1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
//
/// GenXStructSplitter
/// ------------------
/// It is a module pass whose purpose is to split all complicate structs into
/// plain substructs for further optimizations.
/// eg. {vec3f, vec3f, f, vec5i} will become {vec3f, vec3f, f} {vec5i}.
///
/// It does in 2 main steps:
/// 1. Resolves which structs can be split and splits it.
/// a. Collects all structs.
/// b. Creates DependencyGraph (DAG) of struct usage.
/// Contains information about nested structures.
/// c. Splits structures starting from the nodes that have no output.
/// 2. Replaces all structures if it is possible.
/// a. Replaces allocas.
/// I. Generates new allocas.
/// II. Updates debug information.
/// b. Replaces all uses of allocas (GEP and PTI).
/// I. Replace all uses of GEP and PTI.
///
/// Ex. (C-like):
/// struct A = {int, float};
/// A a;
/// int i = a.int;
/// Will become:
/// struct Ai = {int};
/// struct Af = {float};
/// Ai ai;
/// Af af;
/// int i = ai.int;
/// With unwrapping optimization (The unique-type element is
/// extracted from structure):
/// Ai is a int;
/// Af is a float;
/// Ai ai;
/// Af af;
/// int i = ai;
///
/// Limitations:
/// 1. Structure contains array of complex structs.
/// 2. Structure is allocated as an array.
/// 3. Structure contains prohibitted structure.
/// 4. Structure using instruction is not GEP, PTI, alloca.
/// Except pattern: alloca->bitcast->lifetime.start/end
/// This unstructions are ignored.
/// 5. Users of the PTI not add, insertelement, shufflevector, read/write.
/// 6. Pointer of the structure goes in function (except read/write).
/// 7. Pointer offset from the beginning of the structure covers different
/// types.
/// 8. Pointer offset from the beginning of the structure covers unsequential
/// split structs.
///
//===----------------------------------------------------------------------===//
#include "GenX.h"
#include "GenXSubtarget.h"
#include "GenXTargetMachine.h"
#include "vc/Support/GenXDiagnostic.h"
#include "vc/Utils/General/DebugInfo.h"
#include "vc/Utils/General/Iterator.h"
#include <llvm/CodeGen/TargetPassConfig.h>
#include <llvm/IR/DebugInfo.h>
#include <llvm/IR/DerivedTypes.h>
#include <llvm/IR/IRBuilder.h>
#include <llvm/IR/InstVisitor.h>
#include <llvm/IR/Instructions.h>
#include <llvm/Pass.h>
#include <llvm/PassRegistry.h>
#include <llvm/Support/Debug.h>
#include <llvm/Transforms/Utils/BasicBlockUtils.h>
#include <llvm/Transforms/Utils/Local.h>
#include <llvmWrapper/Support/Alignment.h>
#include "Probe/Assertion.h"
#include <unordered_map>
#include <unordered_set>
using namespace llvm;
#define DEBUG_TYPE "GENX_STRUCT_SPLITTER"
static cl::opt<bool> PerformStructSplitting(
"vc-struct-splitting", cl::init(true), cl::Hidden,
cl::desc(
"Performs splitting complicate-constucted structs to plain structs."));
namespace {
class GenXStructSplitter : public ModulePass {
public:
static char ID;
explicit GenXStructSplitter() : ModulePass(ID) {}
~GenXStructSplitter() = default;
StringRef getPassName() const override { return "GenX struct splitter"; }
void getAnalysisUsage(AnalysisUsage &AU) const override;
bool runOnModule(Module &M) override;
};
} // namespace
namespace llvm {
void initializeGenXStructSplitterPass(PassRegistry &);
}
char GenXStructSplitter::ID = 0;
INITIALIZE_PASS_BEGIN(GenXStructSplitter, "GenXStructSplitter",
"GenXStructSplitter", false, false)
INITIALIZE_PASS_DEPENDENCY(GenXBackendConfig)
INITIALIZE_PASS_END(GenXStructSplitter, "GenXStructSplitter",
"GenXStructSplitter", false, false)
ModulePass *llvm::createGenXStructSplitterPass() {
initializeGenXStructSplitterPass(*PassRegistry::getPassRegistry());
return new GenXStructSplitter;
}
void GenXStructSplitter::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<GenXBackendConfig>();
AU.setPreservesAll();
}
static Type *getArrayFreeTy(Type *Ty);
static Type *getBaseTy(Type *Ty);
static const char *getTypePrefix(Type &Ty);
// Class to do first analysis and ban all structures, which cannot be split
// at advance. It bans structures containing array of complex structs. It bans
// structures containing banned structs.
