create correct DF for EM
  canonicalizeEM();
  // Gather the EM values, both from goto/join and phi nodes.
  gatherEMVals();
  // Gather the RM values from gotos and phi nodes.
  gatherRMVals();
  // Hoist instructions that does not depend on Goto's result.
  // It is needed to perform correct split.
  moveCodeInGotoBlocks();
  // Split Goto/Join blocks to recreate actual SIMD CF
  splitGotoJoinBlocks();
  // Handle instructions that depend on Goto's result
  moveCodeInGotoBlocks(true);
  // Handle Joins to create correct SIMD CF structure
  moveCodeInJoinBlocks();
  // TODO: currently all SIMD CF is lowered if there is
  // an unmask construction in module. It is very suboptimal.
  if (lowerSimdCF)
    lowerAllSimdCF();
  else {
    // Repeatedly check the code for conformance and lower non-conformant gotos
    // and joins until the code stabilizes.
    ensureConformance();
    optimizeRestoredSIMDCF();
  }
  // Perform check for genx_simdcf_get_em intrinsics and remove redundant ones.
  lowerUnsuitableGetEMs();
  clear();

  LLVM_DEBUG(dbgs() << "Early SIMD CF Conformance ends\n");

  return Modified;
}

/***********************************************************************
 * runOnFunctionGroup : run the late SIMD control flow conformance pass for this
 * FunctionGroup
 */
bool GenXLateSimdCFConformance::runOnFunctionGroup(FunctionGroup &ArgFG)
{
  LLVM_DEBUG(dbgs() << "Late SIMD CF Conformance starts\n");

  Modified = false;
  FG = &ArgFG;
  M = FG->getModule();
  // Get analyses that we use and/or modify.
  FGA = &getAnalysis<FunctionGroupAnalysis>();
  DTWrapper = &getAnalysis<DominatorTreeGroupWrapperPass>();
  Liveness = &getAnalysis<GenXLiveness>();
  // Gather the EM values, both from goto/join and phi nodes.
  gatherEMVals();
  // Gather the RM values from gotos and phi nodes.
  gatherRMVals();
  // hoist EM extraction instructions and delete duplicates in simple cases
  hoistExtractEMInstructions();
  // Move code in goto and join blocks as necessary.
  moveCodeInGotoBlocks();
  moveCodeInJoinBlocks();
  // Check the code for conformance. In this late pass, we do not expect to
  // find non-conformance.
  ensureConformance();
  // For remaining unlowered gotos and joins (the ones that will become SIMD
  // control flow instructions), mark the webs of EM and RM values as
  // category EM or RM respectively. For EM, this also modifies uses as needed.
  setCategories();
  clear();

  LLVM_DEBUG(dbgs() << "Late SIMD CF Conformance ends\n");

  return Modified;
}

/***********************************************************************
 * gatherGotoJoinEMVals : gather the EM values for gotos/joins only
 *
 * IncludeIncoming is used for adding goto/join def to EMVals
 */
void GenXSimdCFConformance::gatherGotoJoinEMVals(bool IncludeIncoming)
{
  // We find gotos and joins by scanning all uses of the intrinsics and (in the
  // case of the late pass) ignoring ones not in this function group, rather
  // than scanning the whole IR.
  Type *I1Ty = Type::getInt1Ty(M->getContext());
  for (auto IID : { GenXIntrinsic::genx_simdcf_goto, GenXIntrinsic::genx_simdcf_join }) {
    Type *EMTy = IGCLLVM::FixedVectorType::get(I1Ty, 32);
    for (unsigned Width = 1; Width <= 32; Width <<= 1) {
      Type *Tys[] = {EMTy, IGCLLVM::FixedVectorType::get(I1Ty, Width)};
      auto GotoJoinFunc = GenXIntrinsic::getGenXDeclaration(M, IID, Tys);
      for (auto ui = GotoJoinFunc->use_begin(), ue = GotoJoinFunc->use_end();
          ui != ue; ++ui) {
        auto GotoJoin = dyn_cast<CallInst>(ui->getUser());
        if (!GotoJoin)
          continue;
        if (FG && (FGA->getGroup(GotoJoin->getParent()->getParent()) != FG
            || ui->getOperandNo() != IGCLLVM::getNumArgOperands(GotoJoin)))
          continue;
        // We have a goto/join (in our function group in the case of the late
        // pass).  Add the EM value (struct index 0) to EMVals.
        EMVals.insert(SimpleValue(GotoJoin, 0));
        // Also add its EM input to EMVals, if not a constant.
        if (IncludeIncoming && !isa<Constant>(GotoJoin->getOperand(0)))
          EMVals.insert(SimpleValue(GotoJoin->getOperand(0), 0));
      }
    }
  }
}

/***********************************************************************
 * gatherEMVals : gather the EM values, including phi nodes
 */
void GenXSimdCFConformance::gatherEMVals()
{
  // Collect gotos/joins and their defs
  gatherGotoJoinEMVals(true);

  Type *I1Ty = Type::getInt1Ty(M->getContext());
  Type *EMTy = IGCLLVM::FixedVectorType::get(I1Ty, 32);
  Type *Tys[] = { EMTy };
  auto SavemaskFunc = GenXIntrinsic::getGenXDeclaration(
      M, GenXIntrinsic::genx_simdcf_savemask, Tys);
  for (auto ui = SavemaskFunc->use_begin(), ue = SavemaskFunc->use_end(); ui != ue;
       ++ui) {
    auto Savemask = dyn_cast<CallInst>(ui->getUser());
    if (!Savemask)
      continue;
    if (FG && (FGA->getGroup(Savemask->getParent()->getParent()) != FG ||
               ui->getOperandNo() != IGCLLVM::getNumArgOperands(Savemask)))
      continue;
      lowerSimdCF = true;
    // Add its EM input to EMVals, if not a constant.
    if (!isa<Constant>(Savemask->getOperand(0)))
      EMVals.insert(SimpleValue(Savemask->getOperand(0), 0));
  }

  auto UnmaskFunc = GenXIntrinsic::getGenXDeclaration(
      M, GenXIntrinsic::genx_simdcf_unmask, Tys);
  for (auto ui = UnmaskFunc->use_begin(), ue = UnmaskFunc->use_end(); ui != ue;
       ++ui) {
    auto Unmask = dyn_cast<CallInst>(ui->getUser());
    if (!Unmask)
      continue;
    if (FG && (FGA->getGroup(Unmask->getParent()->getParent()) != FG ||
               ui->getOperandNo() != IGCLLVM::getNumArgOperands(Unmask)))
      continue;
      lowerSimdCF = true;
    // We have a unmask (in our function group in the case of the late
    EMVals.insert(SimpleValue(Unmask));
  }
  auto RemaskFunc = GenXIntrinsic::getGenXDeclaration(
      M, GenXIntrinsic::genx_simdcf_remask, Tys);
  for (auto ui = RemaskFunc->use_begin(), ue = RemaskFunc->use_end(); ui != ue;
       ++ui) {
    auto Remask = dyn_cast<CallInst>(ui->getUser());
    if (!Remask)
      continue;
    if (FG && (FGA->getGroup(Remask->getParent()->getParent()) != FG ||
               ui->getOperandNo() != IGCLLVM::getNumArgOperands(Remask)))
      continue;
      lowerSimdCF = true;
    // We have a remask (in our function group in the case of the late
    // pass).  Add the EM value (struct index 0) to EMVals.
    EMVals.insert(SimpleValue(Remask));
    // Also add its EM input to EMVals, if not a constant.
    if (!isa<Constant>(Remask->getOperand(0)))
      EMVals.insert(SimpleValue(Remask->getOperand(0)));
  }
  // delete useless cm_unmask_begin and cm_unmask_end
  auto UnmaskEF = GenXIntrinsic::getGenXDeclaration(
         M, GenXIntrinsic::genx_unmask_end);
  for (auto ui = UnmaskEF->use_begin(), ue = UnmaskEF->use_end(); ui != ue;) {
    auto u = ui->getUser();
    ++ui;
    if (auto UnmaskEnd = dyn_cast<CallInst>(u))
      UnmaskEnd->eraseFromParent();
  }
  auto UnmaskBF = GenXIntrinsic::getGenXDeclaration(
    M, GenXIntrinsic::genx_unmask_begin);
  for (auto ui = UnmaskBF->use_begin(), ue = UnmaskBF->use_end(); ui != ue;) {
    auto u = ui->getUser();
    ++ui;
    if (auto UnmaskBeg = dyn_cast<CallInst>(u))
      UnmaskBeg->eraseFromParent();
  }
  // Find related phi nodes and values related by insertvalue/extractvalue/call
  // using EMVal as a worklist.
  for (unsigned i = 0; i != EMVals.size(); ++i) {
    SimpleValue EMVal = EMVals[i];
    // For this EM value, get the connected values.
    SmallVector<SimpleValue, 8> ConnectedVals;
    getConnectedVals(EMVal, vc::RegCategory::EM, /*IncludeOptional=*/true,
                     /*OkJoin=*/nullptr, &ConnectedVals);
    // Add the connected values to EMVals.
    for (auto j = ConnectedVals.begin(), je = ConnectedVals.end();
        j != je; ++j)
      if (!isa<Constant>(j->getValue()))
        EMVals.insert(*j);
  }
}

/***********************************************************************
 * gatherRMVals : gather RM values for each join
 */
void GenXSimdCFConformance::gatherRMVals()
{
  for (auto ji = EMVals.begin(), je = EMVals.end(); ji != je; ++ji) {
    auto EMVal = *ji;
    if (GenXIntrinsic::getGenXIntrinsicID(EMVal.getValue()) != GenXIntrinsic::genx_simdcf_join)
      continue;
    auto Join = cast<CallInst>(EMVal.getValue());
    // We have a join. Gather its web of RM values.
    auto RMValsEntry = &RMVals[Join];
    if (!isa<Constant>(Join->getOperand(1)))
      RMValsEntry->insert(Join->getOperand(1));
    for (unsigned rvi = 0; rvi != RMValsEntry->size(); ++rvi) {
      SimpleValue RM = (*RMValsEntry)[rvi];
      // RM is a value in this join's RM web. Get other values related by phi
      // nodes and extractvalues and gotos.
      SmallVector<SimpleValue, 8> ConnectedVals;
      getConnectedVals(RM, vc::RegCategory::RM, /*IncludeOptional=*/true, Join,
                       &ConnectedVals);
      for (auto j = ConnectedVals.begin(), je = ConnectedVals.end();
          j != je; ++j)
        if (!isa<Constant>(j->getValue()))
          RMValsEntry->insert(*j);
    }
  }
}

/***********************************************************************
 * findGotoJoinVal : find goto/join that should be applied at the
 * specified location
 *
 * It uses dominator tree to find the value needed. Category is used to
 * set proper name for instruction and doesn't affect reg category
 * that is used in reg alloc. It only shows what we are dealing with.
 */
Value *GenXSimdCFConformance::findGotoJoinVal(
    vc::RegCategory Cat, BasicBlock *Loc, Instruction *GotoJoinEV,
    BasicBlockEdge &TrueEdge, BasicBlockEdge &FalseEdge, Value *TrueVal,
    Value *FalseVal, std::map<BasicBlock *, Value *> &foundVals) {
  IGC_ASSERT(TrueEdge.getStart() == FalseEdge.getStart());
  IGC_ASSERT(TrueEdge.getEnd() != FalseEdge.getEnd());
  IGC_ASSERT_MESSAGE(
      (Cat == vc::RegCategory::EM || Cat == vc::RegCategory::Predicate),
      "Handling only EM and Cond!");

  LLVM_DEBUG(dbgs() << "Entering " << Loc->getName() << "\n");

  // Check if value was found before
  auto ResIt = foundVals.find(Loc);
  if (ResIt != foundVals.end())
    return ResIt->second;

  DominatorTree *DomTree = getDomTree(Loc->getParent());
  if (DomTree->dominates(TrueEdge, Loc)) {
    LLVM_DEBUG(dbgs() << "Dominated by True Edge\n");
    foundVals[Loc] = TrueVal;;
    return TrueVal;
  }
  if (DomTree->dominates(FalseEdge, Loc)) {
    LLVM_DEBUG(dbgs() << "Dominated by False Edge\n");
    foundVals[Loc] = FalseVal;
    return FalseVal;
  }

  // Need to create phi somewhere.
  // Try to get IDom. If we found CondEV's BB then we are
  // already in the final block
  auto Node = DomTree->getNode(Loc);
  auto IDom = Node->getIDom();
  IGC_ASSERT_MESSAGE(IDom, "No IDom found!");
  BasicBlock *PhiLoc = nullptr;
  PhiLoc = IDom->getBlock();
  if (IDom->getBlock() == GotoJoinEV->getParent())
    PhiLoc = Loc;

  std::string Name = (Cat == vc::RegCategory::EM) ? "ExecMaskEV" : "CondEV";
  auto PHI = PHINode::Create(GotoJoinEV->getType(), pred_size(PhiLoc), Name, &PhiLoc->front());
  foundVals[PhiLoc] = PHI;
  if (PhiLoc != Loc)
    foundVals[Loc] = PHI;

  for (auto pi = pred_begin(PhiLoc), pe = pred_end(PhiLoc); pi != pe; ++pi) {
    BasicBlock *Pred = *pi;
    Value *Val = nullptr;

    // Don't check dominators for def since we are looking for
    // edges that are located after it
    if (Pred == TrueEdge.getStart()) {
      // This happens when we enter def block from join block
      // w/o any intermediate blocks (actually we expect this
      // situation to happen always). Check that we came through
      // true branch.
      if (Pred->getTerminator()->getSuccessor(0) == PhiLoc) {
        Val = TrueVal;
        LLVM_DEBUG(dbgs() << "Usual case\n");
      } else {
        // This situation shouldn't happen, but if so, we can handle it
        Val = FalseVal;
        LLVM_DEBUG(dbgs() << "Strange case\n");
      }
    } else {
      Val = findGotoJoinVal(Cat, Pred, GotoJoinEV, TrueEdge, FalseEdge, TrueVal, FalseVal, foundVals);
    }

    PHI->addIncoming(Val, Pred);
  }

  LLVM_DEBUG(dbgs() << "Built PHI for EV:" << *PHI << "\n");
  return PHI;
}

/**
 * collectCondEVUsers : gather Cond EV users
 *
 * Bad users: they should not use cond EV.
 * Correct user: conditional branch CondEV's BB. This
 * is the only possible conformant user.
 */
void GenXSimdCFConformance::collectCondEVUsers(ExtractValueInst *CondEV, std::vector<Value *> &BadUsers, BranchInst *&CorrectUser)
{
  // Bad users: they should not use cond EV. Make a real value for them
  // Correct user: conditional branch in this BB
  for (auto ui = CondEV->use_begin(), ue = CondEV->use_end(); ui != ue; ++ui) {
    BranchInst *Br = dyn_cast<BranchInst>(ui->getUser());

    // If cond EV is used by wrong branch, we can simply consider
    // it as non-baled conditional branch
    if (!Br || Br->getParent() != CondEV->getParent()) {
      LLVM_DEBUG(dbgs() << "Found bad CondEV user:\n" << *ui->getUser() << "\n");
      BadUsers.push_back(ui->getUser());
    } else if (Br) {
      IGC_ASSERT_MESSAGE(!CorrectUser, "Found another correct user!");
      LLVM_DEBUG(dbgs() << "Found correct user:\n" << *Br << "\n");
      CorrectUser = Br;
    }
  }
}

/**
 * updateBadCondEVUsers : update bad cond EV users
 *
 * It replaces cond EV uses by values that can be
 * obtained on true and false pathes
 */
void GenXSimdCFConformance::updateBadCondEVUsers(GenXSimdCFConformance::GotoJoinEVs &GotoJoinData,
  std::vector<Value *> &BadUsers, BasicBlock *TrueSucc, BasicBlock *FalseSucc)
{
  ExtractValueInst *CondEV = GotoJoinData.getCondEV();
  IGC_ASSERT_MESSAGE(CondEV, "Expected valid CondEV!");

  BasicBlockEdge TrueEdge(CondEV->getParent(), TrueSucc);
  BasicBlockEdge FalseEdge(CondEV->getParent(), FalseSucc);
  Constant *TrueVal = Constant::getAllOnesValue(CondEV->getType());
  Constant *FalseVal = Constant::getNullValue(CondEV->getType());

  // Update users
  std::map<BasicBlock *, Value *> FoundCondEV;
  for (auto bi = BadUsers.begin(), be = BadUsers.end(); bi != be; ++bi) {
    Instruction *User = cast<Instruction>(*bi);
    for (unsigned idx = 0, opNum = User->getNumOperands(); idx < opNum; ++idx) {
      if (CondEV != User->getOperand(idx))
        continue;

      User->setOperand(idx, findGotoJoinVal(vc::RegCategory::Predicate,
                                            User->getParent(), CondEV, TrueEdge,
                                            FalseEdge, TrueVal, FalseVal,
                                            FoundCondEV));
    }
  }
}

/**
 * addNewPhisIncomings : add new incomings after split
 *
 * It is needed to update phis after turning unconditional
 * branch into conditional one. True successor is assumed to
 * be correct join point, but the only thing we know here
 * is that FalseSucc branches to TrueSucc. Branching Block's
 * successors are TrueSucc and FalseSucc.
 */
void GenXSimdCFConformance::addNewPhisIncomings(BasicBlock *BranchingBlock, BasicBlock *TrueSucc, BasicBlock *FalseSucc)
{
  for (auto Inst = &TrueSucc->front();
    auto PN = dyn_cast<PHINode>(Inst);
    Inst = Inst->getNextNode()) {
    Value* CurrVal = PN->getIncomingValueForBlock(BranchingBlock);
    PN->addIncoming(CurrVal, FalseSucc);
  }
}

/**
 * handleNoCondEVCase : handle case when there is no
 * CondEV for goto/join.
 *
 * It performs split for goto in order to prepare
 * goto for possible EM lower. Goto is branch itself
 * so such transformation doesn't introduce any
 * overhead in case of conformant SIMD CF.
 *
 * TODO: this transformation can be reverted in case of
 * non-conformant SIMD CF if necessary data was saved.
 * It is not done now because no non-conformant cases
 * were found so far.
 */
void GenXSimdCFConformance::handleNoCondEVCase(GenXSimdCFConformance::GotoJoinEVs &GotoJoinData)
{
  IGC_ASSERT_MESSAGE(!GotoJoinData.getCondEV(), "Unexpected CondEV!");

  // Handle only goto
  if (GotoJoinData.isJoin())
    return;
  auto SplitPoint = GotoJoinData.getSplitPoint();

  // Skip possible goto users
  for (;; SplitPoint = SplitPoint->getNextNode()) {
    if (SplitPoint->isTerminator())
      break;
    if (auto CI = dyn_cast<CallInst>(SplitPoint)) {
      // We need to perform split before next goto/join to save their conformance
      if (GenXIntrinsic::getGenXIntrinsicID(CI) == GenXIntrinsic::genx_simdcf_goto ||
        GenXIntrinsic::getGenXIntrinsicID(CI) == GenXIntrinsic::genx_simdcf_join)
        break;
    }
  }

  Value *GotoJoin = GotoJoinData.getGotoJoin();
  ExtractValueInst *CondEV = ExtractValueInst::Create(GotoJoin, { 2 }, "missing_extractcond", SplitPoint);
  GotoJoinData.setCondEV(CondEV);

  if (auto Br = dyn_cast<BranchInst>(SplitPoint)) {
    if (Br->isConditional()) {
      // This CF is non-conformant: there should be a join point
      // before this branch, but it wasn't found. Skip it.
      return;
    }
    // We are turning unconditional branch into conditional one
    BasicBlock *Split = BasicBlock::Create(CondEV->getContext(), "goto_split", CondEV->getParent()->getParent(), Br->getSuccessor(0));
    BranchInst::Create(Br->getSuccessor(0), Split);
    BranchInst::Create(Br->getSuccessor(0), Split, CondEV, Br);

    // Update phis in TrueSucc
    addNewPhisIncomings(CondEV->getParent(), Br->getSuccessor(0), Split);

    Br->eraseFromParent();
  } else {
    // Split point is in the middle of BB. We assume that there is a join point
    // after it.
    // TODO: consider adding this check. No such cases were found now.
    BasicBlock *TrueSucc = CondEV->getParent()->splitBasicBlock(SplitPoint, "cond_ev_true_split");
    CondEV->getParent()->getTerminator()->eraseFromParent();
    LLVM_DEBUG(dbgs() << "Created " << TrueSucc->getName() << " to handle missing conditional branch\n");

    // False block: need to create new one
    BasicBlock *FalseSucc = BasicBlock::Create(CondEV->getContext(), "cond_ev_false_split", CondEV->getParent()->getParent(),
      TrueSucc);
    LLVM_DEBUG(dbgs() << "Created " << FalseSucc->getName() << " to handle missing conditional branch\n");

    // Link blocks
    BranchInst::Create(TrueSucc, FalseSucc, CondEV, CondEV->getParent());
    BranchInst::Create(TrueSucc, FalseSucc);
  }

  // CFG changed: update DomTree.
  // TODO: there must be workaround to do it in a more optimal way
  DominatorTree *domTree = getDomTree(CondEV->getParent()->getParent());
  domTree->recalculate(*CondEV->getParent()->getParent());
}