class StructFilter {
std::unordered_set<StructType *> BannedStructs;
bool checkForArrayOfComplicatedStructs(StructType &STy) const;
bool checkForElementOfBannedStruct(StructType &STy) const;
public:
StructFilter(Module &M);
bool isStructBanned(StructType &STy) const;
void print(raw_ostream &os = llvm::errs()) const;
};
// Class to handle all information about Structs which are used in Module.
// It contains initial structs info, performs struct splitting,
// contains transformation of structs and final structs info in Module.
// Example of work of this class is showed with dependencies:
// C : { [5 x A], i, f, [5 x B], D }
// A : { f, [5 x f] }
// B : { i, [5 x i] }
// D : { A, B }
// Where A,B,C,D are structs; f,i - base unsplit types.
class DependencyGraph {
public:
//***************************************
// Part responsible for types definition.
//***************************************
// Helper structure contains split struct or unwrapped type and position of
// data. SElement is unwrapped in case of splitting structures with only one
// element inside. So element is not a split structure, but the type
// itself, e.g. {int} -> int.
class SElement {
Type *Ty{nullptr};
unsigned Index{0};
bool IsUnwrapped{false};
public:
SElement() = default;
SElement(StructType *const &InTy, unsigned InIndex);
SElement(Type *const &InTy);
StructType *getStructTyIfPossible() const;
StructType *getStructTy() const;
Type *getTy() const;
Type *retrieveElemTy() const;
unsigned getIndex() const;
bool isUnwrapped() const;
void print(raw_ostream &os = llvm::errs()) const;
};
// Helper class contains array of Types and Indices where Type is placed.
// Position of the element in the array defines element's position in the
// split structure.
class SElementsOfType {
std::vector<Type *> Types;
// vector of Indices corresponding to vector of Types.
std::vector<unsigned> IndicesOfTypes;
public:
SElementsOfType(unsigned Size);
SElementsOfType(const std::vector<Type *> &InTypes);
unsigned size() const;
Type *getTyAt(unsigned Index) const;
unsigned getIdxAt(unsigned Index) const;
std::pair<Type *&, unsigned &> at(unsigned Index);
std::pair<Type *const &, const unsigned &> at(unsigned Index) const;
const std::vector<Type *> &getTypesArray() const { return Types; }
using ty_iterator = std::vector<Type *>::iterator;
using idx_iterator = std::vector<unsigned>::iterator;
using const_ty_iterator = std::vector<Type *>::const_iterator;
using const_idx_iterator = std::vector<unsigned>::const_iterator;
// Iterator for SElementsOfType to be able to iterate over a range of
// Types and IndicesOfTypes simultaneously.
using value_type = std::pair<const_ty_iterator::value_type,
const_idx_iterator::value_type>;
struct const_iterator {
using iterator_category = std::forward_iterator_tag;
using difference_type = std::ptrdiff_t;
using value_type = SElementsOfType::value_type;
using pointer = value_type *;
using reference =
value_type; // Reference is a value_type as right now I guarantee,
// that value pointed by iterator wont be changed, so
// copy of pair is not crusual.
const_iterator() = delete;
const_iterator(const_ty_iterator TyItIn, const_idx_iterator IdxItIn);
reference operator*() const;
const_iterator &operator++();
const_iterator operator++(int);
const_iterator operator+(difference_type RHS) const;
friend bool operator==(const const_iterator &LHS,
const const_iterator &RHS);
friend bool operator!=(const const_iterator &LHS,
const const_iterator &RHS);
private:
const_ty_iterator TyIt;
const_idx_iterator IdxIt;
};
ty_iterator ty_begin() { return Types.begin(); }
const_ty_iterator ty_begin() const { return Types.begin(); }
ty_iterator ty_end() { return Types.end(); }
const_ty_iterator ty_end() const { return Types.end(); }
idx_iterator idx_begin() { return IndicesOfTypes.begin(); }
const_idx_iterator idx_begin() const { return IndicesOfTypes.begin(); }
idx_iterator idx_end() { return IndicesOfTypes.end(); }
const_idx_iterator idx_end() const { return IndicesOfTypes.end(); }
const_iterator begin() const {
return const_iterator{Types.begin(), IndicesOfTypes.begin()};
}
const_iterator end() const {
return const_iterator{Types.end(), IndicesOfTypes.end()};
}
auto indices() const { return make_range(idx_begin(), idx_end()); }
auto types() const { return make_range(ty_begin(), ty_end()); }
void emplace_back(Type &Ty, unsigned Index);
void push_back(const value_type &Elem);
void emplace_back(const SElement &Elem);
void print(raw_ostream &Os = llvm::errs()) const;
};
// The SMap is a full collection of Structs in Module within the
// complete information about types and elements which are used in structure.
// The STypes is a full information about elements used in Struct.
// The Idea is to separate all elements by their baseType.
// SMap looks like:
// StructType : (BaseTy: <ElementType, IndexOfElement> <,> ...)
// C : (i: <i, 1> <[5xB], 3>)
// (f: <[5xA], 0> <f, 2>)
// (D: <D, 4>)
// A : (f: <f, 0> <[5xf], 1>)
// B : (i: <i, 0> <[5xi], 1>)
// D : (f: <A, 0>)
// (i: <B, 0>)
using STypes = std::unordered_map<Type *, SElementsOfType>;
using SMap = std::unordered_map<StructType *, STypes>;
// The typedefs bellow are full information about struct's transformation.
// The idea is to generate map between old struct's elements and new split
// struct's elements. Index of the element in InitSTy is index of
// ElemMapping and Index of the element of SplitSTy will be
// put according the InitSTy's element index. VecOfStructInfo looks like:
// InitSTy : (SplitSTy, Index) (,) <- at position=0
// (,) <- at position=1
// eg. splitting of structs D and C:
// D : (Df, 0)
// (Di, 0)
// C : (Cf, 0)
// (Ci, 0)
// (Cf, 1)
// (Ci, 1)
// (Cf, 2) (Ci, 2)
// And SMap in that case also contains:
// Ci : (i: <i, 0> <[5xB], 1> <Di, 2)
// Cf : (f: <[5xA], 0> <f, 1> <Df, 2)
// Df : (f: <A, 0>)
// Di : (i: <B, 0>)
// List of new elements which are on place of old unsplit struct.
// Several elements can apply one place if one unsplit element is split to
// several.
using ListOfSplitElements = std::list<SElement>;
// Vector of new structs elements. The position of the element is in
// accordance with the index of this element in unsplit structure.
using ElemMapping = std::vector<ListOfSplitElements>;
// All collection of new elements.
using InfoAboutSplitStruct = std::pair<StructType *, ElemMapping>;
// Info about all structs to be split.
// Vector has been chosen to save the transformation chronology.
using VecOfStructInfo = std::vector<InfoAboutSplitStruct>;
private:
LLVMContext &Ctx;
SMap AllStructs;
VecOfStructInfo SplitStructs;
// A helping map for fast access to necessary structure transformation.
// Uses reverse_iterator, because VecOfStructInfo is processed backwards.
std::unordered_map<StructType *, VecOfStructInfo::const_reverse_iterator>
InfoToMerge;
// Node represents an aggregative StructType with Nodes(another Structs) on
// which it depends.
class Node {
StructType *STy{nullptr};
// During the Graph transformation intermediate unsplit stucts will be
// generated.
// eg: structure C_BS will be generated
// C_BS : { [5 x A], i, f, [5 x B], Df, Di }.
// But C_BS is the same C structure in terms of dependencies,
// so PreviousNames set contains all previous Node representations.
std::unordered_set<StructType *> PreviousNames;
// eg. C has children A, B, D
// C contains structures A, B, D.
std::unordered_set<Node *> ChildSTys;
// eg. A has parents D, C.