/**
 * handleOptimizedBranchCase : perform split for optimized branch case
 *
 * TODO: this make sence only in case when the true successor is a
 * join block, otherwise it will introduce more overhead due to
 * goto/join lowering. Also there should be check that this
 * join really uses current EM and RM. This issue is resolved
 * at the end of this pass in EM/RM liveness analysis and cannot
 * be done easy at this point. For now assume that everything OK
 * with it here.
 *
 * TODO: It is possible to undo this transformation if we store
 * all necessery data here. Currently it is not done:
 * no non-conformant cases found for now.
 *
 * Due to earlier transformations we can split BB after the last
 * goto/join EV. It will solve issue with join located in this
 * basic block. Code movements to sink goto/join will be performed
 * further, we don't need to focus on it here.
 */
void GenXSimdCFConformance::handleOptimizedBranchCase(GenXSimdCFConformance::GotoJoinEVs &GotoJoinData, BasicBlock *&TrueSucc, BasicBlock *&FalseSucc)
{
  // Look for the first non-goto/join user inst
  auto SplitPoint = GotoJoinData.getSplitPoint();

  ExtractValueInst *CondEV = GotoJoinData.getCondEV();
  IGC_ASSERT_MESSAGE(CondEV, "Expected valid CondEV!");

  // Split: this is true succ which is join point (at least we assume that)
  TrueSucc = CondEV->getParent()->splitBasicBlock(SplitPoint, "cond_ev_true_split");
  LLVM_DEBUG(dbgs() << "Created " << TrueSucc->getName() << " to handle missing conditional branch\n");
  CondEV->getParent()->getTerminator()->eraseFromParent();
  // False block: need to create new one
  FalseSucc = BasicBlock::Create(CondEV->getContext(), "cond_ev_false_split", CondEV->getParent()->getParent(),
    TrueSucc);
  LLVM_DEBUG(dbgs() << "Created " << FalseSucc->getName() << " to handle missing conditional branch\n");
  // Link blocks
  BranchInst::Create(TrueSucc, FalseSucc, CondEV, CondEV->getParent());
  BranchInst::Create(TrueSucc, FalseSucc);

  // Store info for possible optimization
  BlocksToOptimize[TrueSucc] =
      JoinPointOptData(FalseSucc, GotoJoinData.getEMEV());

  // CFG changed: update DomTree.
  // TODO: there must be workaround to do it in a more optimal way
  DominatorTree *domTree = getDomTree(CondEV->getParent()->getParent());
  domTree->recalculate(*CondEV->getParent()->getParent());
}

/**
 * handleExistingBranchCase : perform actions needed to
 * handle case when branch wasn't optimized
 *
 * It stores True/False successors and adds new BB
 * in case when both successors are the same BB.
 */
void GenXSimdCFConformance::handleExistingBranchCase(GenXSimdCFConformance::GotoJoinEVs &GotoJoinData,
  BasicBlock *&TrueSucc, BasicBlock *&FalseSucc, BranchInst *ExistingBranch)
{
  ExtractValueInst *CondEV = GotoJoinData.getCondEV();
  IGC_ASSERT_MESSAGE(CondEV, "Expected valid CondEV!");
  IGC_ASSERT_MESSAGE(ExistingBranch->isConditional(), "Expected conditional branch!");

  TrueSucc = ExistingBranch->getSuccessor(0);
  FalseSucc = ExistingBranch->getSuccessor(1);

  if (TrueSucc == FalseSucc) {
    // We need to simply introduce new BB to get CondEV
    FalseSucc = BasicBlock::Create(CondEV->getContext(), "cond_ev_split", CondEV->getParent()->getParent(),
      TrueSucc);
    BranchInst::Create(TrueSucc, FalseSucc);
    ExistingBranch->setSuccessor(1, FalseSucc);

    LLVM_DEBUG(dbgs() << "Created " << FalseSucc->getName() << " to handle always taken CONDITIONAL branch\n");

    // Update phis in TrueSucc
    addNewPhisIncomings(CondEV->getParent(), TrueSucc, FalseSucc);

    // CFG changed: update DomTree.
    // TODO: there must be workaround to do it in a more optimal way
    DominatorTree *domTree = getDomTree(CondEV->getParent()->getParent());
    domTree->recalculate(*CondEV->getParent()->getParent());
  }
}

/**
 * handleCondValue : perform analysis on Cond EV usage and fix
 * it if needed
 *
 * The basic use case is optimized False Successor. That
 * often happens in standard SimplifyCFG pass.
 */
void GenXSimdCFConformance::handleCondValue(Value *GotoJoin)
{
  GotoJoinEVs &GotoJoinData = GotoJoinEVsMap[GotoJoin];
  ExtractValueInst *CondEV = GotoJoinData.getCondEV();

  // No cond EV - nothing to handle. Here we create branch for goto
  // to make it easier to handle possible bad EM users. Goto is a
  // branch itself and it won't introduce any overhead in case
  // of conformant SIMD CF
  if (!CondEV) {
    handleNoCondEVCase(GotoJoinData);
    return;
  }

  // Collect Cond EV users
  std::vector<Value *> BadUsers;
  BranchInst *CorrectUser = nullptr;
  collectCondEVUsers(CondEV, BadUsers, CorrectUser);

  // Nothing needs to be fixed. However, allow this algorithm to fix
  // case with TrueSucc == FalseSucc for goto in order to simplify further
  // analysis.
  if (BadUsers.empty() && GotoJoinData.isJoin())
    return;

  BasicBlock *TrueSucc = nullptr;
  BasicBlock *FalseSucc = nullptr;

  if (!CorrectUser) {
    // Branch was optimized by some pass. We need to create it again.
    handleOptimizedBranchCase(GotoJoinData, TrueSucc, FalseSucc);
  } else {
    // Branch is still here. Perform actions needed.
    handleExistingBranchCase(GotoJoinData, TrueSucc, FalseSucc, CorrectUser);
  }

  // Update users
  updateBadCondEVUsers(GotoJoinData, BadUsers, TrueSucc, FalseSucc);
}

/***********************************************************************
 * splitGotoJoinBlocks : split Basic Blocks that contains goto/join
 *
 * This is used to solve problems that can be introduced by some
 * standard LLVM passes: one of them is simplified CFG that lead to
 * goto/join's condition usage by non-branch instruction. After this
 * transformation each BB will contain only one goto or join instruction
 * (or none of them), that fact allows us to make further changes simplier.
 */
void GenXSimdCFConformance::splitGotoJoinBlocks() {

  LLVM_DEBUG(dbgs() << "Splitting GotoJoin Blocks\n");

  for (auto &Elem : GotoJoinEVsMap) {

    Value *GotoJoin = Elem.first;
    auto &GotoJoinData = Elem.second;

    LLVM_DEBUG(dbgs() << "Trying to split BB for:\n" << *GotoJoin << "\n");

    handleCondValue(GotoJoin);

    if (GotoJoinData.isJoin()) {
      auto SplitPoint = GotoJoinData.getSplitPoint();
      if (SplitPoint->isTerminator())
        continue;
      SplitPoint->getParent()->splitBasicBlock(SplitPoint, "split_for_join");
      // CFG changed: update DomTree.
      // TODO: there must be workaround to do it in a more optimal way
      DominatorTree *domTree = getDomTree(SplitPoint->getParent()->getParent());
      domTree->recalculate(*SplitPoint->getParent()->getParent());
    }
  }

  LLVM_DEBUG(dbgs() << "Done splitting\n\n" << *M << "\n\n");
}

/***********************************************************************
 * removeFromEMRMVals : remove a value from EMVals or RMVals
 *
 * This is used just before erasing a phi node in moveCodeInJoinBlocks.
 */
void GenXSimdCFConformance::removeFromEMRMVals(Value *V)
{
  auto VT = dyn_cast<VectorType>(V->getType());
  if (!VT || !VT->getElementType()->isIntegerTy(1))
    return;
  if (EMVals.remove(SimpleValue(V, 0)))
    return;
  for (auto i = RMVals.begin(), e = RMVals.end(); i != e; ++i) {
    auto RMValsEntry = &i->second;
    if (RMValsEntry->remove(SimpleValue(V, 0)))
      return;
  }
}

/***********************************************************************
 * hoistGotoUser : hoist instruction that uses goto's EV and is located
 * after it in the same basic block.
 *
 * Since goto must be at the end of basic block, we have to solve
 * this problem somehow. Current approach is to duplicate instruction
 * on both paths (true and false) and update uses.
 *
 * It is always possible to perform such transformation even if there
 * is a chain of users: we just can duplicate them all. Since we know
 * all values on the true pass, it should be possible to perform full
 * calculation in this case. However, it is not done now because it can
 * lead to much worse code when SIMD CF is not conformant (we are not
 * sure that it is conformant at this point).
 */
bool GenXSimdCFConformance::hoistGotoUser(Instruction *Inst, CallInst *Goto, unsigned operandNo)
{
  // Find branch for goto
  ExtractValueInst *CondEV = GotoJoinEVsMap[Goto].getCondEV();
  auto BrIt = std::find_if(CondEV->use_begin(), CondEV->use_end(),
    [&Goto](const Use& u) {
      auto Br = dyn_cast<BranchInst>(u.getUser());
      return (Br && Br->getParent() == Goto->getParent() && Br->isConditional());
    });
  IGC_ASSERT_MESSAGE(BrIt != CondEV->use_end(), "All gotos should become branching earlier!");

  BranchInst *Br = cast<BranchInst>(BrIt->getUser());
  BasicBlock *TrueSucc = Br->getSuccessor(0);
  BasicBlock *FalseSucc = Br->getSuccessor(1);

  // Handle FallThrough block with phis.
  //
  // TODO: it is redundant in some cases. For example, there can be Phi that
  // uses bitcasts from EM from two paths. In this case we can use one
  // GetEM from Phi with EM. Currently there is no trivial mechanism
  // to check for that because in this case Phi arguments are supposed to use
  // different Exectution Masks according to DF.
  //
  // Temporary solution for that is to place a splitter block that branches to
  // such bb directly. Examples of that case can be found in local-atomics
  // tests in ISPC.
  if (isa<PHINode>(&FalseSucc->front())) {
    BasicBlock *Splitter = BasicBlock::Create(FalseSucc->getContext(), "phi_fallthrough_splitter", FalseSucc->getParent());
    Splitter->moveAfter(Goto->getParent());
    BranchInst::Create(FalseSucc, Splitter);
    Br->setSuccessor(1, Splitter);
    // Update phis
    for (auto CurrInst = &FalseSucc->front();
         auto PN = dyn_cast<PHINode>(CurrInst);
         CurrInst = CurrInst->getNextNode()) {
      for (unsigned idx = 0, num = PN->getNumIncomingValues(); idx < num; ++idx) {
        if (PN->getIncomingBlock(idx) == Goto->getParent())
          PN->setIncomingBlock(idx, Splitter);
      }
    }
    FalseSucc = Splitter;
    // CFG changed: update DomTree.
    // TODO: there must be workaround to do it in a more optimal way
    DominatorTree *domTree = getDomTree(CondEV->getParent()->getParent());
    domTree->recalculate(*CondEV->getParent()->getParent());
  }

  // Copy instruction and set the value for true block. Place it before goto.
  Instruction *TrueVal = Inst->clone();
  TrueVal->insertBefore(Goto);
  TrueVal->setOperand(operandNo, Constant::getNullValue(Inst->getOperand(operandNo)->getType()));

  // Copy instruction and place it in the false successor. Get EM will be
  // created later to handle its goto use.
  Instruction *FalseVal = Inst->clone();
  FalseVal->insertBefore(FalseSucc->getFirstNonPHI());

  // Handle all users
  BasicBlockEdge TrueEdge(Goto->getParent(), TrueSucc);
  BasicBlockEdge FalseEdge(Goto->getParent(), FalseSucc);
  std::map<BasicBlock *, Value *> foundVals;
  std::vector<Value *> newOperands;
  for (auto ui = Inst->use_begin(), ue = Inst->use_end(); ui != ue; ++ui) {
    auto User = dyn_cast<Instruction>(ui->getUser());
    // TODO: it can be solved with duplicated instructions.
    // Currently we are not going to duplicate them.
    if (User->getParent() == Inst->getParent()) {
      TrueVal->eraseFromParent();
      FalseVal->eraseFromParent();
      return false;
    }

    BasicBlock *Loc = User->getParent();
    if (auto PN = dyn_cast<PHINode>(User))
      Loc = PN->getIncomingBlock(ui->getOperandNo());

    // Store new value
    Value *NewOperand = nullptr;
    if (Loc == Goto->getParent())
      NewOperand = TrueVal;
    else
      NewOperand = findGotoJoinVal(vc::RegCategory::EM, Loc, Inst, TrueEdge,
                                   FalseEdge, TrueVal, FalseVal, foundVals);

    newOperands.push_back(NewOperand);
  }

  // Update uses
  unsigned i = 0;
  for (auto ui = Inst->use_begin(), ue = Inst->use_end(); ui != ue;) {
    auto User = dyn_cast<Instruction>(ui->getUser());
    unsigned opNo = ui->getOperandNo();
    ++ui;
    User->setOperand(opNo, newOperands[i++]);
  }

  return true;
}

/***********************************************************************
 * moveCodeInGotoBlocks : move code in goto blocks
 *
 * A goto and its extractvalues must be at the end of the block. (Actually, if
 * the !any result of the goto is used in a conditional branch at the end of
 * the block, then the goto being baled into the branch means that it is
 * treated as being at the end of the block anyway. The only reason we need to
 * sink it here is to ensure that isGotoBlock works.)
 *
 * This can silently fail to sink a goto, in which case checkGoto will spot that
 * the goto is not conformant.
 */
void GenXSimdCFConformance::moveCodeInGotoBlocks(bool hoistGotoUsers)
{
  for (auto gi = EMVals.begin(), ge = EMVals.end(); gi != ge; ++gi) {
    auto EMVal = *gi;
    if (GenXIntrinsic::getGenXIntrinsicID(EMVal.getValue()) != GenXIntrinsic::genx_simdcf_goto)
      continue;
    auto Goto = cast<CallInst>(EMVal.getValue());
    // We want to sink the goto and its extracts. In fact we hoist any other
    // instruction, checking that it does not use the extracts.
    // With hoistGotoUsers, we are trying to hoist them, too.
    // We are skipping all instructions that use skipped instructions
    // in order to save dominance.
    std::set<Instruction *> Skipping;
    for (Instruction *NextInst = Goto->getNextNode();;) {
      auto Inst = NextInst;
      if (Inst->isTerminator())
        break;
      IGC_ASSERT(Inst);
      NextInst = Inst->getNextNode();
      if (auto Extract = dyn_cast<ExtractValueInst>(Inst))
        if (Extract->getOperand(0) == Goto)
          continue;
      bool Failed = false;
      for (unsigned oi = 0, oe = Inst->getNumOperands(); oi != oe; ++oi) {
        if (auto I = dyn_cast<Instruction>(Inst->getOperand(oi)))
          if (Skipping.count(I)) {
            LLVM_DEBUG(dbgs() << "Skipping " << Inst->getName() << " due to use of skipped inst\n");
            Skipping.insert(Inst);
            Failed = true;
            break;
          }
        if (auto Extract = dyn_cast<ExtractValueInst>(Inst->getOperand(oi)))
          if (Extract->getOperand(0) == Goto) {
            // This is used after splitting basic blocks.
            // To perform this all gotos must be branching since EM
            // is changed by goto.
            if (hoistGotoUsers && hoistGotoUser(Inst, Goto, oi)) {
              continue;
            }
            LLVM_DEBUG(dbgs() << "moveCodeInGotoBlocks: " << Goto->getName() << " failed\n");
            LLVM_DEBUG(dbgs() << "Could not hoist " << Inst->getName() << "\n");
            Failed = true;
            Skipping.insert(Inst);
            break; // Intervening instruction uses extract of goto; abandon
          }
      }
      if (Failed)
        continue;
      // Hoist the instruction.
      Inst->removeFromParent();
      Inst->insertBefore(Goto);
    }
  }
}

/***********************************************************************
 * moveCodeInJoinBlocks : move code in join blocks as necessary
 *
 * 1. For a join label block (a block that is the JIP of other gotos/joins), a
 *    join must come at the start of the block.
 *
 * 2. For a branching join block (one whose conditional branch condition is the
 *    !any result from a join), the join must be at the end of the block.
 *
 * 3. For a block that has one join with both of the above true, we need to move
 *    all other code out of the block.
 *
 * We achieve this as follows:
 *
 * a. First handle case 3. For any such block, hoist any other code to the end
 *    of its immediate dominator. To allow for the immediate dominator also
 *    being a case 3 join, we process blocks in post-order depth first search
 *    order, so we visit a block before its dominator. Thus code from a case 3
 *    join block eventually gets moved up to its closest dominating block that
 *    is not a case 3 join block.
 *
 *    Because it is more convenient and does not hurt, we also hoist the code
 *    before the first join in a block that initially looks like it is case 3,
 *    even if it then turns out not to be a case 3 join because it has multiple
 *    joins.
 *
 * b. Then scan all joins handling case 1.
 *
 * c. No need to handle case 2 here, as it (together with a similar requirement
 *    to sink a goto in a branching goto block) is checked in checkConformance
 *    and treated as sunk subsequently by virtue of getting baled in to the
 *    branch.
 *
 * This happens in both SIMD CF conformance passes, in case constant loading
 * etc sneaks code back into the wrong place in a join block. Any pass after
 * the late SIMD CF conformance pass needs to be careful not to sneak code back
 * into a join block.
 *
 * Any failure to do the above is not flagged here, but it will be spotted when
 * checking the join for conformance.
 *
 * moveCodeInGotoBlocks needs to run first, as we rely on its sinking of an
 * unconditional branch goto for isBranchingGotoJoinBlock to work.
 */
void GenXSimdCFConformance::moveCodeInJoinBlocks()
{
  // a. Handle case 3 join blocks.
  if (!FG) {
    // Early pass: iterate all funcs in the module.
    for (auto mi = M->begin(), me = M->end(); mi != me; ++mi) {
      Function *F = &*mi;
      if (!F->empty())
        emptyBranchingJoinBlocksInFunc(F);
    }
  } else {
    // Late pass: iterate all funcs in the function group.
    for (auto fgi = FG->begin(), fge = FG->end(); fgi != fge; ++fgi) {
      Function *F = *fgi;
      emptyBranchingJoinBlocksInFunc(F);
    }
  }
  // b. Process all other joins (in fact all joins, but ones successfully
  // processed above will not need anything doing).
  // Get the joins into a vector first, because the code below modifies EMVals.
  SmallVector<CallInst *, 4> Joins;
  for (auto ji = EMVals.begin(), je = EMVals.end(); ji != je; ++ji) {
    auto EMVal = *ji;
    if (GenXIntrinsic::getGenXIntrinsicID(EMVal.getValue()) != GenXIntrinsic::genx_simdcf_join)
      continue;
    Joins.push_back(cast<CallInst>(EMVal.getValue()));
  }
  for (auto ji = Joins.begin(), je = Joins.end(); ji != je; ++ji) {
    auto Join = *ji;
    auto JoinBlock = Join->getParent();
    if (GotoJoin::isJoinLabel(JoinBlock, /*SkipCriticalEdgeSplitter=*/true))
      hoistJoin(Join);
    else {
      // The join is in a block that is not a join label. Also check the case
      // that there is a predecessor that:
      // 1. has one successor; and
      // 2. is empty other than phi nodes; and
      // 3. is a join label.
      // In that case we merge the two blocks, merging phi nodes.
      // I have seen this situation arise where LLVM decides to add a loop
      // pre-header block.
      BasicBlock *PredBlock = nullptr;
      for (auto ui = JoinBlock->use_begin(), ue = JoinBlock->use_end(); ui != ue; ++ui) {
        auto Br = dyn_cast<BranchInst>(ui->getUser());
        if (!Br || Br->isConditional())
          continue;
        auto BB = Br->getParent();
        if (BB->getFirstNonPHIOrDbg() != Br)
          continue;
        if (GotoJoin::isJoinLabel(BB, /*SkipCriticalEdgeSplitter=*/true)) {
          PredBlock = BB;
          break;
        }
      }
      if (PredBlock) {
        // We have such a predecessor block. First hoist the join in our block.
        if (hoistJoin(Join)) {
          // Join hoisting succeeded. Now merge the blocks.
          LLVM_DEBUG(dbgs() << "moveCodeInJoinBlocks: merging " << PredBlock->getName()
              << " into " << JoinBlock->getName() << "\n");
          // First adjust the phi nodes to include both blocks' incomings.
          for (auto Phi = dyn_cast<PHINode>(&JoinBlock->front()); Phi;
              Phi = dyn_cast<PHINode>(Phi->getNextNode())) {
            int Idx = Phi->getBasicBlockIndex(PredBlock);
            if (Idx >= 0) {
              Value *Incoming = Phi->getIncomingValue(Idx);
              auto PredPhi = dyn_cast<PHINode>(Incoming);
              if (PredPhi && PredPhi->getParent() != PredBlock)
                PredPhi = nullptr;
              if (PredPhi) {
                // The incoming in JoinBlock is a phi node in PredBlock. Add its
                // incomings.
                Phi->removeIncomingValue(Idx, /*DeletePHIIfEmpty=*/false);
                for (unsigned oi = 0, oe = PredPhi->getNumIncomingValues();
                    oi != oe; ++oi)
                  Phi->addIncoming(PredPhi->getIncomingValue(oi),
                      PredPhi->getIncomingBlock(oi));
              } else {
                // Otherwise, add the predecessors of PredBlock to the phi node
                // in JoinBlock.
                for (auto ui2 = PredBlock->use_begin(),
                    ue2 = PredBlock->use_end(); ui2 != ue2; ++ui2) {
                  Instruction *Term = dyn_cast<Instruction>(ui2->getUser());
                  IGC_ASSERT(Term);
                  if (Term->isTerminator()) {
                    auto PredPred = Term->getParent();
                    if (Idx >= 0) {
                      Phi->setIncomingBlock(Idx, PredPred);
                      Idx = -1;
                    } else
                      Phi->addIncoming(Incoming, PredPred);
                  }
                }
              }
            }
          }
          // Any phi in PredBlock that is not used in a phi in JoinBlock (and
          // so still has at least one use after the code above) needs to be
          // moved to JoinBlock, with itself added as the extra incomings. The
          // incoming blocks to JoinBlock other than PredBlock must be loop
          // back edges.
          for (;;) {
            auto Phi = dyn_cast<PHINode>(&PredBlock->front());
            if (!Phi)
              break;
            if (Phi->use_empty()) {
              removeFromEMRMVals(Phi);
              Phi->eraseFromParent();
              continue;
            }
            for (auto ui = JoinBlock->use_begin(), ue = JoinBlock->use_end();
                ui != ue; ++ui) {
              auto Term = dyn_cast<Instruction>(ui->getUser());
              IGC_ASSERT(Term);
              if (!Term->isTerminator())
                continue;
              auto TermBB = Term->getParent();
              if (TermBB == PredBlock)
                continue;
              Phi->addIncoming(Phi, TermBB);
            }
            Phi->removeFromParent();
            Phi->insertBefore(&JoinBlock->front());
          }
          // Adjust branches targeting PredBlock to target JoinBlock instead.
          PredBlock->replaceAllUsesWith(JoinBlock);
          // Remove PredBlock.
          PredBlock->eraseFromParent();
        }
      }
    }
  }
}