// A is contained by structures D, C.
std::unordered_set<Node *> ParentSTys;
public:
Node(StructType &InSTy) : STy{&InSTy} {}
bool hasParent() const { return !ParentSTys.empty(); }
bool hasChild() const { return !ChildSTys.empty(); }
void insertParent(Node &ParentNode);
void insertChild(Node &ChildNode);
void eraseChild(Node &ChildNode);
bool containsStruct(StructType &InSTy) const;
void substitute(StructType &InSTy);
StructType *getType() const { return STy; }
using iterator = std::unordered_set<Node *>::iterator;
using const_iterator = std::unordered_set<Node *>::const_iterator;
iterator parent_begin() { return ParentSTys.begin(); }
const_iterator parent_begin() const { return ParentSTys.begin(); }
iterator parent_end() { return ParentSTys.end(); }
const_iterator parent_end() const { return ParentSTys.end(); }
auto parents() const { return make_range(parent_begin(), parent_end()); }
auto parents() { return make_range(parent_begin(), parent_end()); }
iterator child_begin() { return ChildSTys.begin(); }
const_iterator child_begin() const { return ChildSTys.begin(); }
iterator child_end() { return ChildSTys.end(); }
const_iterator child_end() const { return ChildSTys.end(); }
auto children() const { return make_range(child_begin(), child_end()); }
auto children() { return make_range(child_begin(), child_end()); }
void dump(int tab, raw_ostream &os = llvm::errs()) const;
};
// Class responsible for allocating and releasing memory occupied by Nodes.
class NodeMemoryManager {
std::vector<std::unique_ptr<Node>> Nodes;
public:
NodeMemoryManager(Module &M);
Node *create(StructType &STy);
};
NodeMemoryManager NodeMM;
//***************************************
// Part responsible for graph handling.
//***************************************
// Heads contains all Nodes that have no parents.
std::vector<Node *> Heads;
void generateGraph();
// Helper type that is used to track Nodes placement in Graph.
using NodeTracker = std::unordered_map<StructType *, Node *>;
Node *createNode(StructType &STy, NodeTracker &Inserted);
void processNode(Node &SNode);
void remakeParent(Node &SNode, Node &SNodeToChange,
ArrayRef<Type *> NewReplaceStructs);
void recreateGraph();
//************************************************************
// Part responsible for recording information about structures
// and tracking transformation.
//************************************************************
void setInfoAboutStructure(StructType &STy);
void mergeStructGenerationInfo();
StructType *checkAbilityToMerge(const ElemMapping &NewSTypes) const;
public:
DependencyGraph(Module &M, const StructFilter &Filter);
void run();
//***************************************
// Part responsible for info accessing.
//***************************************
bool isPlain(StructType &STy) const;
bool isStructProcessed(StructType &STy) const;
const STypes &getStructComponens(StructType &STy) const;
Type *getPlainSubTy(StructType &STy) const;
const ElemMapping &getElemMappingFor(StructType &STy) const;
const ListOfSplitElements &getElementsListOfSTyAtIdx(StructType &STy,
unsigned Idx) const;
std::vector<Type *> getUniqueSplitTypes(StructType &STy) const;
//***************************************
// Part responsible for dumping.
//***************************************
void printData(raw_ostream &os = llvm::errs()) const;
void print(raw_ostream &os = llvm::errs()) const;
void printGraph(raw_ostream &os = llvm::errs()) const;
void printGeneration(raw_ostream &os) const;
};
// This class handles all instructions that use split structs.
struct Substituter : public InstVisitor<Substituter> {
// Aliases for types.
// Contains instructions to be substituted with.
using InstsToSubstitute =
std::vector<std::pair<Instruction *, Instruction *>>;
// Contains map of instructions and base type this instruction operates.