/***********************************************************************
 * emptyBranchingJoinBlocksInFunc : empty other instructions out of each
 *    block in a function that is both a join label and a branching join block
 *
 * See comment for moveCodeInJoinBlocks above.
 */
void GenXSimdCFConformance::emptyBranchingJoinBlocksInFunc(Function *F)
{
  for (auto i = po_begin(&F->getEntryBlock()), e = po_end(&F->getEntryBlock());
      i != e; ++i) {
    BasicBlock *BB = *i;
    CallInst *Join = GotoJoin::isBranchingJoinBlock(BB);
    if (!Join)
      continue;
    emptyBranchingJoinBlock(Join);
  }
}

/***********************************************************************
 * emptyBranchingJoinBlock : empty instructions other than the join (and its
 *      extracts) from this branching join block
 */
void GenXSimdCFConformance::emptyBranchingJoinBlock(CallInst *Join)
{
  BasicBlock *BB = Join->getParent();
  Instruction *InsertBefore = nullptr;
  for (Instruction *NextInst = BB->getFirstNonPHIOrDbg();;) {
    auto Inst = NextInst;
    if (Inst->isTerminator())
      break;
    NextInst = Inst->getNextNode();
    if (Inst == Join)
      continue; // do not hoist the join itself
    if (GenXIntrinsic::getGenXIntrinsicID(Inst) == GenXIntrinsic::genx_simdcf_join)
      break; // we have encountered another join; there must be more than one
    if (auto EV = dyn_cast<ExtractValueInst>(Inst))
      if (EV->getOperand(0) == Join)
        continue; // do not hoist an extract of the join
    // Check that the instruction's operands do not use anything in this block
    // (the phi nodes, or the join and extracts being left behind).
    for (unsigned oi = 0, oe = Inst->getNumOperands(); oi != oe; ++oi) {
      auto Opnd = dyn_cast<Instruction>(Inst->getOperand(oi));
      if (Opnd && Opnd->getParent() == BB) {
        LLVM_DEBUG(dbgs() << "Failed to empty branching join label for join " << Join->getName() << "\n");
        return; // Instruction uses something in this block: abandon.
      }
    }
    if (!InsertBefore) {
      // Lazy determination of the insert point. If it is a branching goto/join
      // block, insert before the goto/join.
      auto DomTree = getDomTree(BB->getParent());
      IGC_ASSERT(DomTree);
      auto BBNode = DomTree->getNode(BB);
      IGC_ASSERT(BBNode);
      auto InsertBB = BBNode->getIDom()->getBlock();
      InsertBefore = GotoJoin::isBranchingGotoJoinBlock(InsertBB);
      if (!InsertBefore)
        InsertBefore = InsertBB->getTerminator();
    }
    // Hoist the instruction.
    Inst->removeFromParent();
    Inst->insertBefore(InsertBefore);
    Modified = true;
  }
}

/***********************************************************************
 * getDomTree : get dominator tree for a function
 */
DominatorTree *GenXSimdCFConformance::getDomTree(Function *F)
{
  if (!DTWrapper) {
    // In early pass, which is a module pass.
    if (!DTs[F]) {
      auto DT = new DominatorTree;
      DT->recalculate(*F);
      DTs[F] = DT;
    }
    return DTs[F];
  }
  // In late pass, use the DominatorTreeGroupWrapper.
  return DTWrapper->getDomTree(F);
}

/***********************************************************************
 * hoistJoin : hoist a join to the top of its basic block if possible
 *
 * Return:  whether succeeded
 *
 * This is used for a join in a block that is a join label, but not a branching
 * join block. See comment for emptyJoinBlocks above.
 *
 * There might be multiple joins in the function, and the one supplied is not
 * necessarily the first one. If it is a later one, this function will silently
 * fail, which is harmless. If it silently fails for the first join, then we
 * end up with a join label block that does not start with a join, which
 * checkConformance will spot later on.
 *
 * This function does return whether it has succeeded, which is used in
 * moveCodeInJoinBlocks in the case that it wants to merge a loop pre-header
 * back into the join block.
 */
bool GenXSimdCFConformance::hoistJoin(CallInst *Join)
{
  // This only works if no operand of the join uses one of the instructions
  // before it in the block, other than phi nodes.
  // However, if we find such an instruction and it is an extractvalue from the
  // result of an earlier goto/join in a different block, we can just move it
  // to after that goto/join.
  for (unsigned oi = 0, oe = IGCLLVM::getNumArgOperands(Join); oi != oe; ++oi) {
    auto Opnd = dyn_cast<Instruction>(Join->getOperand(oi));
    if (!Opnd || isa<PHINode>(Opnd))
      continue;
    if (Opnd->getParent() == Join->getParent()) {
      if (auto EV = dyn_cast<ExtractValueInst>(Opnd)) {
        unsigned IID = GenXIntrinsic::getGenXIntrinsicID(EV->getOperand(0));
        if (IID == GenXIntrinsic::genx_simdcf_goto
            || IID == GenXIntrinsic::genx_simdcf_join) {
          auto GotoJoin = cast<CallInst>(EV->getOperand(0));
          if (GotoJoin->getParent() != Join->getParent()) {
            LLVM_DEBUG(dbgs() << "moving out of join block: " << *EV << "\n");
            EV->removeFromParent();
            EV->insertBefore(GotoJoin->getNextNode());
            continue;
          }
        }
      }
      LLVM_DEBUG(dbgs() << "hoistJoin: " << Join->getName() << " failed\n");
      return false; // failed -- join uses non-phi instruction before it
    }
  }
  // Hoist the join.
  auto BB = Join->getParent();
  auto InsertBefore = BB->getFirstNonPHIOrDbg();
  if (InsertBefore == Join)
    return true; // already at start
  Join->removeFromParent();
  Join->insertBefore(InsertBefore);
  // Such transformation should be performed only for Early Conformance pass
  if (!FG)
    GotoJoinEVsMap[Join].hoistEVs();
  Modified = true;
  return true;
}

/***********************************************************************
 * ensureConformance : check for conformance, and lower any non-conformant
 *    gotos and joins
 */
void GenXSimdCFConformance::ensureConformance()
{
  // Push all EM values onto the stack for checking. Push the joins last, since
  // we want to process those before their corresponding gotos, so that
  // GotoJoinMap is set for a goto by the time we process a valid goto.
  for (auto i = EMVals.begin(), e = EMVals.end(); i != e; ++i) {
    auto IID = GenXIntrinsic::getGenXIntrinsicID(i->getValue());
    if (IID != GenXIntrinsic::genx_simdcf_join &&
        IID != GenXIntrinsic::genx_simdcf_unmask &&
        IID != GenXIntrinsic::genx_simdcf_remask)
      EMValsStack.insert(*i);
  }
  for (auto i = EMVals.begin(), e = EMVals.end(); i != e; ++i) {
    auto IID = GenXIntrinsic::getGenXIntrinsicID(i->getValue());
    if (IID == GenXIntrinsic::genx_simdcf_join)
      EMValsStack.insert(*i);
  } // Process the stack.
  SmallVector<CallInst *, 4> GotosToLower;
  SmallVector<CallInst *, 4> JoinsToLower;
  for (;;) {
    if (!EMValsStack.empty()) {
      // Remove and process the top entry on the stack.
      auto EMVal = EMValsStack.back();
      EMValsStack.pop_back();
      if (checkEMVal(EMVal))
        continue;
      removeBadEMVal(EMVal);
      if (!EMVal.getIndex()) {
        if (auto CI = dyn_cast<CallInst>(EMVal.getValue())) {
          switch (GenXIntrinsic::getGenXIntrinsicID(EMVal.getValue())) {
            case GenXIntrinsic::genx_simdcf_goto:
              GotosToLower.push_back(CI);
              break;
            case GenXIntrinsic::genx_simdcf_join:
              JoinsToLower.push_back(CI);
              break;
            default:
              break;
          }
        }
      }
      continue;
    }
    // The stack is empty. Check for EM values interfering with each other.
    checkEMInterference();
    if (EMValsStack.empty()) {
      // Stack still empty; we have finished.
      break;
    }
  }

  if (isLatePass()) {
    // In the late pass, we are not expecting to have found any non-conformant
    // gotos and joins that need lowering. All such gotos and joins should have
    // been identified in the early pass, unless passes in between have
    // transformed the code in an unexpected way that has made the simd CF
    // non-conformant. Give an error here if this has happened.
    IGC_ASSERT_EXIT_MESSAGE(GotosToLower.empty(),
      "unexpected non-conformant SIMD CF in late SIMD CF conformance pass");
    IGC_ASSERT_EXIT_MESSAGE(JoinsToLower.empty(),
      "unexpected non-conformant SIMD CF in late SIMD CF conformance pass");
  }

  // Lower gotos and joins that turned out to be non-conformant.
  for (auto i = GotosToLower.begin(), e = GotosToLower.end(); i != e; ++i)
    lowerGoto(*i);
  for (auto i = JoinsToLower.begin(), e = JoinsToLower.end(); i != e; ++i)
    lowerJoin(*i);
}

/***********************************************************************
 * getEMProducer : perform recurrent check for EM terms.
 *
 * It goes through all phis and bitcasts (when BitCastAllowed is true)
 * and determines whether the EM is correct in DF terms. It doesn't
 * check live range interference, but can spot non-conformant usage
 * in case when EM from bad instruction is being used.
 *
 * This approach is used when we need to perform some actions on full
 * EM data flow, for example, to insert phis when eliminating redundant
 * bitcasts.
 *
 * All found EM producers are stored in EMProducers and can be used
 * later without performing full search.
 *
 * TODO: currently returns User if it deals with EM. It is done in
 * this way as workaround for possible future changes (for example,
 * getConnectedVals refactor). The idea of such approach is to be
 * able to update info if something changes.
 */
Value *GenXSimdCFConformance::getEMProducer(Value *User, std::set<Value *> &Visited, bool BitCastAllowed)
{
  LLVM_DEBUG(dbgs() << "Looking for EM producer for value:\n" << *User << "\n");

  if (Visited.count(User)) {
    if (dyn_cast<PHINode>(User))
      return User;
    return nullptr;
  }

  // Check for previously found value
  auto It = EMProducers.find(User);
  if (It != EMProducers.end()) {
    LLVM_DEBUG(dbgs() << "Using previously found value:\n" << *It->second << "\n");
    return It->second;
  }

  if (auto C = dyn_cast<Constant>(User)) {
    // All one is considered as EM at entry point
    if (C->isAllOnesValue()) {
      LLVM_DEBUG(dbgs() << "EMProducer is an AllOne constant\n");
      EMProducers[C] = C;
      return C;
    }
  } else if (auto PN = dyn_cast<PHINode>(User)) {
    // For phi node, check all its preds. They all must be EMs
    Visited.insert(PN);
    for (unsigned idx = 0, opNo = PN->getNumOperands(); idx < opNo; ++idx) {
      Value *Pred = PN->getOperand(idx);

      if (!getEMProducer(Pred, Visited, BitCastAllowed)) {
        LLVM_DEBUG(dbgs() << "!!! Bad phi pred detected for:\n" << *PN << "\n");
        EMProducers[PN] = nullptr;
        return nullptr;
      }
    }

    LLVM_DEBUG(dbgs() << "EMProducer is phi itself:\n" << *PN << "\n");
    EMProducers[PN] = PN;
    return PN;
  } else if (auto EVI = dyn_cast<ExtractValueInst>(User)) {
    // Extract value can be an EV from goto/join or from callee that
    // returned it. For the second case we check that the pred is
    // still in EM values since it could be lowered.
    CallInst *CI = dyn_cast<CallInst>(EVI->getOperand(0));
    if (CI) {
      // Goto/join check
      if (GenXIntrinsic::getGenXIntrinsicID(CI) == GenXIntrinsic::genx_simdcf_goto ||
        GenXIntrinsic::getGenXIntrinsicID(CI) == GenXIntrinsic::genx_simdcf_join) {
        LLVM_DEBUG(dbgs() << "Reached goto/join\n");
        EMProducers[EVI] = EVI;
        return EVI;
      }

      // EV from other calls.
      if (EMVals.count(SimpleValue(CI, EVI->getIndices()[0]))) {
        LLVM_DEBUG(dbgs() << "Value from return\n");
        EMProducers[EVI] = EVI;
        return EVI;
      }
    }
  } else if (auto Arg = dyn_cast<Argument>(User)){
    // For argument we need to ensure that it is still in EM values
    // since it could be lowered.
    if (EMVals.count(SimpleValue(Arg, Arg->getArgNo()))) {
      LLVM_DEBUG(dbgs() << "Input argument\n");
      EMProducers[Arg] = Arg;
      return Arg;
    }
  } else if (auto IVI = dyn_cast<InsertValueInst>(User)) {
    // Insert value prepares structure for return. Check the
    // value that is being inserted
    Visited.insert(IVI);
    if (auto EMProd = getEMProducer(IVI->getInsertedValueOperand(), Visited, BitCastAllowed)) {
      LLVM_DEBUG(dbgs() << "Insert for return\n");
      EMProducers[IVI] = EMProd;
      return IVI;
    }
  } else if (BitCastAllowed) {
    if (auto BCI = dyn_cast<BitCastInst>(User)) {
      // BitCast doesn't produce new EM. Just go through it.
      Visited.insert(BCI);
      if (auto EMProd = getEMProducer(BCI->getOperand(0), Visited, BitCastAllowed)) {
        LLVM_DEBUG(dbgs() << "Bitcast from EM producer\n");
        EMProducers[BCI] = EMProd;
        return BCI;
      }
    }
  }

  // All other instructions cannot be treated as EM producers
  LLVM_DEBUG(dbgs() << "!!! IT IS NOT A EM PRODUCER !!!\n");
  return nullptr;
}

/***********************************************************************
 * lowerUnsuitableGetEMs : remove all unsuitable get_em intrinsics.
 *
 * This intrinsic is unsuitable if:
 *   - It uses constant value: it is simply redundant
 *   - The EM argument is not actually a EM: this may happen if
 *     SIMD CF was non-conformant and this EM was lowered.
 */
void GenXSimdCFConformance::lowerUnsuitableGetEMs()
{
  Type *I1Ty = Type::getInt1Ty(M->getContext());
  Function *GetEMDecl = GenXIntrinsic::getGenXDeclaration(
      M, GenXIntrinsic::genx_simdcf_get_em,
      {IGCLLVM::FixedVectorType::get(I1Ty, 32)});
  std::vector<Instruction *> ToDelete;
  for (auto ui = GetEMDecl->use_begin(); ui != GetEMDecl->use_end();) {
    std::set<Value *> Visited;
    auto GetEM = dyn_cast<Instruction>(ui->getUser());
    ++ui;
    auto GetEMPred = GetEM->getOperand(0);

    if (GetEM->use_empty()) {
      ToDelete.push_back(GetEM);
      continue;
    }

    // Constants and non-EM values should be used directly
    if (dyn_cast<Constant>(GetEMPred) || !getEMProducer(dyn_cast<Instruction>(GetEMPred), Visited)) {
      GetEM->replaceAllUsesWith(GetEM->getOperand(0));
      ToDelete.push_back(GetEM);
    }
  }

  for (auto *Inst : ToDelete) {
    Inst->eraseFromParent();
  }
}

/***********************************************************************
 * lowerAllSimdCF : do NOT check for conformance, and simply lower
 * all any gotos, joins, and unmasks
 */
void GenXSimdCFConformance::lowerAllSimdCF()
{
  for (auto i = EMVals.begin(), e = EMVals.end(); i != e; ++i) {
    if (auto CI = dyn_cast<CallInst>(i->getValue())) {
      auto IID = GenXIntrinsic::getGenXIntrinsicID(i->getValue());
      if (IID == GenXIntrinsic::genx_simdcf_join)
        lowerJoin(CI);
      else if (IID == GenXIntrinsic::genx_simdcf_goto)
        lowerGoto(CI);
      else if (IID == GenXIntrinsic::genx_simdcf_unmask) {
        auto SaveMask = CI->getArgOperand(0);
        if (auto CI0 = dyn_cast<CallInst>(SaveMask)) {
          IRBuilder<> Builder(CI0);
          auto Replace = Builder.CreateBitCast(CI0->getArgOperand(0), CI0->getType());
          CI0->replaceAllUsesWith(Replace);
          CI0->eraseFromParent();
        }
        IRBuilder<> Builder(CI);
        auto Replace = Builder.CreateBitCast(CI->getArgOperand(1), CI->getType());
        CI->replaceAllUsesWith(Replace);
        CI->eraseFromParent();
      }
      else if (IID == GenXIntrinsic::genx_simdcf_remask) {
        IRBuilder<> Builder(CI);
        auto Replace = Builder.CreateBitCast(CI->getArgOperand(1), CI->getType());
        CI->replaceAllUsesWith(Replace);
        CI->eraseFromParent();
      }
    }
  }
}

/***********************************************************************
 * checkEMVal : check an EM value for conformance
 *
 * Return:    true if ok, false if the EM value needs to be removed
 */
bool GenXSimdCFConformance::checkEMVal(SimpleValue EMVal)
{
  LLVM_DEBUG(dbgs() << "checkEMVal " << *EMVal.getValue() << "#" << EMVal.getIndex() << "\n");
  if (!EnableGenXGotoJoin)
    return false; // use of goto/join disabled
  SmallVector<SimpleValue, 8> ConnectedVals;
  // Check connected values. Do not lower bad users in Late Pass because
  // current SIMD CF Conformance check approach expects that SIMD CF must
  // be OK at this point if it wasn't lowered during Early Pass.
  if (!getConnectedVals(EMVal, vc::RegCategory::EM, /*IncludeOptional=*/true,
                        /*OkJoin=*/nullptr, &ConnectedVals,
                        /*LowerBadUsers=*/!FG)) {
    LLVM_DEBUG(dbgs() << "invalid def or uses\n");
    return false; // something invalid about the EM value itself
  }
  // Check that all connected values are EM values.
  for (auto i = ConnectedVals.begin(), e = ConnectedVals.end(); i != e; ++i) {
    SimpleValue ConnectedVal = *i;
    if (auto C = dyn_cast<Constant>(ConnectedVal.getValue())) {
      if (!C->isAllOnesValue()) {
        LLVM_DEBUG(dbgs() << "ConnectedVal is constant that is not all ones\n");
        return false; // uses constant that is not all ones, invalid
      }
    } else if (!EMVals.count(ConnectedVal)) {
      LLVM_DEBUG(dbgs() << "ConnectedVal is not in EMVals\n");
      return false; // connected value is not in EMVals
    }
  }
  switch (GenXIntrinsic::getGenXIntrinsicID(EMVal.getValue())) {
    case GenXIntrinsic::genx_simdcf_goto:
      return checkGoto(EMVal);
    case GenXIntrinsic::genx_simdcf_join:
      return checkJoin(EMVal);
    default:
      break;
  }
  return true;
}