using TypeToInstrMap = std::unordered_map<Type *, Instruction *>;
using ElemMapping = DependencyGraph::ElemMapping;
using ListOfSplitElements = DependencyGraph::ListOfSplitElements;
using SElementsOfType = DependencyGraph::SElementsOfType;
using SElement = DependencyGraph::SElement;
private:
LLVMContext &Ctx;
const DataLayout &DL;
StructFilter Filter;
DependencyGraph Graph;
vc::DIBuilder DIB;
std::vector<AllocaInst *> Allocas;
bool processAlloca(AllocaInst &Alloca);
void updateDbgInfo(ArrayRef<Type *> TypesToGenerateDI, AllocaInst &AI,
AllocaInst &NewAI, DbgDeclareInst &DbgDeclare);
TypeToInstrMap generateNewAllocas(AllocaInst &OldInst);
AllocaInst *generateAlloca(AllocaInst &AI,
const DependencyGraph::SElement &TyElem);
Instruction *generateNewGEPs(GetElementPtrInst &GEPI, Type &DestSTy,
const DependencyGraph::SElementsOfType &IdxPath,
const TypeToInstrMap &NewInstr,
unsigned PlainTyIdx) const;
static Optional<
std::tuple<DependencyGraph::SElementsOfType, std::vector<Type *>>>
getIndicesPath(GetElementPtrInst &GEPI);
static Optional<
std::tuple<std::vector<GetElementPtrInst *>, std::vector<PtrToIntInst *>>>
getInstUses(Instruction &I);
static Optional<uint64_t> processAddInst(Instruction &I, BinaryOperator &BO);
bool processGEP(GetElementPtrInst &GEPI, const TypeToInstrMap &NewInstr,
InstsToSubstitute /*OUT*/ &InstToInst);
bool processPTI(PtrToIntInst &PTI, const TypeToInstrMap &NewInstr,
InstsToSubstitute /*OUT*/ &InstToInst);
static bool processPTIsUses(Instruction &I, uint64_t /*OUT*/ &MaxPtrOffset);
public:
Substituter(Module &M);
void visitAllocaInst(AllocaInst &AI);
bool processAllocas();
void printAllAllocas(raw_ostream &Os = llvm::errs());
};
bool GenXStructSplitter::runOnModule(Module &M) {
const auto &BC = getAnalysis<GenXBackendConfig>();
if (PerformStructSplitting && BC.doStructSplitting())
return Substituter{M}.processAllocas();
return false;
}
//__________________________________________________________________
// Block of StructFilter definition.
//__________________________________________________________________
//
// Performs module checking for banned structs.
//
StructFilter::StructFilter(Module &M) {
std::list<StructType *> NotBannedYet;
// Looks for an element as an array.
for (auto &&STy : M.getIdentifiedStructTypes())
if (checkForArrayOfComplicatedStructs(*STy))
NotBannedYet.push_front(STy);
else
BannedStructs.emplace(STy);
// Looks for an element as banned struct.
for (auto It = NotBannedYet.begin(); It != NotBannedYet.end(); /*none*/)
if (!checkForElementOfBannedStruct(**It)) {
BannedStructs.emplace(*It);
NotBannedYet.erase(It);
It = NotBannedYet.begin();
} else
++It;
}
//
// Returns true if STy is banned, otherwise - false.
//
bool StructFilter::isStructBanned(StructType &STy) const {
return BannedStructs.find(&STy) != BannedStructs.end();
}
//
// Checks if structure contains array or vector of complex type.
// Returns true if it does not.
//
bool StructFilter::checkForArrayOfComplicatedStructs(StructType &STy) const {
auto IsSequential = [](Type &Ty) {
return Ty.isVectorTy() || Ty.isArrayTy();
};
return !llvm::any_of(STy.elements(), [IsSequential](Type *Elem) {
Type *BaseTy = getArrayFreeTy(Elem);
if (StructType *SBTy = dyn_cast<StructType>(BaseTy))
return IsSequential(*Elem) && BaseTy == getBaseTy(SBTy);
return false;
});
}
//
// Checks if structure contains an element of a banned struct.
// Returns true if it does not.
//
bool StructFilter::checkForElementOfBannedStruct(StructType &STy) const {
return !llvm::any_of(STy.elements(), [this](Type *Elem) {
Type *BaseTy = getArrayFreeTy(Elem);
if (StructType *SBTy = dyn_cast<StructType>(BaseTy))
return isStructBanned(*SBTy);
return false;
});
}
//__________________________________________________________________
// Block of DependencyGraph definition.
//__________________________________________________________________
//
// Tries to get a base type of structure if structure is plain.
// If STy is not plain then tries to use getBaseTy().
//
Type *DependencyGraph::getPlainSubTy(StructType &STy) const {
return isPlain(STy) ? AllStructs.find(&STy)->second.begin()->first
: getBaseTy(&STy);
}
//
// * Determines if structure STy is plain:
// is contained in AllStruct
// and there is only one baseTy.
// * Works not intuitive for structs like: C1: { C2 }
// returns true even though C2 can be complicated.
//
bool DependencyGraph::isPlain(StructType &STy) const {
auto FindIt = AllStructs.find(&STy);
return FindIt != AllStructs.end() && FindIt->second.size() < 2;
}
//
// Checks if Struct has been processed, so info about it exists in InfoToMerge.
// Returns true if record about struct exists, otherwise - false.
//
bool DependencyGraph::isStructProcessed(StructType &STy) const {
return InfoToMerge.find(&STy) != InfoToMerge.end();
}
//
// Gets the element's information of the struct.