/***********************************************************************
 * checkGotoJoinSunk : check whether a goto/join is sunk to the bottom of
 *    its basic block, other than extractvalues from its result
 */
static bool checkGotoJoinSunk(CallInst *GotoJoin)
{
  for (Instruction *Inst = GotoJoin;;) {
    Inst = Inst->getNextNode();
    if (Inst->isTerminator()) {
      if (!isa<BranchInst>(Inst))
        return false;
      break;
    }
    auto EV = dyn_cast<ExtractValueInst>(Inst);
    if (!EV || EV->getOperand(0) != GotoJoin)
      return false;
  }
  return true;
}

/***********************************************************************
 * checkGoto : check conformance of an actual goto instruction
 */
bool GenXSimdCFConformance::checkGoto(SimpleValue EMVal)
{
  if (!checkGotoJoin(EMVal))
    return false;
  // Check that there is a linked join. (We do not need to check here that the
  // linked join is an EM value; that happened in checkEMVal due to the join
  // being treated as a linked value in getConnectedVals.)
  auto Goto = cast<CallInst>(EMVal.getValue());
  if (!GotoJoinMap[Goto]) {
    LLVM_DEBUG(dbgs() << "checkGoto: no linked join\n");
    return false;
  }
  // Check that the goto is sunk to the end of the block, other than extracts
  // from its result, and a branch. moveCodeInGotoBlocks ensures that if
  // possible; if that failed, this conformance check fails.
  if (!checkGotoJoinSunk(Goto)) {
    LLVM_DEBUG(dbgs() << "checkGoto: not sunk\n");
    return false;
  }
  return true;
}

/***********************************************************************
 * checkJoin : check conformance of an actual join instruction
 */
bool GenXSimdCFConformance::checkJoin(SimpleValue EMVal)
{
  if (!checkGotoJoin(EMVal))
    return false;
  // Check that the join is at the start of the block. emptyJoinBlock should
  // have ensured this, unless the code was such that it could not.
  auto Join = cast<CallInst>(EMVal.getValue());
  if (!GotoJoin::isValidJoin(Join)) {
    LLVM_DEBUG(dbgs() << "not valid join\n");
    return false;
  }
  // If the !any result of this join is used in a conditional branch at the
  // end, check that the join is sunk to the end of the block, other than
  // extracts from its result, and a branch. moveCodeInJoinBlocks ensures that
  // if possible; if that failed, this conformance check fails.
  if (auto Br = dyn_cast<BranchInst>(Join->getParent()->getTerminator()))
    if (Br->isConditional())
      if (auto EV = dyn_cast<ExtractValueInst>(Br->getCondition()))
        if (EV->getOperand(0) == Join)
          if (!checkGotoJoinSunk(Join)) {
            LLVM_DEBUG(dbgs() << "checkJoin: not sunk\n");
            return false;
          }
  // Gather the web of RM values.
  auto RMValsEntry = &RMVals[Join];
  RMValsEntry->clear();
  LLVM_DEBUG(dbgs() << "gather web of RM vals for " << *Join << "\n");
  if (!isa<Constant>(Join->getOperand(1)))
    RMValsEntry->insert(Join->getOperand(1));
  for (unsigned rvi = 0; rvi != RMValsEntry->size(); ++rvi) {
    SimpleValue RM = (*RMValsEntry)[rvi];
    // RM is a value in this join's RM web. Get other values related by phi
    // nodes and extractvalues and gotos.
    SmallVector<SimpleValue, 8> ConnectedVals;
    bool Ok = getConnectedVals(RM, vc::RegCategory::RM,
                               /*IncludeOptional=*/false, Join, &ConnectedVals);
    LLVM_DEBUG(
      dbgs() << "getConnectedVals: " << RM.getValue()->getName() << "#" << RM.getIndex() << "\n";
      for (auto i = ConnectedVals.begin(), e = ConnectedVals.end(); i != e; ++i)
        dbgs() << "   " << i->getValue()->getName() << "#" << i->getIndex() << "\n"
    );
    if (!Ok) {
      LLVM_DEBUG(dbgs() << "illegal RM value in web\n");
      return false;
    }
    for (auto j = ConnectedVals.begin(), je = ConnectedVals.end();
        j != je; ++j) {
      SimpleValue ConnectedVal = *j;
      if (auto C = dyn_cast<Constant>(ConnectedVal.getValue())) {
        // A constant in the RM web must be all zeros.
        if (!C->isNullValue()) {
          LLVM_DEBUG(dbgs() << "non-0 constant in RM web\n");
          return false;
        }
      } else {
        // Insert the non-constant value.  If it is a goto with struct index
        // other than 1, it is illegal.
        if (RMValsEntry->insert(ConnectedVal)) {
          LLVM_DEBUG(dbgs() << "New one: " << ConnectedVal.getValue()->getName() << "#" << ConnectedVal.getIndex() << "\n");
          switch (GenXIntrinsic::getGenXIntrinsicID(ConnectedVal.getValue())) {
            case GenXIntrinsic::genx_simdcf_join:
              LLVM_DEBUG(dbgs() << "multiple joins in RM web\n");
              return false;
            case GenXIntrinsic::genx_simdcf_goto:
              if (ConnectedVal.getIndex() != 1/* struct index of RM result */) {
                LLVM_DEBUG(dbgs() << "wrong struct index in goto\n");
                return false;
              }
              break;
            default:
              break;
          }
        }
      }
    }
  }
  // Check whether the RM values interfere with each other.
  SetVector<Value *> BadDefs;
  checkInterference(RMValsEntry, &BadDefs, Join);
  if (!BadDefs.empty()) {
    LLVM_DEBUG(dbgs() << "RMs interfere\n");
    return false;
  }
  // Set GotoJoinMap for each goto in the RM web.
  for (unsigned rvi = 0; rvi != RMValsEntry->size(); ++rvi) {
    SimpleValue RM = (*RMValsEntry)[rvi];
    if (GenXIntrinsic::getGenXIntrinsicID(RM.getValue()) == GenXIntrinsic::genx_simdcf_goto)
      GotoJoinMap[cast<CallInst>(RM.getValue())] = Join;
  }
  return true;
}

/***********************************************************************
 * getEmptyCriticalEdgeSplitterSuccessor : if BB is an empty critical edge
 *    splitter block (one predecessor and one successor), then return the
 *    single successor
 */
static BasicBlock *getEmptyCriticalEdgeSplitterSuccessor(BasicBlock *BB)
{
  if (!BB->hasOneUse())
    return nullptr; // not exactly one predecessor
  auto Term = dyn_cast<Instruction>(BB->getFirstNonPHIOrDbg());
  if (!Term->isTerminator())
    return nullptr; // not empty
  auto TI = cast<IGCLLVM::TerminatorInst>(Term);
  if (TI->getNumSuccessors() != 1)
    return nullptr; // not exactly one successor
  return TI->getSuccessor(0);
}

/***********************************************************************
 * checkGotoJoin : common code to check conformance of an actual goto or join
 *    instruction
 */
bool GenXSimdCFConformance::checkGotoJoin(SimpleValue EMVal)
{
  auto CI = cast<CallInst>(EMVal.getValue());
  // If there is an extract of the scalar result of the goto/join, check that
  // it is used in the conditional branch at the end of the block.
  ExtractValueInst *ExtractScalar = nullptr;
  for (auto ui = CI->use_begin(), ue = CI->use_end(); ui != ue; ++ui)
    if (auto EV = dyn_cast<ExtractValueInst>(ui->getUser()))
      if (!isa<VectorType>(EV->getType())) {
        if (ExtractScalar) {
          LLVM_DEBUG(dbgs() << "goto/join has more than one extract of its !any result\n");
          return false;
        }
        ExtractScalar = EV;
      }
  if (ExtractScalar) {
    if (!ExtractScalar->hasOneUse()) {
      LLVM_DEBUG(dbgs() << "goto/join's !any result does not have exactly one use\n");
      return false;
    }
    auto Br = dyn_cast<BranchInst>(ExtractScalar->use_begin()->getUser());
    if (!Br || Br->getParent() != CI->getParent()) {
      LLVM_DEBUG(dbgs() << "goto/join's !any result not used in conditional branch in same block\n");
      return false;
    }
    // For a goto/join with a conditional branch, check that the "true"
    // successor is a join label. We also tolerate there being an empty
    // critical edge splitter block in between; this will get removed in
    // setCategories in this pass.
    BasicBlock *TrueSucc = Br->getSuccessor(0);
    Instruction *First = TrueSucc->getFirstNonPHIOrDbg();
    if (GenXIntrinsic::getGenXIntrinsicID(First) != GenXIntrinsic::genx_simdcf_join) {
      // "True" successor is not a join label. Check for an empty critical edge
      // splitter block in between.
      TrueSucc = getEmptyCriticalEdgeSplitterSuccessor(TrueSucc);
      if (!TrueSucc) {
        LLVM_DEBUG(dbgs() << "goto/join true successor not join label\n");
        return false; // Not empty critical edge splitter
      }
      if (GenXIntrinsic::getGenXIntrinsicID(TrueSucc->getFirstNonPHIOrDbg())
          != GenXIntrinsic::genx_simdcf_join) {
        LLVM_DEBUG(dbgs() << "goto/join true successor not join label\n");
        return false; // Successor is not join label
      }
    }
  }
  return true;
}

/***********************************************************************
 * removeBadEMVal : remove a bad EM value
 *
 * This removes a non-conformant EM value, and pushes any connected EM value
 * onto the stack so it gets re-checked for conformance.
 */
void GenXSimdCFConformance::removeBadEMVal(SimpleValue EMVal)
{
  LLVM_DEBUG(
    dbgs() << "removeBadEMVal ";
    EMVal.print(dbgs());
    dbgs() << "\n"
  );
  // Remove the EM value.
  if (!EMVals.remove(EMVal))
    return; // was not in EMVals
  // Push anything related to it onto the stack for re-checking.
  SmallVector<SimpleValue, 8> ConnectedVals;
  getConnectedVals(EMVal, vc::RegCategory::EM, /*IncludeOptional=*/true,
                   /*OkJoin=*/nullptr, &ConnectedVals);
  for (auto i = ConnectedVals.begin(), e = ConnectedVals.end(); i != e; ++i) {
    SimpleValue ConnectedVal = *i;
    if (EMVals.count(ConnectedVal))
      EMValsStack.insert(ConnectedVal);
  }
}

/***********************************************************************
 * pushValues : push EM struct elements in a value onto EMValsStack
 */
void GenXSimdCFConformance::pushValues(Value *V)
{
  for (unsigned si = 0, se = IndexFlattener::getNumElements(V->getType());
      si != se; ++si) {
    SimpleValue SV(V, si);
    if (EMVals.count(SV))
      EMValsStack.insert(SV);
  }
}

/***********************************************************************
 * checkAllUsesAreSelectOrWrRegion : check that all uses of a value are the
 *    condition in select or wrregion or wrpredpredregion (or a predicate
 *    in a non-ALU intrinsic)
 *
 * This is used in getConnectedVals below for the result of a use of an EM
 * value in an rdpredregion, or a shufflevector that is a slice so will be
 * lowered to rdpredregion.
 */
static bool checkAllUsesAreSelectOrWrRegion(Value *V)
{
  for (auto ui2 = V->use_begin(); ui2 != V->use_end(); /*empty*/) {
    auto User2 = cast<Instruction>(ui2->getUser());
    unsigned OpNum = ui2->getOperandNo();
    ++ui2;

    if (isa<SelectInst>(User2))
      continue;

    // Matches uses that can be turned into select.
    if (auto BI = dyn_cast<BinaryOperator>(User2)) {
      auto Opc = BI->getOpcode();
      Constant *AllOne = Constant::getAllOnesValue(V->getType());
      Constant *AllNul = Constant::getNullValue(V->getType());

      // EM && X -> sel EM X 0
      // EM || X -> sel EM 1 X
      if (Opc == BinaryOperator::And ||
          Opc == BinaryOperator::Or) {
        Value *Ops[3] = {V, nullptr, nullptr};
        if (Opc == BinaryOperator::And) {
          Ops[1] = BI->getOperand(1 - OpNum);
          Ops[2] = AllNul;
        } else if (Opc == BinaryOperator::Or) {
          Ops[1] = AllOne;
          Ops[2] = BI->getOperand(1 - OpNum);
        }
        auto SI = SelectInst::Create(Ops[0], Ops[1], Ops[2], ".revsel", BI, BI);
        BI->replaceAllUsesWith(SI);
        BI->eraseFromParent();
        continue;
      }

      // ~EM || X ==> sel EM, X, 1
      using namespace PatternMatch;
      if (BI->hasOneUse() &&
          BI->user_back()->getOpcode() == BinaryOperator::Or &&
          match(BI, m_Xor(m_Specific(V), m_Specific(AllOne)))) {
        Instruction *OrInst = BI->user_back();
        Value *Op = OrInst->getOperand(0) != BI ? OrInst->getOperand(0)
                                                : OrInst->getOperand(1);
        auto SI = SelectInst::Create(V, Op, AllOne, ".revsel", OrInst, OrInst);
        OrInst->replaceAllUsesWith(SI);
        OrInst->eraseFromParent();
        BI->eraseFromParent();
        continue;
      }

      // ~EM && X ==> sel EM, 0, X
      using namespace PatternMatch;
      if (BI->hasOneUse() &&
          BI->user_back()->getOpcode() == BinaryOperator::And &&
          match(BI, m_Xor(m_Specific(V), m_Specific(AllOne)))) {
        Instruction *AndInst = BI->user_back();
        Value *Op = AndInst->getOperand(0) != BI ? AndInst->getOperand(0)
                                                 : AndInst->getOperand(1);
        auto SI = SelectInst::Create(V, AllNul, Op, ".revsel", AndInst, AndInst);
        AndInst->replaceAllUsesWith(SI);
        AndInst->eraseFromParent();
        BI->eraseFromParent();
        continue;
      }
    } else if (auto CI = dyn_cast<CastInst>(User2)) {
      // Turn zext/sext to select.
      if (CI->getOpcode() == Instruction::CastOps::ZExt ||
          CI->getOpcode() == Instruction::CastOps::SExt) {
        unsigned NElts =
            cast<IGCLLVM::FixedVectorType>(V->getType())->getNumElements();
        unsigned NBits = CI->getType()->getScalarSizeInBits();
        int Val = (CI->getOpcode() == Instruction::CastOps::ZExt) ? 1 : -1;
        APInt One(NBits, Val);
        Constant *LHS = ConstantVector::getSplat(
            IGCLLVM::getElementCount(NElts),
            ConstantInt::get(CI->getType()->getScalarType(), One));
        Constant *AllNul = Constant::getNullValue(CI->getType());
        auto SI = SelectInst::Create(V, LHS, AllNul, ".revsel", CI, CI);
        CI->replaceAllUsesWith(SI);
        CI->eraseFromParent();
        continue;
      }
    }

    unsigned IID = vc::getAnyIntrinsicID(User2);
    if (GenXIntrinsic::isWrRegion(IID))
      continue;
    if (IID == GenXIntrinsic::genx_wrpredpredregion
        && OpNum == IGCLLVM::getNumArgOperands(cast<CallInst>(User2)) - 1)
      continue;
    if (GenXIntrinsic::isAnyNonTrivialIntrinsic(IID)
        && !cast<CallInst>(User2)->doesNotAccessMemory())
      continue;
    return false;
  }
  return true;
}