// Requires structure to be processed before.
//
const DependencyGraph::STypes &
DependencyGraph::getStructComponens(StructType &STy) const {
auto FindIt = AllStructs.find(&STy);
IGC_ASSERT_MESSAGE(
FindIt != AllStructs.end(),
"Info about struct has to be collected before getting components.\n");
return FindIt->second;
}
//
// Gets vector of elements substitution of old struct with new substructs'
// elements.
//
const DependencyGraph::ElemMapping &
DependencyGraph::getElemMappingFor(StructType &STy) const {
auto FindIt = InfoToMerge.find(&STy);
IGC_ASSERT_MESSAGE(
FindIt != InfoToMerge.end(),
"Struct has to be processed before getting indices mapping.\n");
return FindIt->second->second;
}
//
// Gets element's list which substitutes split struct's(STy) element at
// index(Idx).
//
const DependencyGraph::ListOfSplitElements &
DependencyGraph::getElementsListOfSTyAtIdx(StructType &STy,
unsigned Idx) const {
const ElemMapping &VecOfSTy = getElemMappingFor(STy);
IGC_ASSERT_MESSAGE(Idx < VecOfSTy.size(),
"Attempt to get element out of borders.");
return VecOfSTy.at(Idx);
}
//
// Gets unique types into which the structure STy is split.
//
std::vector<Type *>
DependencyGraph::getUniqueSplitTypes(StructType &STy) const {
std::unordered_set<Type *> UniqueSplitTypes;
// Vector is for determination of structs order.
std::vector<Type *> UniqueSplitTypesInOrder;
// Gets unique substructs.
for (auto &&BaseTy : vc::make_flat_range(getElemMappingFor(STy))) {
auto [_, IsInserted] = UniqueSplitTypes.emplace(BaseTy.getTy());
if (IsInserted)
UniqueSplitTypesInOrder.push_back(BaseTy.getTy());
}
return UniqueSplitTypesInOrder;
}
//
// * By AllStructs info generates dependency graph of structs.
// * eg. generates smth like this:
// C -----> A
// \ /
// \-> D
// \ \
// \-> B
//
void DependencyGraph::generateGraph() {
LLVM_DEBUG(dbgs() << "Graph generating begin.\n");
NodeTracker Inserted;
Heads.reserve(AllStructs.size());
for (auto &&[STy, _] : AllStructs) {
if (Inserted.find(STy) != Inserted.end())
// If already in graph -> skip
continue;
Heads.push_back(createNode(*STy, Inserted));
}
// During Graph creation a similar case can occur: (C and D are heads)
// C -> D ..
// D -> A
// Removes D as it has parent=C.
// Cleans up Heads. Erases all entities with parent.
llvm::erase_if(Heads, [](Node *HeadNode) { return HeadNode->hasParent(); });
}
//
// Creates the Node and places dependencies according to the Struct.
//
DependencyGraph::Node *DependencyGraph::createNode(StructType &STy,
NodeTracker &Inserted) {
LLVM_DEBUG(dbgs() << "Creating node for struct: " << STy << "\n");
auto FindIt = Inserted.find(&STy);
if (FindIt != Inserted.end()) {
// This can occur when Struct has a processed child element.
// Parent will be automatically set right after this function.
// Later clean-up heads. This node will be erased as it has parents.
Node *node = FindIt->second;
return node;
}
Node *ThisNode = NodeMM.create(STy);
auto [It, IsInserted] = Inserted.emplace(&STy, ThisNode);
IGC_ASSERT_MESSAGE(IsInserted,
"Processing Node which already has been processed.");
for (auto &&[BaseTy, Children] : getStructComponens(STy))
for (auto &&Child : Children.types())
if (StructType *ChildSTy = dyn_cast<StructType>(getArrayFreeTy(Child))) {
Node *ChildNode = createNode(*ChildSTy, Inserted);
ChildNode->insertParent(*ThisNode);
ThisNode->insertChild(*ChildNode);
}
return ThisNode;
}
//
// * Processes the bottom node. Assumes that this node has no children
// so all elements in this struct are plain.
// * Splits this struct into plain substructs and recreates parent nodes.
// * Eventually deletes this node from graph as
// after processing struct will be split to plain substructs
// and parent nodes will no longer need to track it.
// * While processing nodes graph will self destruct.
// * Info about all structs in Module (AllStructs) will be updated.
// * Info about structs transformation (SplitStructs) will be updated.
//
void DependencyGraph::processNode(Node &SNode) {
// Go to the bottom of the graph.
while (SNode.hasChild())
processNode(**SNode.child_begin());
LLVM_DEBUG(dbgs() << "Processing node for struct: " << *SNode.getType()
<< "\n");
// Splitting always gets a plain type, so graph will be changed anyway.
if (StructType *OldSTy = SNode.getType()) {
// Splitting.
const STypes &Types = getStructComponens(*OldSTy);
// Indices of unsplit struct will be matched with indices of elements of
// new split structs.
ElemMapping IndicesMap(OldSTy->getNumElements());
// First initialization with zeros as pos in vector will be Index of
// Element.
std::vector<Type *> GeneratedTypesInOrder(OldSTy->getNumElements());
StringRef OldSTyName = OldSTy->getName();
for (auto &&[BaseTy, Elements] : Types) {
// Start point of Simplification.
Type *NewPlainType{nullptr};
if (Elements.size() == 1) {
// It means that structure contains only one element that can be used
// directly without structure.
NewPlainType = Elements.getTyAt(0);
IndicesMap[Elements.getIdxAt(0)].emplace_back(NewPlainType);
} else if (!isPlain(*OldSTy)) {
StructType *NewPlainStruct = StructType::create(
Ctx, Elements.getTypesArray(),
Twine(OldSTyName + "." + getTypePrefix(*BaseTy) + ".split").str());
NewPlainType = NewPlainStruct;
// Update AllStructs info.
setInfoAboutStructure(*NewPlainStruct);
// Match old elements with new elements.
for (auto ElemIndex : enumerate(Elements.indices()))
IndicesMap[ElemIndex.value()].emplace_back(NewPlainStruct,
ElemIndex.index());
} else
// Plain structs with more than 1 elements -> skip as there is nothing
// to do.
continue;
// Way to implement ordering in Types placing.
// Affects on ordering in List and ordering of elements in structures.
// Prevents from cases like this:
//
// A { int, float, int, float };
// C_BS { Af, Ai, float } and at another time: C_BS { Ai, Af, float };
//
// Order defined by elements in original structure.
GeneratedTypesInOrder[Elements.getIdxAt(0)] = NewPlainType;
}
// Cleans an array from nullptr elements.
llvm::erase_if(GeneratedTypesInOrder, [](Type *Ty) { return !Ty; });
// Remakes parents if there is splitting or simplification.
if (GeneratedTypesInOrder.size()) {
// Updates SplitStructs.
SplitStructs.emplace_back(OldSTy, std::move(IndicesMap));
// Remakes parent Node.
// As D will be split to Di,Df so C(parent) has to be split to
// Ci,Cf. It will be done in 3 steps:
// 1st: Creates intermediate struct before splitting:
// C_BS : {Ci, Cf}
// 2nd: Substitutes struct C to C_BS in Node responsible for C.
// 3rd: When D processing is done, C(C_BS) will be
// automatically split to Ci,Cf as Node responsible
// for C(C_BS) will no longer have children.
// In this case there will be a record in transformation info:
// D -> Di, Df
// C -> C_BS
// C_BS -> Ci, Cf
// Therefore, transformation C->C_BS->Ci,Cf can be merged to C->Ci,Cf
//
// In case of simplification: type will be substituted directly, without
// structure.
// F { float } C { F, float } C_BS -> { float , float }
llvm::for_each(SNode.parents(), [&](Node *ParentNode) {
remakeParent(*ParentNode, SNode, GeneratedTypesInOrder);
});
}
}
// Removes dependencies.
llvm::for_each(SNode.parents(),
[&SNode](Node *ParentNode) { ParentNode->eraseChild(SNode); });
}
//
// * Creates unsplit struct with new element's types generated from child
// Node.
// * As D is split to Di,Df, structure C has to change element D to Di,Df and
// splits later. remakeParent substitutes structure C in SNode with structure
// C_BS that contains Di,Df.
// * SNode - current parent node to be changed.
// * SNodeToChange - child node that already has been changed.