/***********************************************************************
 * getConnectedVals : for a SimpleValue, get other SimpleValues connected to
 *    it through phi nodes, insertvalue, extractvalue, goto/join, and maybe
 *    args and return values
 *
 * Enter:   Val = SimpleValue to start at
 *          Cat = vc::RegCategory::EM to do EM connections
 *                vc::RegCategory::RM to do RM connections
 *          IncludeOptional = for EM connections, include optional connections
 *                where Val is a function arg and it is connected to call args,
 *                and where Val is the operand to return and it is connected to
 *                the returned value at call sites
 *          OkJoin = for RM connections, error if a use in a join other than
 *                this one is found
 *          ConnectedVals = vector to store connected values in
 *
 * Return:  true if ok, false if def or some use is not suitable for EM/RM
 *
 * The provided value must be non-constant, but the returned connected values
 * may include constants. Duplicates may be stored in ConnectedVals.
 *
 * This function is used in three different ways by its callers:
 *
 * 1. to gather a web of putative EM values or RM values starting at goto/join
 *    instructions;
 *
 * 2. to test whether a putative EM/RM value is valid by whether its connected
 *    neighbors are EM/RM values;
 *
 * 3. when removing a value from the EM/RM values list, to find its connected
 *    neighbors to re-run step 2 on each of them.
 *
 * TODO: some refactoring should be performed here due to quite big
 *       CF with many different actions. Also some of these actions
 *       are repeated in different situations.
 */
bool GenXSimdCFConformance::getConnectedVals(
    SimpleValue Val, vc::RegCategory Cat, bool IncludeOptional,
    CallInst *OkJoin, SmallVectorImpl<SimpleValue> *ConnectedVals,
    bool LowerBadUsers) {
  // Check the def first.
  if (auto Arg = dyn_cast<Argument>(Val.getValue())) {
    if (Cat != vc::RegCategory::EM)
      return false; // can't have RM argument
    // Connected to some return value. There is a problem here in that it might
    // find another predicate return value that is nothing to do with SIMD CF,
    // and thus stop SIMD CF being optimized. But passing a predicate in and
    // out of a function is rare outside of SIMD CF, so we do not worry about
    // that.
    // It is possible that EM was optimized from ret. In this case the ret type
    // is void. Allow such situation.
    Function *F = Arg->getParent();
    unsigned RetIdx = 0;
    auto RetTy = F->getReturnType();
    auto ValTy = IndexFlattener::getElementType(
        Val.getValue()->getType(), Val.getIndex());
    if (auto ST = dyn_cast<StructType>(RetTy)) {
      for (unsigned End = IndexFlattener::getNumElements(ST); ; ++RetIdx) {
        if (RetIdx == End)
          return false; // no predicate ret value found
        if (IndexFlattener::getElementType(ST, RetIdx) == ValTy)
          break;
      }
    } else if (RetTy != ValTy && !RetTy->isVoidTy())
      return false; // no predicate ret value found
    if (!RetTy->isVoidTy())
      for (auto fi = F->begin(), fe = F->end(); fi != fe; ++fi)
        if (auto Ret = dyn_cast<ReturnInst>(fi->getTerminator()))
          ConnectedVals->push_back(SimpleValue(Ret->getOperand(0), RetIdx));
    if (IncludeOptional) {
      // With IncludeOptional, also add the corresponding arg at each call
      // site.
      for (auto *U : F->users())
        if (auto *CI = checkFunctionCall(U, F))
          ConnectedVals->push_back(
              SimpleValue(CI->getArgOperand(Arg->getArgNo()), Val.getIndex()));
    }
  } else if (auto Phi = dyn_cast<PHINode>(Val.getValue())) {
    // phi: add (the corresponding struct element of) each incoming
    for (unsigned oi = 0, oe = Phi->getNumIncomingValues(); oi != oe; ++oi)
      ConnectedVals->push_back(
          SimpleValue(Phi->getIncomingValue(oi), Val.getIndex()));
  } else if (auto EVI = dyn_cast<ExtractValueInst>(Val.getValue())) {
    // extractvalue: add the appropriate struct element of the input
    ConnectedVals->push_back(SimpleValue(EVI->getOperand(0),
            Val.getIndex() + IndexFlattener::flatten(
              cast<StructType>(EVI->getOperand(0)->getType()),
              EVI->getIndices())));
  } else if (auto IVI = dyn_cast<InsertValueInst>(Val.getValue())) {
    // insertvalue: add the appropriate struct element in either the
    // aggregate input or the value to insert input
    unsigned InsertedIndex = Val.getIndex() - IndexFlattener::flatten(
        cast<StructType>(IVI->getType()), IVI->getIndices());
    unsigned NumElements = IndexFlattener::getNumElements(
        IVI->getOperand(1)->getType());
    SimpleValue SV;
    if (InsertedIndex < NumElements)
      SV = SimpleValue(IVI->getOperand(1), InsertedIndex);
    else
      SV = SimpleValue(IVI->getOperand(0), Val.getIndex());
    ConnectedVals->push_back(SV);
  } else if (auto SVI = dyn_cast<ShuffleVectorInst>(Val.getValue())) {
    // shufflevector: add the EM use
    ConnectedVals->push_back(SimpleValue(SVI->getOperand(0), 0));
  } else if (auto CI = dyn_cast<CallInst>(Val.getValue())) {
    switch (vc::getAnyIntrinsicID(CI)) {
      case GenXIntrinsic::genx_simdcf_goto:
        // goto: invalid unless it is the EM/RM result of goto as applicable
        if (Val.getIndex() != (Cat == vc::RegCategory::EM ? 0U : 1U))
          return false;
        // Add the corresponding input.
        ConnectedVals->push_back(CI->getOperand(Val.getIndex()));
        // If doing EM connections, add the corresponding join. This does
        // nothing if checkJoin has not yet run for the corresponding join,
        // since GotoJoinMap has not yet been set up for our goto. We tolerate
        // that situation; if the goto really has no linked join, that is
        // picked up later in checkGoto.
        if (Cat == vc::RegCategory::EM)
          if (auto Join = GotoJoinMap[cast<CallInst>(Val.getValue())])
            ConnectedVals->push_back(
                SimpleValue(Join, 0/* struct idx of EM result */));
        break;
      case GenXIntrinsic::genx_simdcf_join: {
        // join: invalid unless it is the EM result
        if (Val.getIndex() || Cat != vc::RegCategory::EM)
          return false;
        // Add the corresponding input.
        ConnectedVals->push_back(CI->getOperand(Val.getIndex()));
        // Add the corresponding gotos. This does nothing if checkJoin has not
        // yet run for this join, since RMVals has not yet been set up for it.
        // That is OK, because adding the corresponding gotos here is required
        // only when we are called by removeBadEMVal to remove the join, so the
        // gotos get re-checked and found to be invalid.
        auto RMValsEntry = &RMVals[cast<CallInst>(Val.getValue())];
        for (auto i = RMValsEntry->begin(), e = RMValsEntry->end(); i != e; ++i)
          if (GenXIntrinsic::getGenXIntrinsicID(i->getValue()) == GenXIntrinsic::genx_simdcf_goto)
            ConnectedVals->push_back(
                SimpleValue(i->getValue(), 0/* struct idx of EM result */));
        break;
      }
      case GenXIntrinsic::genx_simdcf_savemask:
      case GenXIntrinsic::genx_simdcf_remask:
      case GenXIntrinsic::genx_simdcf_get_em:
        // Add the corresponding input.
        ConnectedVals->push_back(CI->getOperand(0));
        return true;
      case GenXIntrinsic::genx_constantpred:
        // constantpred: add the constant. Don't add any other uses of it,
        // because it might be commoned up with other RM webs.
        ConnectedVals->push_back(CI->getOperand(0));
        return true;
      case GenXIntrinsic::not_any_intrinsic: {
        // Value returned from a call.
        if (Cat != vc::RegCategory::EM)
          return false; // invalid for RM
        // Add the corresponding value at each return in the called function.
        auto CalledFunc = CI->getCalledFunction();
        for (auto fi = CalledFunc->begin(), fe = CalledFunc->end();
            fi != fe; ++fi)
          if (auto Ret = dyn_cast<ReturnInst>(fi->getTerminator()))
            if (!Ret->getType()->isVoidTy())
              ConnectedVals->push_back(
                  SimpleValue(Ret->getOperand(0), Val.getIndex()));
        // Connected to some call arg. There is a problem here in that it might
        // find another predicate arg that is nothing to do with SIMD CF, and
        // thus stop SIMD CF being optimized. But passing a predicate in and
        // out of a function is rare outside of SIMD CF, so we do not worry
        // about that.
        auto ValTy = IndexFlattener::getElementType(
            Val.getType(), Val.getIndex());
        for (unsigned Idx = 0, End = IGCLLVM::getNumArgOperands(CI); ; ++Idx) {
          if (Idx == End)
            return false; // no corresponding call arg found
          if (CI->getArgOperand(Idx)->getType() == ValTy) {
            ConnectedVals->push_back(SimpleValue(CI->getArgOperand(Idx), 0));
            break;
          }
        }
        break;
      }
      default:
        return false; // unexpected call as def
    }
  } else
    return false; // unexpected instruction as def
  // Check the uses.
  std::vector<SimpleValue> UsersToLower;
  for (auto ui = Val.getValue()->use_begin(),
      ue = Val.getValue()->use_end(); ui != ue; ++ui) {
    auto User = cast<Instruction>(ui->getUser());
    if (auto Phi = dyn_cast<PHINode>(User)) {
      // Use in phi node. Add the phi result.
      ConnectedVals->push_back(SimpleValue(Phi, Val.getIndex()));
      continue;
    }
    if (auto EVI = dyn_cast<ExtractValueInst>(User)) {
      // Use in extractvalue.
      // If extracting the right index, add the result.
      unsigned StartIndex = IndexFlattener::flatten(
          cast<StructType>(EVI->getOperand(0)->getType()), EVI->getIndices());
      unsigned NumIndices = IndexFlattener::getNumElements(EVI->getType());
      unsigned ExtractedIndex = Val.getIndex() - StartIndex;
      if (ExtractedIndex < NumIndices)
        ConnectedVals->push_back(SimpleValue(EVI, ExtractedIndex));
      continue;
    }
    if (auto IVI = dyn_cast<InsertValueInst>(User)) {
      // Use in insertvalue. Could be either the aggregate input or the value
      // to insert.
      unsigned StartIndex = IndexFlattener::flatten(
          cast<StructType>(IVI->getType()), IVI->getIndices());
      unsigned NumIndices = IndexFlattener::getNumElements(
          IVI->getOperand(1)->getType());
      if (!ui->getOperandNo()) {
        // Use in insertvalue as the aggregate input. Add the corresponding
        // element in the result, as long as it is not overwritten by the
        // insertvalue.
        if (Val.getIndex() - StartIndex >= NumIndices)
          ConnectedVals->push_back(SimpleValue(IVI, Val.getIndex()));
      } else {
        // Use in insertvalue as the value to insert. Add the corresponding
        // element in the result.
        ConnectedVals->push_back(SimpleValue(IVI, StartIndex + Val.getIndex()));
      }
      continue;
    }
    if (isa<ReturnInst>(User)) {
      // Use in a return.
      if (Cat != vc::RegCategory::EM)
        return false; // invalid for RM
      // Connected to some function arg. There is a problem here in that it might
      // find another predicate arg that is nothing to do with SIMD CF, and
      // thus stop SIMD CF being optimized. But passing a predicate in and
      // out of a function is rare outside of SIMD CF, so we do not worry
      // about that.
      auto ValTy = IndexFlattener::getElementType(
          Val.getType(), Val.getIndex());
      auto F = User->getParent()->getParent();
      bool Lower = false;
      for (auto ai = F->arg_begin(), ae = F->arg_end(); ; ++ai) {
        if (ai == ae) {
          // no arg of the right type found
          Lower = true;
          UsersToLower.push_back(SimpleValue(User, ui->getOperandNo()));
          break;
        }
        auto Arg = &*ai;
        if (Arg->getType() == ValTy) {
          ConnectedVals->push_back(SimpleValue(Arg, 0));
          break;
        }
      }
      if (IncludeOptional && !Lower) {
        // With IncludeOptional, also add the values connected by being the
        // return value at each call site.
        for (auto *U : F->users())
          if (auto *CI = checkFunctionCall(U, F))
            ConnectedVals->push_back(SimpleValue(CI, Val.getIndex()));
      }
      continue;
    }
    if (isa<SelectInst>(User)) {
      // A use in a select is allowed only for EM used as the condition.
      if (Cat != vc::RegCategory::EM || ui->getOperandNo() != 0)
        UsersToLower.push_back(SimpleValue(User, ui->getOperandNo()));
      continue;
    }
    if (auto SVI = dyn_cast<ShuffleVectorInst>(User)) {
      if (!ShuffleVectorAnalyzer(SVI).isReplicatedSlice()) {
        UsersToLower.push_back(SimpleValue(User, ui->getOperandNo()));
        continue;
      }
      // This is a shufflevector that is a replicated slice, so it can be
      // lowered to rdpredregion or baled with instruction with channels.
      // (We only see this in the early pass; GenXLowering has
      // turned it into rdpredregion by the late pass.) Check that all its uses
      // are select or wrregion.
      if (!checkAllUsesAreSelectOrWrRegion(SVI)) {
        UsersToLower.push_back(SimpleValue(User, ui->getOperandNo()));
        continue;
      }
      // Shufflevector produces EM for value baled inst, so this is a (almost) real EM def:
      // add it here to perform correct EM interference check
      ConnectedVals->push_back(SimpleValue(SVI, ui->getOperandNo()));
      continue;
    }
    if (auto CI = dyn_cast<CallInst>(User)) {
      switch (vc::getAnyIntrinsicID(CI)) {
        case GenXIntrinsic::genx_simdcf_get_em:
          IGC_ASSERT(Cat == vc::RegCategory::EM);
          // Skip it if the category is right. This
          // intrinsic doesn't produce EM
          break;
        case GenXIntrinsic::genx_simdcf_unmask:
        case GenXIntrinsic::genx_simdcf_remask:
          IGC_ASSERT(Cat == vc::RegCategory::EM);
          ConnectedVals->push_back(SimpleValue(CI, 0));
          break;
        case GenXIntrinsic::genx_simdcf_goto:
          // use in goto: valid only if arg 0 (EM) or 1 (RM)
          if (ui->getOperandNo() != (Cat == vc::RegCategory::EM ? 0U : 1U))
            return false;
          // Add corresponding result.
          ConnectedVals->push_back(SimpleValue(CI, ui->getOperandNo()));
          break;
        case GenXIntrinsic::genx_simdcf_join:
          // use in join: valid only if arg 0 (EM) or 1 (RM)
          if (ui->getOperandNo() != (Cat == vc::RegCategory::EM ? 0U : 1U))
            return false;
          // If EM, add corresponding result.
          if (Cat == vc::RegCategory::EM)
            ConnectedVals->push_back(SimpleValue(CI, 0));
          else if (OkJoin && OkJoin != CI) {
            // RM value used in a join other than OkJoin. That is illegal, as we
            // can only have one join per RM web.
            LLVM_DEBUG(dbgs() << "getConnectedVals: found illegal join: " << CI->getName() << "\n");
            return false;
          }
          break;
        case GenXIntrinsic::genx_wrregionf:
        case GenXIntrinsic::genx_wrregioni:
          break; // Use as wrregion predicate is allowed.
        case GenXIntrinsic::genx_rdpredregion:
          // We only see rdpredregion in the late pass; in the early pass it is
          // still a shufflevector.  Check that all its uses are select or
          // wrregion.
          if (!checkAllUsesAreSelectOrWrRegion(CI))
            UsersToLower.push_back(SimpleValue(User, ui->getOperandNo()));
          break;
        case GenXIntrinsic::genx_wrpredpredregion:
          // Use in wrpredpredregion allowed as the last arg.
          if (ui->getOperandNo() + 1 != IGCLLVM::getNumArgOperands(CI))
            UsersToLower.push_back(SimpleValue(User, ui->getOperandNo()));
          break;
        default:
          // Allowed as an predicate in a non-ALU intrinsic.
          if (CI->getCalledFunction()->doesNotAccessMemory())
            UsersToLower.push_back(SimpleValue(User, ui->getOperandNo()));
          break;
        case GenXIntrinsic::not_any_intrinsic: {
          // Use in subroutine call. Add the corresponding function arg.
          Function *CalledFunc = CI->getCalledFunction();
          IGC_ASSERT(CalledFunc);
          auto ai = CalledFunc->arg_begin();
          for (unsigned Count = ui->getOperandNo(); Count; --Count, ++ai)
            ;
          Argument *Arg = &*ai;
          ConnectedVals->push_back(SimpleValue(Arg, Val.getIndex()));
          // Connected to some return value from the call. There is a problem
          // here in that it might find another predicate return value that is
          // nothing to do with SIMD CF, and thus stop SIMD CF being optimized.
          // But passing a predicate in and out of a function is rare outside
          // of SIMD CF, so we do not worry about that.
          unsigned RetIdx = 0;
          auto ValTy = IndexFlattener::getElementType(
              Val.getValue()->getType(), Val.getIndex());
          if (auto ST = dyn_cast<StructType>(CI->getType())) {
            for (unsigned End = IndexFlattener::getNumElements(ST); ; ++RetIdx) {
              if (RetIdx == End)
                UsersToLower.push_back(SimpleValue(User, ui->getOperandNo())); // no predicate ret value found
              if (IndexFlattener::getElementType(ST, RetIdx) == ValTy) {
                ConnectedVals->push_back(SimpleValue(CI, RetIdx));
                break;
              }
            }
          } else if (CI->getType() == ValTy)
            ConnectedVals->push_back(SimpleValue(CI, 0));
          else if (!CI->getType()->isVoidTy())
            UsersToLower.push_back(SimpleValue(User, ui->getOperandNo())); // no predicate ret value found
          break;
        }
      }
      continue;
    }
    UsersToLower.push_back(SimpleValue(User, ui->getOperandNo()));
  }

  if (LowerBadUsers) {
    SetVector<Value *> ToRemove;
    for (auto BadUser : UsersToLower) {
      replaceUseWithLoweredEM(dyn_cast<Instruction>(BadUser.getValue()),
          BadUser.getIndex(), ToRemove);
    }
    for (auto Inst : ToRemove) {
      removeFromEMRMVals(Inst);
    }
  } else {
    if (!UsersToLower.empty())
      return false;
  }

  return true;
}

// check if this is an EM value or part of an EM value.
static bool isEM(Value *V) {
  if (auto SI = dyn_cast<ShuffleVectorInst>(V))
    return isEM(SI->getOperand(0)) || isEM(SI->getOperand(1));
  return GotoJoin::isEMValue(V);
}

// canonicalizeEM : canonicalize EM uses so that EM uses will not
// stop SIMD-CF conformance.
void GenXSimdCFConformance::canonicalizeEM() {
  using namespace PatternMatch;
  std::vector<Instruction *> DeadInstructions;

  for (auto &F : M->getFunctionList())
    for (auto &BB : F.getBasicBlockList()) {
      for (Instruction *Inst = BB.getTerminator(); Inst;) {
        // select(C0&C1, a, b) -> select(C0, select(C1, a, b), b)
        // select(C0|C1, a, b) -> select(C0, a, select(C1, a, b))
        Value *C0, *C1, *A, *B;
        if (match(Inst, m_Select(m_BinOp(m_Value(C0), m_Value(C1)), m_Value(A),
                                 m_Value(B)))) {
          bool C1IsEM = isEM(C1);
          if (C1IsEM || isEM(C0)) {
            Value *Cond = Inst->getOperand(0);
            if (Cond->getType()->isVectorTy()) {
              BinaryOperator *BO = cast<BinaryOperator>(Cond);
              // Set Inst as insert point in order to save dominance
              IRBuilder<> Builder(Inst);
              if (C1IsEM)
                std::swap(C0, C1);
              if (BO->getOpcode() == BinaryOperator::And) {
                Value *V = Builder.CreateSelect(C1, A, B);
                V = Builder.CreateSelect(C0, V, B);
                Inst->replaceAllUsesWith(V);
                DeadInstructions.push_back(Inst);
              } else if (BO->getOpcode() == BinaryOperator::Or) {
                Value *V = Builder.CreateSelect(C1, A, B);
                V = Builder.CreateSelect(C0, A, V);
                Inst->replaceAllUsesWith(V);
                DeadInstructions.push_back(Inst);
              }
            }
          }
        }

        Inst = (Inst == &BB.front()) ? nullptr : Inst->getPrevNode();
      }
    }

  for (Instruction *I : DeadInstructions)
    RecursivelyDeleteTriviallyDeadInstructions(I);

  // Collect data for gotos/joins EVs
  handleEVs();
  // Resolve bitcast chains so they don't break conformance
  resolveBitCastChains();
}

/***********************************************************************
 * handleEVs : collect goto/join EVs and perform some transformations
 * on them.
 *
 * All transformations are done in GotoJoinEVs constructor.
 */
void GenXSimdCFConformance::handleEVs()
{
  // Collect gotos/joins
  gatherGotoJoinEMVals(false);
  for (auto val : EMVals) {
    Value *GotoJoin = val.getValue();
    IGC_ASSERT(testIsGotoJoin(GotoJoin));
    GotoJoinEVsMap[GotoJoin] = GotoJoinEVs(GotoJoin);
  }
  EMVals.clear();
}

/***********************************************************************
 * eliminateBitCastPreds : perform bitcast elimination on EM DF
 *
 * GetEMPred should be called earlier to check if Val is actually
 * a EM producer.
 */
Value *GenXSimdCFConformance::eliminateBitCastPreds(Value *Val, std::set<Value *> &DeadInst, std::set<Value *> &Visited)
{
  Type *EMType =
      IGCLLVM::FixedVectorType::get(Type::getInt1Ty(M->getContext()), 32);

  if (Visited.count(Val))
  {
    return EMProducers[Val];
  }

  Visited.insert(Val);

  if (auto BCI = dyn_cast<BitCastInst>(Val)) {
    IGC_ASSERT_MESSAGE(EMProducers[BCI] == BCI->getOperand(0), "Bad EM producer was saved!");

    DeadInst.insert(BCI);
    return eliminateBitCastPreds(BCI->getOperand(0), DeadInst, Visited);
  } else if (auto PN = dyn_cast<PHINode>(Val)) {
    IGC_ASSERT_MESSAGE(EMProducers[PN] == PN, "Bad EM producer was saved!");

    PHINode *NewPN = nullptr;
    if (PN->getType() != EMType) {
      // Different type at phi. This may happen if its incoming value
      // became bitcast.
      LLVM_DEBUG(dbgs() << "Creating new PHI for:\n" << *PN << "\n");
      NewPN = PHINode::Create(EMType, PN->getNumIncomingValues(), "EMTerm", PN);
      EMProducers[NewPN] = NewPN;
      // In case of cycle, we will return newly created phi
      EMProducers[PN] = NewPN;
      // Phi can become redundant after it
      DeadInst.insert(PN);
    }

    for (unsigned oi = 0, on = PN->getNumIncomingValues(); oi < on; ++oi) {
      auto EMProd = eliminateBitCastPreds(PN->getIncomingValue(oi), DeadInst, Visited);
      if (!NewPN) {
        PN->setIncomingValue(oi, EMProd);
        PN->setIncomingBlock(oi, PN->getIncomingBlock(oi));
      } else {
        NewPN->addIncoming(EMProd, PN->getIncomingBlock(oi));
      }
    }

    return NewPN ? NewPN : PN;
  } else if (auto C = dyn_cast<Constant>(Val)) {
    IGC_ASSERT_MESSAGE(C->isAllOnesValue(), "Should be checked before!");
    IGC_ASSERT_MESSAGE(EMProducers[C] == C, "Bad EM producer was saved!");

    return Constant::getAllOnesValue(EMType);
  } else {
    IGC_ASSERT(Val);
    IGC_ASSERT_MESSAGE(EMProducers[Val] == Val, "Bad EM producer was saved!");
    IGC_ASSERT_MESSAGE(Val->getType() == EMType, "Unexpected final EM producer!");

    return Val;
  }
}

/***********************************************************************
 * resolveBitCastChains : resolve EM -> (bitcast) -> EM chains
 *
 * Standard LLVM passes create such chains sometimes and it makes
 * SIMD CF non-conformant. Here we check this and make changes to
 * resolve it if possible. If it is not, SIMD CF remains non-conformant
 * and is lowered later.
 */
void GenXSimdCFConformance::resolveBitCastChains()
{
  LLVM_DEBUG(dbgs() << "Resolving Bitcast chains:\n");

  // We don't have EM values here so we have to gather them
  // here, too. This is because we can change EM values set
  // during these transformations.
  gatherEMVals();

  std::set<Value *> DeadInst;
  for (auto Val : EMVals) {
    if (auto PN = dyn_cast<PHINode>(Val.getValue())) {
      LLVM_DEBUG(dbgs() << "Found phi:\n" << *PN << "\n");
    } else if (auto BCI = dyn_cast<BitCastInst>(Val.getValue())) {
      LLVM_DEBUG(dbgs() << "Found bitcast:\n" << *BCI << "\n");
    } else
      continue;

    std::set<Value *> Visited;
    Instruction *I = dyn_cast<Instruction>(Val.getValue());
    Value *EMProd = getEMProducer(I, Visited, true);

    if (!EMProd) {
      LLVM_DEBUG(dbgs() << "!!! Not EM producer was detected when resolving bitcast chains !!!\n");
      continue;
    }

    Visited.clear();
    Value *NewEMProd = eliminateBitCastPreds(EMProd, DeadInst, Visited);
    if (NewEMProd != EMProd) {
      EMProd->replaceAllUsesWith(NewEMProd);
    }
  }

  EMVals.clear();

  for (auto DI : DeadInst) {
    if (auto I = dyn_cast<Instruction>(DI))
      RecursivelyDeleteTriviallyDeadInstructions(I);
  }

  // TODO: since we are using EMProducers only here and during get_em check,
  // clean it after these transformation sinse it may contain dead data.
  EMProducers.clear();

  LLVM_DEBUG(dbgs() << "Done resolving bitcast chains:\n");
}

/***********************************************************************
 * checkEMInterference : check for EM values interfering with each other,
 *      lowering gotos/joins as necessary
 *
 * There is only one EM in the hardware, and we need to model that by ensuring
 * that our multiple EM values, including phi nodes, do not interfere with each
 * other. This is effectively a register allocator with only one register.
 */
void GenXSimdCFConformance::checkEMInterference()
{
  // Do an interference check, returning a list of defs that appear in the live
  // range of other values.
  SetVector<Value *> BadDefs;
  checkInterference(&EMVals, &BadDefs, nullptr);
  for (auto i = BadDefs.begin(), e = BadDefs.end(); i != e; ++i)
    removeBadEMVal(*i);
}

/***********************************************************************
 * findLoweredEMValue : find lowered EM Value
 */
Value *GenXSimdCFConformance::findLoweredEMValue(Value *Val) {
  LLVM_DEBUG(dbgs() << "Looking for lowered value for:\n" << *Val << "\n");

  auto It = LoweredEMValsMap.find(Val);
  if (It != LoweredEMValsMap.end()) {
    auto *loweredVal = It->second;
    LLVM_DEBUG(dbgs() << "Found lowered value:\n" << *loweredVal << "\n");
    return loweredVal;
  }

  LLVM_DEBUG(dbgs() << "No lowered value was found\n");

  return nullptr;
}

/***********************************************************************
 * buildLoweringViaGetEM : build GetEM instruction to get explicit EM
 *   from Val.
 */
Value *GenXSimdCFConformance::buildLoweringViaGetEM(Value *Val,
                                                    Instruction *InsertBefore) {
  Function *GetEMDecl = GenXIntrinsic::getGenXDeclaration(
      M, GenXIntrinsic::genx_simdcf_get_em, {Val->getType()});
  Value *GetEM = CallInst::Create(GetEMDecl, {Val}, "getEM", InsertBefore);
  LoweredEMValsMap[Val] = GetEM;

  LLVM_DEBUG(dbgs() << "Built getEM:\n" << *GetEM << "\n");

  return GetEM;
}

/***********************************************************************
 * getGetEMLoweredValue : find lowered EM Value (via GetEM) or build
 *   GetEM instruction if lowered value was not found.
 */
Value *GenXSimdCFConformance::getGetEMLoweredValue(Value *Val,
                                                   Instruction *InsertBefore) {
  auto *GetEM = findLoweredEMValue(Val);

  if (!GetEM) {
    GetEM = buildLoweringViaGetEM(Val, InsertBefore);
  }

  return GetEM;
}

/***********************************************************************
 * lowerEVIUse : lower ExtractValue use.
 *
 * EM is being lowered via genx_simdcf_get_em intrinsic.
 */
Value *GenXSimdCFConformance::lowerEVIUse(ExtractValueInst *EVI,
                                          Instruction *User,
                                          BasicBlock *PhiPredBlock) {
  LLVM_DEBUG(dbgs() << "Lowering EVI use:\n" << *EVI << "\n");

  CallInst *GotoJoin = dyn_cast<CallInst>(EVI->getOperand(0));
  IGC_ASSERT_MESSAGE(testIsGotoJoin(GotoJoin), "Bad ExtractValue with EM!");

  // The CFG was corrected for SIMD CF by earlier transformations
  // so isBranchingGotoJoinBlock works correctly here.
  if (GotoJoin::isBranchingGotoJoinBlock(GotoJoin->getParent()) == GotoJoin) {
    // For branching case, we need to create false and true value
    LLVM_DEBUG(dbgs() << "Handling branching block case\n");

    BasicBlock *DefBB = GotoJoin->getParent();
    BasicBlock *TrueBlock = DefBB->getTerminator()->getSuccessor(0);
    BasicBlock *FalseBlock = DefBB->getTerminator()->getSuccessor(1);
    BasicBlock *Loc = PhiPredBlock ? PhiPredBlock : User->getParent();

    // GetEM is removed later if redundant.
    Value *TrueVal = Constant::getNullValue(EVI->getType());
    Value *FalseVal = getGetEMLoweredValue(EVI, FalseBlock->getFirstNonPHI());

    // Early return for direct phi true edge: lowered value is zeroed
    if (PhiPredBlock == DefBB && TrueBlock == User->getParent()) {
      IGC_ASSERT(PhiPredBlock);
      IGC_ASSERT_MESSAGE(FalseBlock != TrueBlock,
                         "Crit edge should be inserted earlier!");
      return TrueVal;
    }

    std::map<BasicBlock *, Value *> foundVals;
    BasicBlockEdge TrueEdge(DefBB, TrueBlock);
    BasicBlockEdge FalseEdge(DefBB, FalseBlock);

    return findGotoJoinVal(vc::RegCategory::EM, Loc, EVI, TrueEdge, FalseEdge,
                           TrueVal, FalseVal, foundVals);
  }

  // Non-branching case: must be join. Insert get_em right after join's EM
  IGC_ASSERT_MESSAGE(testIsJoin(GotoJoin),
         "Gotos should be turned into branching earlier!");

  LLVM_DEBUG(dbgs() << "Handling simple join case\n");

  return getGetEMLoweredValue(EVI, EVI->getNextNode());
}

/***********************************************************************
 * lowerPHIUse : lower PHI use.
 *
 * EM is being lowered via genx_simdcf_get_em intrinsic.
 * This intrinsic is inserted right after the phis in current BB
 * in case of non-join block. For join blocks, the full PHI lowering
 * is performed: we have to lower all incoming values.
 *
 * Lowered phis are also stored in LoweredPhisMap to
 * prevent redundant lowerings.
 */
Value *GenXSimdCFConformance::lowerPHIUse(PHINode *PN,
                                          SetVector<Value *> &ToRemove) {
  LLVM_DEBUG(dbgs() << "Lowering PHI use:\n" << *PN << "\n");

  // Check if the phi was already lowered
  if (auto *FoundVal = findLoweredEMValue(PN)) {
    return FoundVal;
  }

  if (!GotoJoin::isJoinLabel(PN->getParent())) {
    auto res = getGetEMLoweredValue(PN, PN->getParent()->getFirstNonPHI());
    LLVM_DEBUG(dbgs() << "Created " << *res << "\n");
    return res;
  }

  LLVM_DEBUG(dbgs() << "Performing full lowering\n");

  // Clone phi and store it as lowered value.
  auto *newPN = cast<PHINode>(PN->clone());
  newPN->insertAfter(PN);
  LoweredEMValsMap[PN] = newPN;

  LLVM_DEBUG(dbgs() << "Cloned phi before lowering values:\n"
                    << *newPN << "\n");

  // Lower clone's preds
  for (unsigned idx = 0, op_no = newPN->getNumIncomingValues(); idx < op_no;
       ++idx) {
    replaceUseWithLoweredEM(newPN, idx, ToRemove);
  }

  LLVM_DEBUG(dbgs() << "Cloned phi with lowered values:\n" << *newPN << "\n");

  return newPN;
}

/***********************************************************************
 * lowerArgumentUse : lower argument use.
 *
 * EM is being lowered via genx_simdcf_get_em intrinsic.
 * Get_em is created at function enter. Lowering can be needed
 * if argument's user was moved under SIMD CF due to some reason.
 */
Value *GenXSimdCFConformance::lowerArgumentUse(Argument *Arg) {
  LLVM_DEBUG(dbgs() << "Lowering argument use:\n" << *Arg << "\n");

  return getGetEMLoweredValue(Arg, Arg->getParent()->front().getFirstNonPHI());
}

/***********************************************************************
 * replaceUseWithLoweredEM : lower incoming EM for user.
 *
 * EM is being lowered via genx_simdcf_get_em intrinsic.
 */
void GenXSimdCFConformance::replaceUseWithLoweredEM(Instruction *Val, unsigned operandNo, SetVector<Value *> &ToRemove)
{
  Value *EM = Val->getOperand(operandNo);

  LLVM_DEBUG(dbgs() << "Replacing EM use:\n" << *EM << "\nwith lowered EM for:\n" << *Val << "\n");

  Value *LoweredEM = nullptr;

  if (auto *EVI = dyn_cast<ExtractValueInst>(EM)) {
    BasicBlock *PhiPredBlock = nullptr;
    if (auto *PN = dyn_cast<PHINode>(Val))
      PhiPredBlock = PN->getIncomingBlock(operandNo);
    LoweredEM = lowerEVIUse(EVI, Val, PhiPredBlock);
  } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(EM)) {
    // Shuffle vector: go through it and lower its pred.
    // All changes will be applied here.
    replaceUseWithLoweredEM(SVI, 0, ToRemove);
  } else if (auto *PN = dyn_cast<PHINode>(EM)) {
    LoweredEM = lowerPHIUse(PN, ToRemove);
  } else if (auto *Arg = dyn_cast<Argument>(EM)) {
    LoweredEM = lowerArgumentUse(Arg);
  } else if (isa<Constant>(EM) && EM->getType()->getScalarType()->isIntegerTy(1)) {
    LoweredEM = EM;
  } else
    // All other instructions should not be EM producers with correct DF
    IGC_ASSERT_EXIT_MESSAGE(0, "Failed to lower EM!");

  if (LoweredEM)
    Val->setOperand(operandNo, LoweredEM);

  ToRemove.insert(Val);
}

/***********************************************************************
 * canUseLoweredEM : check whether instruction can use lowered EM
 *
 * Lowered EM is an explicit value that can be consumed by any
 * instruction except of goto and join because they take implicit EM.
 */
bool GenXSimdCFConformance::canUseLoweredEM(Instruction *Val)
{
  if (GenXIntrinsic::getGenXIntrinsicID(Val) == GenXIntrinsic::genx_simdcf_goto ||
    GenXIntrinsic::getGenXIntrinsicID(Val) == GenXIntrinsic::genx_simdcf_join)
    return false;

  // For phi, check that it does not deal with goto or join.
  if (auto PN = dyn_cast<PHINode>(Val)) {
    for (unsigned idx = 0, opNo = PN->getNumIncomingValues(); idx < opNo; ++idx) {
      auto Inst = dyn_cast<ExtractValueInst>(PN->getOperand(idx));
      if (Inst) {
        auto Pred = Inst->getOperand(0);
        if (GenXIntrinsic::getGenXIntrinsicID(Pred) == GenXIntrinsic::genx_simdcf_goto ||
          GenXIntrinsic::getGenXIntrinsicID(Pred) == GenXIntrinsic::genx_simdcf_join)
          return false;
      }
    }
  }

  return true;
}

/***********************************************************************
 * canUseRealEM : check whether instruction can use real EM that is
 * passed via #opNo operand.
 *
 * This is used to check if instruction can use real EM.
 *
 * TODO: It is used only by linearized fragment optimization now.
 * This function should be extended and put into getConnectedVals
 * algorithm in order to make the last one simplier. For now,
 * this check will be passed only by selects, shufflevectors and wrregions
 * because these instructions movement makes sence during the
 * optimization.
 */
bool GenXSimdCFConformance::canUseRealEM(Instruction *Inst, unsigned opNo) {
  if (auto *Select = dyn_cast<SelectInst>(Inst)) {
    // Real EM can be condition only
    return opNo == 0;
  }

  if (auto *SVI = dyn_cast<ShuffleVectorInst>(Inst)) {
    // TODO: getConnectedVals checks only this, but
    // there is no check for idxs correctness.
    // They should be 0, 1, 2, ..., EXEC_SIZE - 1 for
    // EM truncation.
    if (!ShuffleVectorAnalyzer::isReplicatedSlice(SVI))
      return false;

    return checkAllUsesAreSelectOrWrRegion(SVI);
  }

  // Left switch for further extensions
  switch (GenXIntrinsic::getGenXIntrinsicID(Inst)) {
  case GenXIntrinsic::genx_wrregionf:
  case GenXIntrinsic::genx_wrregioni:
    // Real EM can be wrrregion predicate only
    return opNo == GenXIntrinsic::GenXRegion::PredicateOperandNum;
  default:
    break;
  }

  return false;
}

/***********************************************************************
 * checkInterference : check for a list of values interfering with each other
 *
 * Enter:   Vals = values to check (not constants)
 *          BadDefs = SetVector in which to store any def that is found in the
 *                    live range of another def
 *          ConstStop = instruction to treat as the def point of a constantpred,
 *                      nullptr to treat the start of the function as the def
 *                      point
 *
 * This code finds interference by scanning back from uses, finding other defs,
 * relying on the dominance property of SSA. Having found that two EM values A
 * and B interfere due to the def of A appearing in the live range of B, we
 * could choose either one to lower its goto and join. In fact we choose A (the
 * found def), as that tends to lower inner SIMD CF, giving a chance for the
 * outer SIMD CF to become legal.
 *
 * Because GenXSimdCFConformance runs before live ranges are determined, so
 * that it can modify code as it wants, we cannot use the normal interference
 * testing code in GenXLiveness.
 *
 * The idea of ConstStop is different depending on whether we are testing
 * interference of all EM values, or all RM values for a particular join:
 *
 * * For interference between all EM values, any constant (input to
 *   constantpred intrinsic) must be all ones, which is checked elsewhere. It
 *   represents the state of the execution mask at the start of the function,
 *   therefore we need to pretend that the constantpred's live range extends
 *   back to the start of the function.  This is done by the caller setting
 *   ConstStop to 0.
 *
 * * For interference between all RM values for one particular join, any
 *   constant must be all zeros, which is checked elsewhere. It represents the
 *   state of that join's resume mask on entry to the function, and just after
 *   executing the join. Therefore we need to pretend that the constantpred's
 *   live range extends back to those two places. This is done by the caller
 *   setting ConstStop to the join instruction.
 */
void GenXSimdCFConformance::checkInterference(SetVector<SimpleValue> *Vals,
    SetVector<Value *> *BadDefs, Instruction *ConstStop)
{
  // Scan the live range of each value, looking for a def of another value.
  // Finding such a def indicates interference.
  SetVector<Value *> ToRemove;
  for (auto evi = Vals->begin(), eve = Vals->end(); evi != eve; ++evi) {
    Value *EMVal = evi->getValue();
    bool IsConstantPred = GenXIntrinsic::getGenXIntrinsicID(EMVal) == GenXIntrinsic::genx_constantpred;
    // Set of blocks where we know the value is live out.
    SmallSet<BasicBlock *, 8> LiveOut;
    // Start from each use and scan backwards. If the EMVal was affected by
    // transformations, there is no need to check other uses.
    for (auto ui = EMVal->use_begin(), ue = EMVal->use_end();
         ui != ue && ToRemove.count(EMVal) == 0;) {
      auto User = cast<Instruction>(ui->getUser());
      auto OpNo = ui->getOperandNo();
      ++ui;
      if (auto EVI = dyn_cast<ExtractValueInst>(User)) {
        // Ignore a use that is an extractvalue not involving the right struct
        // index.
        unsigned StartIndex = IndexFlattener::flatten(
            cast<StructType>(EVI->getOperand(0)->getType()), EVI->getIndices());
        unsigned NumIndices = IndexFlattener::getNumElements(EVI->getType());
        if (evi->getIndex() - StartIndex >= NumIndices)
          continue;
      }
      BasicBlock *PhiPred = nullptr;
      if (auto Phi = dyn_cast<PHINode>(User))
        PhiPred = Phi->getIncomingBlock(OpNo);
      auto Inst = User;
      SmallVector<BasicBlock *, 4> PendingBBStack;
      for (;;) {
        if (!Inst) {
          // Go on to the next pending predecessor.
          if (PendingBBStack.empty())
            break;
          Inst = PendingBBStack.back()->getTerminator();
          PendingBBStack.pop_back();
        }
        if (&Inst->getParent()->front() == Inst) {
          // Reached the start of the block. Make all unprocessed predecessors
          // pending. Except if the use is in a phi node and this is the first
          // time we reach the start of a block: in that case, mark only the
          // corresponding phi block is pending.
          if (PhiPred) {
            if (LiveOut.insert(PhiPred).second)
              PendingBBStack.push_back(PhiPred);
            PhiPred = nullptr;
          } else {
            BasicBlock *InstBB = Inst->getParent();
            std::copy_if(pred_begin(InstBB), pred_end(InstBB),
                         std::back_inserter(PendingBBStack),
                         [&LiveOut](BasicBlock *BB) {
                           return LiveOut.insert(BB).second;
                         });
          }
          Inst = nullptr;
          continue;
        }
        // Go back to the previous instruction. (This happens even when
        // starting at the end of a new block, thus skipping scanning the uses
        // of the terminator, but that's OK because the terminator never uses
        // our EM or RM values.)
        Inst = Inst->getPrevNode();
        if (Inst == EMVal && !IsConstantPred) {
          // Reached the def of the value. Stop scanning, unless the def is
          // constantpred, in which case we pretend it was live from the
          // ConstStop.
          Inst = nullptr;
          continue;
        }
        if (Inst == ConstStop && IsConstantPred) {
          // For a constantpred value, we have reached the point that we want
          // to treat as its definition point.  Stop scanning.
          Inst = nullptr;
          continue;
        }
        // Check if this is the def of some other EM value.
        if (auto VT = dyn_cast<VectorType>(Inst->getType()))
          if (VT->getElementType()->isIntegerTy(1))
            if (Vals->count(Inst) && !ToRemove.count(Inst)) {
              // It is the def of some other EM value. Mark that one as
              // interfering. However do not mark it if both values are
              // constantpred, since we pretend all of those are defined at the
              // start of the function.
              if (!IsConstantPred
                  || GenXIntrinsic::getGenXIntrinsicID(Inst) != GenXIntrinsic::genx_constantpred) {
                LLVM_DEBUG(dbgs() << "GenXSimdCFConformance::checkInterference: def of " << Inst->getName() << " found in live range of " << EMVal->getName() << "\n");
                auto SVI = dyn_cast<ShuffleVectorInst>(Inst);
                if (SVI && SVI->getOperand(0) == EMVal) {
                  // Shuffle vector is baled as EM of another size: this check is to
                  // ensure that the EM in SVI is still actual
                  LLVM_DEBUG(dbgs() << "\tShuffle vector with correct arg, skipping it\n");
                } else if (canUseLoweredEM(User) && !FG) {
                  // Lower EM in Early Pass
                  replaceUseWithLoweredEM(User, OpNo, ToRemove);
                  LLVM_DEBUG(dbgs() << "\tSucceded to lower EM for that use\n");
                } else {
                  LLVM_DEBUG(dbgs() << "\t!!! Failed to lower EM for that use: def will be lowered\n");
                  BadDefs->insert(Inst);
                }
                // Done for that use
                break;
              }
            }
      }
    }
  }

  for (auto Inst : ToRemove) {
    removeFromEMRMVals(Inst);
  }
}

/***********************************************************************
 * insertCond : insert a vector of i1 value into the start of another one
 *
 * Enter:   OldVal = value to insert into
 *          NewVal = value to insert, at index 0
 *          Name = name for any new instruction
 *          InsertBefore = where to insert any new instruction
 *          DL = debug loc to give any new instruction
 *
 * Return:  value, possibly the same as the input value
 */
Value *GenXSimdCFConformance::insertCond(Value *OldVal, Value *NewVal,
    const Twine &Name, Instruction *InsertBefore, const DebugLoc &DL)
{
  unsigned OldWidth =
      cast<IGCLLVM::FixedVectorType>(OldVal->getType())->getNumElements();
  unsigned NewWidth =
      cast<IGCLLVM::FixedVectorType>(NewVal->getType())->getNumElements();
  if (OldWidth == NewWidth)
    return NewVal;
  // Do the insert with shufflevector. We need two shufflevectors, one to extend
  // NewVal to OldVal's width, and one to combine them.
  // GenXLowering decides whether this is suitable to lower to wrpredregion, or
  // needs to be lowered to something less efficient.
  SmallVector<Constant *, 32> Indices;
  Type *I32Ty = Type::getInt32Ty(InsertBefore->getContext());
  unsigned i;
  for (i = 0; i != NewWidth; ++i)
    Indices.push_back(ConstantInt::get(I32Ty, i));
  auto UndefIndex = UndefValue::get(I32Ty);
  for (; i != OldWidth; ++i)
    Indices.push_back(UndefIndex);
  auto SV1 = new ShuffleVectorInst(NewVal, UndefValue::get(NewVal->getType()),
      ConstantVector::get(Indices), NewVal->getName() + ".extend", InsertBefore);
  SV1->setDebugLoc(DL);
  if (isa<UndefValue>(OldVal))
    return SV1;
  Indices.clear();
  for (i = 0; i != NewWidth; ++i)
    Indices.push_back(ConstantInt::get(I32Ty, i + OldWidth));
  for (; i != OldWidth; ++i)
    Indices.push_back(ConstantInt::get(I32Ty, i));
  auto SV2 = new ShuffleVectorInst(OldVal, SV1, ConstantVector::get(Indices),
      Name, InsertBefore);
  SV2->setDebugLoc(DL);
  return SV2;
}

/***********************************************************************
 * truncateCond : truncate a vector of i1 value
 *
 * Enter:   In = input value
 *          Ty = type to truncate to
 *          Name = name for any new instruction
 *          InsertBefore = where to insert any new instruction
 *          DL = debug loc to give any new instruction
 *
 * Return:  value, possibly the same as the input value
 */
Value *GenXSimdCFConformance::truncateCond(Value *In, Type *Ty,
    const Twine &Name, Instruction *InsertBefore, const DebugLoc &DL)
{
  unsigned InWidth =
      cast<IGCLLVM::FixedVectorType>(In->getType())->getNumElements();
  unsigned TruncWidth = cast<IGCLLVM::FixedVectorType>(Ty)->getNumElements();
  if (InWidth == TruncWidth)
    return In;
  // Do the truncate with shufflevector. GenXLowering lowers it to rdpredregion.
  SmallVector<Constant *, 32> Indices;
  Type *I32Ty = Type::getInt32Ty(InsertBefore->getContext());
  unsigned i;
  for (i = 0; i != TruncWidth; ++i)
    Indices.push_back(ConstantInt::get(I32Ty, i));
  auto SV = new ShuffleVectorInst(In, UndefValue::get(In->getType()),
      ConstantVector::get(Indices), Name, InsertBefore);
  SV->setDebugLoc(DL);
  return SV;
}

/***********************************************************************
 * lowerGoto : lower a llvm.genx.simdcf.goto
 *
 * This also outputs a warning that we failed to optimize a SIMD branch.
 * We always output it, rather than including it in the -rpass mechanism
 * to enable or disable the warning, as it is an unexpected situation that
 * we want our users to report.
 */
void GenXSimdCFConformance::lowerGoto(CallInst *Goto)
{
  LLVM_DEBUG(dbgs() << "lowerGoto: " << *Goto << "\n");
  const DebugLoc &DL = Goto->getDebugLoc();
  if (EnableGenXGotoJoin && !lowerSimdCF)
    DiagnosticInfoSimdCF::emit(Goto, "failed to optimize SIMD branch", DS_Warning);
  Value *Results[3];
  auto EM = Goto->getOperand(0);
  auto Cond = Goto->getOperand(2);
  // EM is always 32 bit. Extract SubEM, of the same width as Cond, from it.
  auto OldSubEM = truncateCond(EM, Cond->getType(),
      EM->getName() + ".sub", Goto, DL);
  // Result 1: NewRM = OldRM | (SubEM & ~Cond)
  auto NotCond = BinaryOperator::Create(Instruction::Xor, Cond,
      Constant::getAllOnesValue(Cond->getType()),
      Goto->getName() + ".notcond", Goto);
  NotCond->setDebugLoc(DL);
  auto NotCondAndSubEM = BinaryOperator::Create(Instruction::And, NotCond,
      OldSubEM, Goto->getName() + ".disabling", Goto);
  NotCondAndSubEM->setDebugLoc(DL);
  Value *OldRM = Goto->getArgOperand(1);
  auto NewRM = BinaryOperator::Create(Instruction::Or, OldRM, NotCondAndSubEM,
      Goto->getName() + ".newRM", Goto);
  NewRM->setDebugLoc(DL);
  Results[1] = NewRM;
  // And SubEM with Cond.
  auto SubEM = BinaryOperator::Create(Instruction::And, OldSubEM, Cond,
      Goto->getName() + ".subEM", Goto);
  SubEM->setDebugLoc(DL);
  // Insert that back into EM. That is result 0.
  Results[0] = EM = insertCond(EM, SubEM, Goto->getName() + ".EM", Goto, DL);
  // Result 2: BranchCond = !any(SubEM)
  Function *AnyFunc = GenXIntrinsic::getGenXDeclaration(M, GenXIntrinsic::genx_any,
      SubEM->getType());
  auto Any = CallInst::Create(AnyFunc, SubEM,
      SubEM->getName() + ".any", Goto);
  Any->setDebugLoc(DL);
  auto Not = BinaryOperator::Create(Instruction::Xor, Any,
      Constant::getAllOnesValue(Any->getType()),
      Any->getName() + ".not", Goto);
  Not->setDebugLoc(DL);
  Results[2] = Not;
  // Replace uses.
  replaceGotoJoinUses(Goto, Results);
  Goto->eraseFromParent();
  Modified = true;
}

/***********************************************************************
 * lowerJoin : lower a llvm.genx.simdcf.join
 */
void GenXSimdCFConformance::lowerJoin(CallInst *Join)
{
  LLVM_DEBUG(dbgs() << "lowerJoin: " << *Join << "\n");
  const DebugLoc &DL = Join->getDebugLoc();
  Value *Results[2];
  auto EM = Join->getOperand(0);
  auto RM = Join->getOperand(1);
  // EM is always 32 bit. Extract SubEM, of the same width as RM, from it.
  auto OldSubEM = truncateCond(EM, RM->getType(), EM->getName() + ".sub",
      Join, DL);
  // Or it with RM.
  auto SubEM = BinaryOperator::Create(Instruction::Or, OldSubEM, RM,
      Join->getName() + ".subEM", Join);
  SubEM->setDebugLoc(DL);
  // Insert that back into EM. That is result 0.
  Results[0] = EM = insertCond(EM, SubEM, Join->getName() + ".EM", Join, DL);
  // Result 1: BranchCond = !any(SubEM)
  Function *AnyFunc = GenXIntrinsic::getGenXDeclaration(M, GenXIntrinsic::genx_any,
      SubEM->getType());
  auto Any = CallInst::Create(AnyFunc, SubEM,
      SubEM->getName() + ".any", Join);
  Any->setDebugLoc(DL);
  auto Not = BinaryOperator::Create(Instruction::Xor, Any,
      Constant::getAllOnesValue(Any->getType()),
      Any->getName() + ".not", Join);
  Not->setDebugLoc(DL);
  Results[1] = Not;
  // Replace uses.
  replaceGotoJoinUses(Join, Results);
  Join->eraseFromParent();
  Modified = true;
}

/***********************************************************************
 * replaceGotoJoinUses : replace uses of goto/join
 *
 * The goto and join intrinsics have multiple return values in a struct.
 * This attempts to find the extractvalues and replace those directly.
 * It also spots where a value is unused.
 */
void GenXSimdCFConformance::replaceGotoJoinUses(CallInst *GotoJoin,
    ArrayRef<Value *> Vals)
{
  SmallVector<ExtractValueInst *, 4> Extracts;
  for (auto ui = GotoJoin->use_begin(), ue = GotoJoin->use_end();
      ui != ue; ++ui) {
    auto Extract = dyn_cast<ExtractValueInst>(ui->getUser());
    if (Extract)
      Extracts.push_back(Extract);
  }
  for (auto ei = Extracts.begin(), ee = Extracts.end(); ei != ee; ++ei) {
    auto Extract = *ei;
    unsigned Index = Extract->getIndices()[0];
    if (Index >= Vals.size())
      continue;
    Extract->replaceAllUsesWith(Vals[Index]);
    Extract->eraseFromParent();
  }
  if (!GotoJoin->use_empty()) {
    // There are still some uses of the original goto/join. We need to
    // aggregate the result values into a struct.
    Value *StructVal = UndefValue::get(GotoJoin->getType());
    Instruction *InsertBefore = GotoJoin->getNextNode();
    for (unsigned Index = 0,
        End = cast<StructType>(GotoJoin->getType())->getNumElements();
        Index != End; ++Index)
      StructVal = InsertValueInst::Create(StructVal, Vals[Index],
          Index, "", InsertBefore);
    GotoJoin->replaceAllUsesWith(StructVal);
  } else {
    // Remove code for unused value. This is particularly useful at an outer
    // join, where the !any(NewEM) is unused, so we don't need to compute it.
    for (unsigned vi = 0; vi != Vals.size(); ++vi) {
      Value *V = Vals[vi];
      while (V && V->use_empty()) {
        auto I = dyn_cast<Instruction>(V);
        if (I == nullptr)
          continue;
        unsigned NumOperands = I->getNumOperands();
        if (auto CI = dyn_cast<CallInst>(I))
          NumOperands = IGCLLVM::getNumArgOperands(CI);
        V = nullptr;
        if (NumOperands == 1)
          V = I->getOperand(0);
        I->eraseFromParent();
      }
    }
  }
}

/***********************************************************************
 * fixBlockDataBeforeRemoval : clear redundant phi-s and dbg
 *    instruction, before erase basic block
 */
static void fixBlockDataBeforeRemoval(BasicBlock *BB, BasicBlock *SuccBB) {
  while (auto *PN = dyn_cast<PHINode>(BB->begin()))
    PN->eraseFromParent();

  IGC_ASSERT_MESSAGE(BB->getSingleSuccessor() == SuccBB,
                     "Awaiting only one successor");
  bool HasOnePred = SuccBB->hasNPredecessors(1);
  Instruction *InsertBefore = SuccBB->getFirstNonPHI();
  while (auto *DBG = dyn_cast<llvm::DbgVariableIntrinsic>(BB->begin())) {
    DBG->moveBefore(InsertBefore);
    if (!HasOnePred)
      IGCLLVM::setDbgVariableLocationToUndef(DBG);
  }
}

/***********************************************************************
 * setCategories : set webs of EM and RM values to category EM or RM
 *
 * This also modifies EM uses as needed.
 */
void GenXLateSimdCFConformance::setCategories()
{
  // First the EM values.
  for (auto ei = EMVals.begin(); ei != EMVals.end(); /* empty */) {
    SimpleValue EMVal = *ei;
    ei++;
    // For this EM value, set its category and modify its uses.
    Liveness->getOrCreateLiveRange(EMVal)->setCategory(vc::RegCategory::EM);
    LLVM_DEBUG(dbgs() << "Set category for:\n" << *EMVal.getValue() << "\n");
    if (!isa<StructType>(EMVal.getValue()->getType()))
      modifyEMUses(EMVal.getValue());
    switch (GenXIntrinsic::getGenXIntrinsicID(EMVal.getValue())) {
      case GenXIntrinsic::genx_simdcf_join: {
        // For a join, set the category of each RM value.
        auto RMValsEntry = &RMVals[cast<CallInst>(EMVal.getValue())];
        for (auto vi = RMValsEntry->begin(), ve = RMValsEntry->end(); vi != ve; ++vi) {
          SimpleValue RMVal = *vi;
          // For this RM value, set its category.
          Liveness->getOrCreateLiveRange(RMVal)->setCategory(
              vc::RegCategory::RM);
        }
      }
      // Fall through...
      case GenXIntrinsic::genx_simdcf_goto: {
        // See if this is a branching goto/join where the "true" successor is
        // an empty critical edge splitter block.
        auto CI = cast<CallInst>(EMVal.getValue());
        BasicBlock *BB = CI->getParent();
        if (GotoJoin::isBranchingGotoJoinBlock(BB) == CI) {
          BasicBlock *TrueSucc = BB->getTerminator()->getSuccessor(0);
          if (BasicBlock *TrueSuccSucc
              = getEmptyCriticalEdgeSplitterSuccessor(TrueSucc)) {
            for (PHINode &Phi : TrueSucc->phis()) {
              if (Phi.getNumIncomingValues() == 1) {
                auto *PredInst = Phi.getIncomingValue(0);
                Phi.replaceAllUsesWith(PredInst);
                Liveness->eraseLiveRange(&Phi);
                removeFromEMRMVals(&Phi);
              } else {
                IGC_ASSERT_MESSAGE(true, "BB has unremovable phi");
              }
            }
            // Remove phi and move dbg-info
            fixBlockDataBeforeRemoval(TrueSucc, TrueSuccSucc);
            IGC_ASSERT_MESSAGE(TrueSucc->front().isTerminator(),
              "BB is not empty for removal");
            // For a branching goto/join where the "true" successor is an empty
            // critical edge splitter block, remove the empty block, to ensure
            // that the "true" successor is a join label.
            // Adjust phi nodes in TrueSuccSucc.
            adjustPhiNodesForBlockRemoval(TrueSuccSucc, TrueSucc);
            // Replace the use (we know there is only the one).
            BB->getTerminator()->setSuccessor(0, TrueSuccSucc);
            // Erase the critical edge splitter block.
            TrueSucc->eraseFromParent();
            Modified = true;
          }
        }
        break;
      }
      default:
        break;
    }
  }
}

/***********************************************************************
 * modifyEMUses : modify EM uses as needed
 */
void GenXLateSimdCFConformance::modifyEMUses(Value *EM)
{
  LLVM_DEBUG(dbgs() << "modifyEMUses: " << EM->getName() << "\n");
  // Gather the selects we need to modify, at the same time as handling other
  // uses of the EM values.
  SmallVector <SelectInst *, 4> Selects;
  SmallVector <Value *, 4> EMs;
  EMs.push_back(EM);
  for (unsigned ei = 0; ei != EMs.size(); ++ei) {
    EM = EMs[ei];
    // Scan EM's uses.
    for (auto ui = EM->use_begin(), ue = EM->use_end(); ui != ue; ++ui) {
      auto User = cast<Instruction>(ui->getUser());
      if (auto Sel = dyn_cast<SelectInst>(User)) {
        IGC_ASSERT(!ui->getOperandNo());
        Selects.push_back(Sel);
      } else {
        IGC_ASSERT(testIsValidEMUse(User, ui));
        if (vc::getAnyIntrinsicID(User) ==
          GenXIntrinsic::genx_rdpredregion) {
          // An rdpredregion of the EM. Find its uses in select too.
          EMs.push_back(User);
        }
      }
    }
  }
  // Modify each select into a predicated wrregion.
  const GenXSubtarget &Subtarget = getAnalysis<TargetPassConfig>()
                                       .getTM<GenXTargetMachine>()
                                       .getGenXSubtarget();
  const DataLayout &DL = M->getDataLayout();
  for (auto si = Selects.begin(), se = Selects.end(); si != se; ++si) {
    auto Sel = *si;
    Value *FalseVal = Sel->getFalseValue();

    // This code removes redundancy introduced by
    // select & phi lying within the same goto-join region
    // and effectively duplicating the work.
    bool LoadFalseVal = true;
    Instruction *Goto = nullptr;
    if (auto *ExtrCond = dyn_cast<ExtractValueInst>(Sel->getCondition()))
      Goto = dyn_cast<Instruction>(ExtrCond->getAggregateOperand());
    for (auto *U : Sel->users()) {
      auto *SelPhiUser = dyn_cast<PHINode>(U);
      if (!SelPhiUser)
        continue;
      DominatorTree *DomTree = getDomTree(Sel->getFunction());
      // NOTE: we should expect exactly 2 incoming blocks,
      // but sometimes we may have more due to both
      // NoCondEV cases and critical edge splitting,
      // and that should not affect correctness of the transformation
      // IGC_ASSERT(PhiUser->getNumIncomingValues() == 2);
      if (auto *DomBB = DomTree->findNearestCommonDominator(
              SelPhiUser->getIncomingBlock(0),
              SelPhiUser->getIncomingBlock(1))) {
        auto *Term = dyn_cast<BranchInst>(DomBB->getTerminator());
        if (Term && Term->isConditional()) {
          auto *ExtrCond = dyn_cast<ExtractValueInst>(Term->getCondition());
          if (ExtrCond && ExtrCond->getAggregateOperand() == Goto) {
            LoadFalseVal = false;
            break;
          }
        }
      }
    }

    if (auto C = dyn_cast<Constant>(FalseVal)) {
      if (!isa<UndefValue>(C)) {
        if (LoadFalseVal) {
          // The false value needs loading if it is a constant other than
          // undef.
          SmallVector<Instruction *, 4> AddedInstructions;
          FalseVal =
              ConstantLoader(C, Subtarget, DL, nullptr, &AddedInstructions)
                  .loadBig(Sel);
          // ConstantLoader generated at least one instruction.  Ensure that
          // each one has debug loc and category.
          for (auto aii = AddedInstructions.begin(),
                    aie = AddedInstructions.end();
               aii != aie; ++aii) {
            Instruction *I = *aii;
            I->setDebugLoc(Sel->getDebugLoc());
          }
        } else
          // As mentioned above, we're trying to eliminate
          // redundancy with select+phi in a goto/join region.
          // So we convert select to a wrr with an undef source
          // for it to effectively become a simple mov
          FalseVal = UndefValue::get(C->getType());
      }
    }
    Region R(Sel);
    R.Mask = Sel->getCondition();
    IGC_ASSERT(FalseVal);
    Value *Wr = R.createWrRegion(FalseVal, Sel->getTrueValue(),
          Sel->getName(), Sel, Sel->getDebugLoc());
    Sel->replaceAllUsesWith(Wr);
    Liveness->eraseLiveRange(Sel);
    Sel->eraseFromParent();
    Modified = true;
  }
}

/***********************************************************************
 * hoistExtractEMInstructions : hoist EM-related extractvalue
 * instructions and remove duplicates if there are such to comply
 * EM conformance
 *
 * Duplicates may be insterted by LICM before late pass. This method
 * is not needed in early pass, because redundant extractvalues are
 * deleted by preceding EarlyCSE there.
 *
 * Currently, RM duplicates are not handled, because no case where it
 * might be needed was found as of yet
 */
void GenXLateSimdCFConformance::hoistExtractEMInstructions() {
  DenseMap<SimpleValue, ExtractValueInst *> EVs;
  llvm::SmallVector<ExtractValueInst *, 8> ToRemove;

  for (auto &&EMVal : EMVals)
    if (auto *V = dyn_cast<ExtractValueInst>(EMVal.getValue())) {
      auto *StructVal = cast<Instruction>(V->getAggregateOperand());
      auto [It, IsInserted] = EVs.try_emplace(SimpleValue{StructVal, V->getIndices()}, V);
      if (IsInserted)
        V->moveAfter(StructVal);
      else {
        ToRemove.push_back(V);
        V->replaceAllUsesWith(It->second);
        V->eraseFromParent();
      }
    }
  for (auto &&V : ToRemove)
    removeFromEMRMVals(V);
}

/***********************************************************************
 * optimizeRestoredSIMDCF : perform optimization on restored SIMD CF
 *
 * Restored SIMD CF is built from linear code blocks that came from
 * llvm transformations. Some code could be moved from SIMD CF after
 * join point during this transformations. This function tries to
 * put such code back.
 *
 * TODO: some other transformations could be applied after SIMD CF was
 * linearized. Maybe this function should be updated in future.
 */
void GenXSimdCFConformance::optimizeRestoredSIMDCF() {
  for (auto Data : BlocksToOptimize) {
    // Skip blocks with lowered EM values
    if (!EMVals.count(SimpleValue(Data.second.getRealEM(), 0))) {
      LLVM_DEBUG(dbgs() << "optimizeRestoredSIMDCF: skipping "
                        << Data.first->getName() << "\n");
      continue;
    }
    optimizeLinearization(Data.first, Data.second);
  }
}

/***********************************************************************
 * isActualStoredEM : check if Inst is a actual stored EM
 *
 * This function is called during linear fragment optimization.
 * The actual stored EM is a PHI node with const/getEM inputs here.
 * Actuallity is checked via EM-getEM map.
 */
bool GenXSimdCFConformance::isActualStoredEM(Instruction *Inst,
                                             JoinPointOptData &JPData) {
  LLVM_DEBUG(dbgs() << "isActualStoredEM: visiting\n" << *Inst << "\n");
  PHINode *PN = dyn_cast<PHINode>(Inst);

  // Linearized block should be turned into a hammock: stored EM
  // must come via PHI with two preds. Go through shufflevector
  // in case of truncated EM.
  if (auto *SVI = dyn_cast<ShuffleVectorInst>(Inst)) {
    LLVM_DEBUG(dbgs() << "Truncated EM detected\n");

    // Check SVI trunc correctness
    if (!canUseRealEM(Inst, 0)) {
      LLVM_DEBUG(dbgs() << "Bad trunc via SVI: not an actual EM\n");
      return false;
    }

    PN = dyn_cast<PHINode>(SVI->getOperand(0));
  }
  if (!PN || PN->getNumIncomingValues() != 2) {
    LLVM_DEBUG(dbgs() << "Incompatable inst: not an actual EM\n");
    return false;
  }

  Value *ExpectedGetEM = PN->getIncomingValueForBlock(JPData.getFalsePred());
  Value *ExpectedConstEM = PN->getIncomingValueForBlock(JPData.getTruePred());

  IGC_ASSERT_MESSAGE(ExpectedGetEM, "Bad phi in hammock!");
  IGC_ASSERT_MESSAGE(ExpectedConstEM, "Bad phi in hammock!");

  // Find stored value
  auto It = LoweredEMValsMap.find(JPData.getRealEM());
  if (It == LoweredEMValsMap.end()) {
    LLVM_DEBUG(dbgs() << "No EM was stored: not an actual EM\n");
    return false;
  }

  // Check if the val from SIMD BB is a stored via get.em EM
  if (ExpectedGetEM != It->second) {
    LLVM_DEBUG(
        dbgs() << "SIMD BB value is not a correct get.em: not an actual EM\n");
    return false;
  }

  // Check if the val from True BB is an all null constant
  if (ExpectedConstEM != Constant::getNullValue(ExpectedConstEM->getType())) {
    LLVM_DEBUG(
        dbgs()
        << "True BB value is not a correct constant: not an actual EM\n");
    return false;
  }

  LLVM_DEBUG(dbgs() << "All checks passed\n");
  return true;
}

/***********************************************************************
 * canBeMovedUnderSIMDCF : check if Instruction can be moved under
 * SIMD CF
 *
 * This function is called during linear fragment optimization.
 * We can move instruction if such movement does not corrupt
 * dominance. Sometimes we can meet several instruction that
 * should be moved. There is a recursive call, all instructions
 * in chain are stored in Visited set.
 */
bool GenXSimdCFConformance::canBeMovedUnderSIMDCF(
    Value *Val, BasicBlock *CurrBB, JoinPointOptData &JPData,
    std::set<Instruction *> &Visited) {
  Instruction *Inst = dyn_cast<Instruction>(Val);

  // Can be non-inst. In this case we have nothing to check.
  if (!Inst)
    return true;

  LLVM_DEBUG(dbgs() << "canBeMovedUnderSIMDCF: visiting\n" << *Inst << "\n");

  // Mark instruction as visited. Return if it was already added to set:
  // we don't expect it to be here.
  if (!Visited.insert(Inst).second) {
    LLVM_DEBUG(dbgs() << "Instruction was already visited: do not move\n");
    return false;
  }

  // Instruction is not located in linearized fragment
  if (Inst->getParent() != CurrBB) {
    LLVM_DEBUG(dbgs() << "Out of linearized fragment: do not move\n");
    return false;
  }

  // Do not move join instruction
  if (GenXIntrinsic::getGenXIntrinsicID(Inst) ==
      GenXIntrinsic::genx_simdcf_join) {
    LLVM_DEBUG(dbgs() << "Join instruction: do not move\n");
    return false;
  }

  // TODO: current assumption is that nothing except linearization was applied
  // Skip instruction that has more than one user
  if (!Inst->hasOneUse()) {
    LLVM_DEBUG(dbgs() << "More than one user: do not move\n");
    return false;
  }

  // Check operands
  for (unsigned i = 0, e = Inst->getNumOperands(); i < e; ++i) {
    Instruction *Pred = dyn_cast<Instruction>(Inst->getOperand(i));

    // Not an instruction: not blocking moving
    if (!Pred)
      continue;

    // Check for dominance
    DominatorTree *DomTree = getDomTree(CurrBB->getParent());
    if (DomTree->dominates(Pred, JPData.getFalsePred()))
      continue;

    // Check for actual saved EM: it is a phi located in current BB,
    // so the dominance check failed
    if (isActualStoredEM(Pred, JPData))
      continue;

    // Dominance check and EM check failed: instruction is inside this block
    LLVM_DEBUG(dbgs() << "Recursive call for operand #" << i << "\n");
    if (canBeMovedUnderSIMDCF(Pred, CurrBB, JPData, Visited))
      continue;

    // Recursive call failed: do not move
    LLVM_DEBUG(dbgs() << "canBeMovedUnderSIMDCF: bad operand: do not move\n");
    return false;
  }

  LLVM_DEBUG(dbgs() << "canBeMovedUnderSIMDCF: move\n" << *Inst << "\n");
  return true;
}

/***********************************************************************
 * isSelectConditionCondEV : check if Select's condition is a stored
 * Cond EV value.
 *
 * This function is called during linear fragment optimization.
 * Linear fragment optimization bases on the fact that LLVM performed
 * code movement with PHI -> select transformation. This function
 * checks if the select condition is a CondEV from previous SIMD
 * branching instruction.
 *
 * This function also can handle constant vectorization if it
 * was applied: it doesn't break SIMD CF CondEV semantics.
 */
bool GenXSimdCFConformance::isSelectConditionCondEV(SelectInst *Sel,
                                                    JoinPointOptData &JPData) {
  PHINode *PN = dyn_cast<PHINode>(Sel->getCondition());
  if (!PN)
    return false;

  // CondEV Phi must be in the same BB
  if (PN->getParent() != Sel->getParent())
    return false;

  Value *TrueBlockValue = PN->getIncomingValueForBlock(JPData.getTruePred());
  Value *FalseBlockValue = PN->getIncomingValueForBlock(JPData.getFalsePred());

  IGC_ASSERT_MESSAGE(TrueBlockValue, "Bad phi in hammock!");
  IGC_ASSERT_MESSAGE(FalseBlockValue, "Bad phi in hammock!");

  Constant *TrueBlockConst = dyn_cast<Constant>(TrueBlockValue);
  Constant *FalseBlockConst = dyn_cast<Constant>(FalseBlockValue);

  if (!TrueBlockConst || !FalseBlockConst)
    return false;

  // It is not necessary to check constant type due CondEV semantics
  if (!TrueBlockConst->isOneValue() || !FalseBlockConst->isNullValue())
    return false;

  return true;
}

/***********************************************************************
 * replaceGetEMUse : find and replace GetEM uses to fix dominance.
 *
 * This function is called during linear fragment optimization.
 * After we moved Inst to SIMD BB, we need to update EM connections
 * according to updated DF.
 *
 * In many cases we can place real EM instead of lowered one.
 * GetEM may become redundant - it will be removed later in this pass.
 *
 * Note: SIMD CF will be non-conformant if Inst is left at the point
 * where new EM was generated. Inst is moved after that replacement
 * in linearized fragment optimization so conformance is not broken.
 */
void GenXSimdCFConformance::replaceGetEMUse(Instruction *Inst,
                                            JoinPointOptData &JPData) {
  for (unsigned i = 0, e = Inst->getNumOperands(); i < e; ++i) {
    Instruction *Pred = dyn_cast<Instruction>(Inst->getOperand(i));

    if (!Pred)
      continue;

    // EM must be in the same BB
    if (Pred->getParent() != Inst->getParent())
      continue;

    if (!isActualStoredEM(Pred, JPData))
      continue;

    if (canUseRealEM(Inst, i)) {
      // Replace with real EM
      Instruction *NewOp = JPData.getRealEM();
      Instruction *FullEM = nullptr;
      if (isa<ShuffleVectorInst>(Pred)) {
        // Copy truncation via SVI
        NewOp = Pred->clone();
        NewOp->insertBefore(JPData.getFalsePred()->getTerminator());
        NewOp->setOperand(0, JPData.getRealEM());
        FullEM = cast<Instruction>(Pred->getOperand(0));
      }
      Inst->setOperand(i, NewOp);

      // Remove Pred if it is not needed anymore.
      // Do the same for FullEM.
      // GetEM that was used here will be handled later.
      if (Pred->use_empty()) {
        Pred->eraseFromParent();
      }
      if (FullEM && FullEM->use_empty()) {
        FullEM->eraseFromParent();
      }
    } else {
      // Replace with lowered EM
      auto it = LoweredEMValsMap.find(JPData.getRealEM());
      IGC_ASSERT_MESSAGE(it != LoweredEMValsMap.end(),
                         "Should be checked earlier");
      Instruction *LoweredEM = cast<Instruction>(it->second);
      Inst->setOperand(i, LoweredEM);

      if (Pred->use_empty())
        Pred->eraseFromParent();
    }
  }
}

/***********************************************************************
 * optimizeLinearization : optimize linearized fragment
 *
 * This optimization restores SIMD CF for linearized fragment.
 * To detect code that can be moved under SIMD CF, we need to find
 * a the following select inst:
 *    Val = select CondEV, OldVal, NewVal
 * Details can be found below.
 */
void GenXSimdCFConformance::optimizeLinearization(BasicBlock *BB,
                                                  JoinPointOptData &JPData) {
  std::set<Instruction *> InstsToMove;
  std::vector<SelectInst *> SelectsToOptimize;
  for (Instruction *Inst = BB->getTerminator()->getPrevNode();
       Inst && !dyn_cast<PHINode>(Inst); Inst = Inst->getPrevNode()) {
    // We are looking for "Val = select CondEV, OldVal, NewVal" instruction.
    //
    // Linearization put NewVal calculations after JP. OldVal came from True BB
    // via PHI instruction. We can move NewVal calculations under SIMD CF and
    // place a PHINode instead of this select. Val, OldVal and NewVal will be
    // coalesced and allocated on the same register later.
    SelectInst *Select = dyn_cast<SelectInst>(Inst);
    if (!Select || !isSelectConditionCondEV(Select, JPData))
      continue;

    // Check if OldVal came from outside. Also it can be a constant.
    // TODO: current assumption is that nothing except linearization was
    // applied. It is possible that OldVal was moved down after it. We also can
    // move it back but some analysis is required to avoid possible overhead.
    // Not done now.
    Value *OldVal = Select->getTrueValue();
    if (Instruction *OldValInst = dyn_cast<Instruction>(OldVal)) {
      DominatorTree *DomTree = getDomTree(BB->getParent());
      // Must dominate this BB and SIMD BB
      if (!DomTree->dominates(OldValInst, BB) ||
          !DomTree->dominates(OldValInst, JPData.getFalsePred()))
        continue;
    }

    // Check NewVal
    Value *NewVal = Select->getFalseValue();
    std::set<Instruction *> Visited;
    if (!canBeMovedUnderSIMDCF(NewVal, BB, JPData, Visited))
      continue;

    // We can optimize this select
    InstsToMove.insert(Visited.begin(), Visited.end());
    SelectsToOptimize.push_back(Select);
  }

  // Move instructions
  // FIXME: there must be a way to do it in a better manner
  // The idea of this is to save the instructions' order so we don't brake
  // dominance when movement is performed.
  std::vector<Instruction *> OrderedInstsToMove;
  for (Instruction *Inst = BB->getFirstNonPHI(); Inst;
       Inst = Inst->getNextNode()) {
    if (InstsToMove.find(Inst) == InstsToMove.end())
      continue;
    OrderedInstsToMove.push_back(Inst);
  }
  for (auto *Inst : OrderedInstsToMove) {
    replaceGetEMUse(Inst, JPData);
    Inst->moveBefore(JPData.getFalsePred()->getTerminator());
  }

  // Handle selects
  for (auto *Select : SelectsToOptimize) {
    PHINode *PN = PHINode::Create(Select->getType(), 2, "optimized_sel",
                                  BB->getFirstNonPHI());
    PN->addIncoming(Select->getTrueValue(), JPData.getTruePred());
    PN->addIncoming(Select->getFalseValue(), JPData.getFalsePred());
    Select->replaceAllUsesWith(PN);
    Select->eraseFromParent();
  }
}

/***********************************************************************
 * GotoJoinEVs::GotoJoinEVs : collects and handle EVs. See CollectEVs
 * for more info.
 */
GenXSimdCFConformance::GotoJoinEVs::GotoJoinEVs(Value* GJ) {
  GotoJoin = GJ;

  if (!GotoJoin)
    return;

  switch (GenXIntrinsic::getGenXIntrinsicID(GotoJoin)) {
  case GenXIntrinsic::genx_simdcf_goto:
    IsGoto = true;
    break;
  case GenXIntrinsic::genx_simdcf_join:
    IsGoto = false;
    break;
  default:
    IGC_ASSERT_MESSAGE(0, "Expected goto or join!");
    break;
  }

  CollectEVs();
}

/***********************************************************************
 * GotoJoinEVs::getEMEV : get EV for goto/join Execution Mask
 */
ExtractValueInst *GenXSimdCFConformance::GotoJoinEVs::getEMEV() const {
  IGC_ASSERT_MESSAGE(GotoJoin, "Uninitialized GotoJoinEVs Data!");
  static_assert(EMPos < (sizeof(EVs) / sizeof(*EVs)));
  return EVs[EMPos];
}

/***********************************************************************
 * GotoJoinEVs::getRMEV : get EV for goto/join Resume Mask
 */
ExtractValueInst *GenXSimdCFConformance::GotoJoinEVs::getRMEV() const {
  IGC_ASSERT_MESSAGE(GotoJoin, "Uninitialized GotoJoinEVs Data!");
  IGC_ASSERT_MESSAGE(IsGoto, "Only goto returns RM!");
  static_assert(RMPos < (sizeof(EVs) / sizeof(*EVs)));
  return EVs[RMPos];
}

/***********************************************************************
 * GotoJoinEVs::getCondEV : get EV for goto/join condition
 */
ExtractValueInst *GenXSimdCFConformance::GotoJoinEVs::getCondEV() const {
  ExtractValueInst *Result = nullptr;
  IGC_ASSERT_MESSAGE(GotoJoin, "Uninitialized GotoJoinEVs Data!");
  if (IsGoto) {
    static_assert(GotoCondPos < (sizeof(EVs) / sizeof(*EVs)));
    Result = EVs[GotoCondPos];
  } else {
    static_assert(JoinCondPos < (sizeof(EVs) / sizeof(*EVs)));
    Result = EVs[JoinCondPos];
  }
  return Result;
}

Value *GenXSimdCFConformance::GotoJoinEVs::getGotoJoin() const {
  IGC_ASSERT_MESSAGE(GotoJoin, "Uninitialized GotoJoinEVs Data!");
  return GotoJoin;
}

/***********************************************************************
 * GotoJoinEVs::getSplitPoint : find first instruction that is not
 * a EV or doesn't use Goto/Join. Such instruction always exists
 * in a correct IR - BB terminator is a such instruction.
 */
 Instruction *GenXSimdCFConformance::GotoJoinEVs::getSplitPoint() const {
  IGC_ASSERT_MESSAGE(GotoJoin, "Uninitialized GotoJoinEVs Data!");
  Instruction *SplitPoint = cast<Instruction>(GotoJoin)->getNextNode();
  for (; isa<ExtractValueInst>(SplitPoint) && SplitPoint->getOperand(0) == GotoJoin;
    SplitPoint = SplitPoint->getNextNode());
  return SplitPoint;
 }

/***********************************************************************
 * GotoJoinEVs::setCondEV : set EV for goto/join condition. It is
 * needed on basic block splitting to handle bad Cond EV user.
 */
void GenXSimdCFConformance::GotoJoinEVs::setCondEV(ExtractValueInst *CondEV) {
  IGC_ASSERT_MESSAGE(GotoJoin, "Uninitialized GotoJoinEVs Data!");
  IGC_ASSERT_MESSAGE(!getCondEV(), "CondEV is already set!");
  if (IsGoto) {
    static_assert(GotoCondPos < (sizeof(EVs) / sizeof(*EVs)));
    EVs[GotoCondPos] = CondEV;
  } else {
    static_assert(JoinCondPos < (sizeof(EVs) / sizeof(*EVs)));
    EVs[JoinCondPos] = CondEV;
  }
}

/***********************************************************************
 * GotoJoinEVs::isGoto : check wether this EVs info belongs to goto
 */
bool GenXSimdCFConformance::GotoJoinEVs::isGoto() const {
  IGC_ASSERT_MESSAGE(GotoJoin, "Uninitialized GotoJoinEVs Data!");
  return IsGoto;
}

/***********************************************************************
 * GotoJoinEVs::isJoin : check wether this EVs info belongs to join
 */
bool GenXSimdCFConformance::GotoJoinEVs::isJoin() const {
  IGC_ASSERT_MESSAGE(GotoJoin, "Uninitialized GotoJoinEVs Data!");
  return !IsGoto;
}

/***********************************************************************
 * GotoJoinEVs::getNameForMissingEV : helper for generating variable
 * names while creating missing EV instructions. Bases on the value
 * extraction index.
 */
std::string GenXSimdCFConformance::GotoJoinEVs::getNameForMissingEV(
    unsigned EVIndex) const {
  std::string Name = "missing";
  switch (EVIndex) {
  case EMPos:
    Name += "EMEV";
    break;
  case RMPos:
    Name += "RMEV";
    break;
  case GotoCondPos:
    Name += "CondEV";
    break;
  }
  return Name;
}

/***********************************************************************
 * GotoJoindEVs::CanonicalizePHIs : make goto/join -> EV -> PHI chains
 * conformant to the same pattern.
 *
 * Check if goto/join is used by any PHI nodes directly. In such cases,
 * unify the CFG through the following transformation:
 *
 * -----------------------------------------------------------------------
 * | BB.phi:                                                             |
 * | %phinode = phi %structtype [%gotojoin.1, %BB1], [%gotojoin.2, BB2]  |
 * | %ev = extractvalue %structtype %phinode, <n>                        |
 * | ; use %ev                                                           |
 * -----------------------------------------------------------------------
 *                          |       |       |
 *                          V       V       V
 * -----------------------------------------------------------------------
 * | BB1:                                                                |
 * | %ev.1 = extractvalue %structtype %gotojoin.1, <n>                   |
 * | ...                                                                 |
 * | BB2:                                                                |
 * | %ev.2 = extractvalue %structtype %gotojoin.2, <n>                   |
 * | ...                                                                 |
 * | BB.phi:                                                             |
 * | %phinode = phi %<extracted.type> [%ev.1, %BB1], [%ev.2, %BB.2]      |
 * | ; use %phinode                                                      |
 * -----------------------------------------------------------------------
 */
void GenXSimdCFConformance::GotoJoinEVs::CanonicalizePHIs() {
  // Collect all PHIs from GotoJoin users.
  llvm::SmallVector<PHINode *, 4> PHINodes;
  for (auto *U : GotoJoin->users())
    if (auto *PN = dyn_cast<PHINode>(U))
      PHINodes.push_back(PN);

  for (auto *PN : PHINodes) {
    SmallVector<ExtractValueInst *, 4> EVsToReplace;
    // Iterate over EVs for each PHI node.
    for (auto *PHIUser : PN->users()) {
      auto *EV = dyn_cast<ExtractValueInst>(PHIUser);
      IGC_ASSERT_MESSAGE(EV, "Bad user of goto/join!");
      IGC_ASSERT_MESSAGE(EV->getNumIndices() == 1, "Expected 1 index in Extract Value for goto/join!");
      // Extract index info from the EV - we need to create similar EVs for the
      // goto/join calls themselves.
      ArrayRef<unsigned> idxArray = EV->getIndices();
      // Create a corresponding EV for each of PHI's incoming goto/join calls,
      // then reset the PHI node to reference these new EVs.
      PN->mutateType(EV->getType());
      for (unsigned i = 0; i < PN->getNumIncomingValues(); ++i) {
        auto *newEV = ExtractValueInst::Create(
            PN->getIncomingValue(i), idxArray, getNameForMissingEV(idxArray[0]),
            PN->getIncomingBlock(i));
        PN->setIncomingValue(i, newEV);
      }
      // Now that the PHI points to the goto/join EVs, it should be used
      // instead of the pre-existing EV from PHI's basic block. Mark the
      // EV for replacement and deletion.
      EVsToReplace.push_back(EV);
    }
    for (auto *EV : EVsToReplace) {
      EV->replaceAllUsesWith(PN);
      EV->eraseFromParent();
    }
  }
}

/***********************************************************************
 * GotoJoindEVs::CollectEVs : handle and store goto/join EVs
 *
 * This does the following steps:
 *  - Locate EVs. If we found a duplicate, just replace users.
 *  - Move EVs right after the goto/join
 *  - Add missing EM and RM. This is needed for correct liverange
 *    interference analysis.
 */
void GenXSimdCFConformance::GotoJoinEVs::CollectEVs() {
  IGC_ASSERT_MESSAGE(GotoJoin, "Uninitialized GotoJoinEVs Data!");
  IGC_ASSERT_MESSAGE(testIsGotoJoin(GotoJoin), "Expected goto or join!");

  auto GotoJoinInst = dyn_cast<Instruction>(GotoJoin);

  // Before handling EVs, ensure that PHIs always use extractvalue results
  // instead of referencing goto/join results directly.
  CanonicalizePHIs();
  // Now that EV/PHI graph is canonical, collect EVs, hoist them, resolve
  // duplications.
  for (auto ui = GotoJoin->use_begin(), ue = GotoJoin->use_end(); ui != ue;) {

    auto EV = dyn_cast<ExtractValueInst>(ui->getUser());
    ++ui;

    IGC_ASSERT_MESSAGE(EV, "Bad user of goto/join!");
    IGC_ASSERT_MESSAGE(EV->getNumIndices() == 1, "Expected 1 index in Extract Value for goto/join!");

    const unsigned idx = EV->getIndices()[0];
    IGC_ASSERT(testPosCorrectness(idx));

    LLVM_DEBUG(dbgs() << "Found EV:\n" << *EV << "\n");
    IGC_ASSERT(idx < (sizeof(EVs) / sizeof(*EVs)));
    if (EVs[idx]) {
      LLVM_DEBUG(dbgs() << "Duplication: replacing users with:\n" << *EVs[idx] << "\n");
      EV->replaceAllUsesWith(EVs[idx]);
      EV->eraseFromParent();
    }
    else {
      LLVM_DEBUG(dbgs() << "Saving it.\n");
      EVs[idx] = EV;
    }
  }

  // Add missing EVs for masks
  for (unsigned idx = 0, end = IsGoto ? RMPos : EMPos; idx <= end; ++idx) {
    IGC_ASSERT(idx < (sizeof(EVs) / sizeof(*EVs)));
    if (EVs[idx])
      continue;

    auto EV = ExtractValueInst::Create(
        GotoJoin, { idx }, getNameForMissingEV(idx), GotoJoinInst->getParent());
    EVs[idx] = EV;
  }

  hoistEVs();
}

/***********************************************************************
 * GotoJoinEVs::hoistEVs : move EVs right after goto/join
 */
void GenXSimdCFConformance::GotoJoinEVs::hoistEVs() const{
  IGC_ASSERT_MESSAGE(GotoJoin, "Uninitialized GotoJoinEVs Data!");

  LLVM_DEBUG(dbgs() << "Moving EV users after:\n" << *GotoJoin << "\n");

  const size_t count = (sizeof(EVs) / sizeof(*EVs));
  for (size_t idx = 0; idx < count; ++idx) {
    if (EVs[idx])
      EVs[idx]->moveAfter(dyn_cast<Instruction>(GotoJoin));
  }
}

/***********************************************************************
 * DiagnosticInfoSimdCF::emit : emit an error or warning
 */
void DiagnosticInfoSimdCF::emit(Instruction *Inst, StringRef Msg,
        DiagnosticSeverity Severity)
{
  DiagnosticInfoSimdCF Err(Severity, *Inst->getParent()->getParent(),
      Inst->getDebugLoc(), Msg);
  Inst->getContext().diagnose(Err);
}