//
void DependencyGraph::remakeParent(Node &SNode, Node &SNodeToChange,
ArrayRef<Type *> NewReplaceTypes) {
LLVM_DEBUG(dbgs() << "Recreating parent node: " << *SNode.getType()
<< "\n\tChild node: " << *SNodeToChange.getType() << "\n");
StructType *CurrentS = SNode.getType();
StringRef CurrentSName = CurrentS->getName();
const unsigned NumElements = CurrentS->getNumElements();
const unsigned NewMaxSize = NumElements + NewReplaceTypes.size() - 1;
std::vector<Type *> NewElements;
NewElements.reserve(NewMaxSize);
// First create an empty structure.
// Later setBody with elements. It is for completing VecOfStructInfo.
StructType *BeforeSplitingS = StructType::create(
CurrentS->getContext(), Twine(CurrentSName + "_BS").str());
ElemMapping NewIndices(NumElements);
unsigned ExpandIndicies{0};
for (auto &&ElemEnum : enumerate(CurrentS->elements())) {
Type *Elem = ElemEnum.value();
const unsigned Index = ElemEnum.index();
if (StructType *SElem = dyn_cast<StructType>(Elem);
SElem && SNodeToChange.containsStruct(*SElem)) {
// If element of structure is split element, then we need to replace
// this element with new.
for (auto &&NewSTy : NewReplaceTypes) {
NewElements.emplace_back(NewSTy);
NewIndices[Index].emplace_back(BeforeSplitingS,
Index + ExpandIndicies++);
}
// The Index will be inc, so there is no need of extra offset.
--ExpandIndicies;
} else {
// If element of structure is not changed, then just copies info about it
// and places right indices.
NewElements.emplace_back(Elem);
NewIndices[Index].emplace_back(BeforeSplitingS, Index + ExpandIndicies);
}
}
BeforeSplitingS->setBody(NewElements);
// Updates AllStructs and SplitStructs info.
setInfoAboutStructure(*BeforeSplitingS);
SplitStructs.emplace_back(CurrentS, std::move(NewIndices));
// Substitutes structure in Node.
SNode.substitute(*BeforeSplitingS);
}
//
// For each Node in head launches Graph processing.
// After processing as node is deleted we remove it from Heads.
//
void DependencyGraph::recreateGraph() {
LLVM_DEBUG(dbgs() << "Graph recreating begin.\n");
for (auto *Node : Heads)
processNode(*Node);
}
//
// Records information about structure into AllStructs.
//
void DependencyGraph::setInfoAboutStructure(StructType &STy) {
LLVM_DEBUG(dbgs() << "Collecting infornation about struct: " << STy << "\n");
STypes BaseTypes;
const unsigned NumberOfElems = STy.getNumElements();
// Puts each element and its index according to the base type.
for (auto &&ElemEnum : enumerate(STy.elements())) {
Type *Elem = ElemEnum.value();
const unsigned Index = ElemEnum.index();
Type *BaseTy = getBaseTy(Elem);
// BaseTy can be a structure in AllStructs, so we get the info from
// AllStructs.
if (StructType *SBTy = dyn_cast<StructType>(BaseTy))
BaseTy = getPlainSubTy(*SBTy);
auto FindIt = BaseTypes.find(BaseTy);
if (FindIt == BaseTypes.end()) {
// If there is no entity with baseTy, creates it with preallocated array.
bool IsInserted = false;
std::tie(FindIt, IsInserted) =
BaseTypes.emplace(BaseTy, SElementsOfType{NumberOfElems});
IGC_ASSERT_MESSAGE(IsInserted, "Record about BaseTy already exists.");
}
// Emplace element to (created or existed) info(SElementsOfType) about
// BaseTy.
FindIt->second.emplace_back(*Elem, Index);
}
auto [_, IsInserted] = AllStructs.emplace(&STy, std::move(BaseTypes));
IGC_ASSERT_MESSAGE(IsInserted,
"Processing Struct which already has been processed.");
}
//
// * As BeforeSplitting struct is temporary it can be removed from
// transformation info.
// * Also only here the InfoToMerge is filling.
//
void DependencyGraph::mergeStructGenerationInfo() {
LLVM_DEBUG(dbgs() << "Merging structs.\n");
for (auto It = SplitStructs.rbegin(), End = SplitStructs.rend(); It != End;
++It) {
StructType &SToMerge = *It->first;
ElemMapping &InfoAboutS = It->second;
if (StructType *SToMergeWith = checkAbilityToMerge(InfoAboutS)) {
LLVM_DEBUG(dbgs() << "Able to merge: " << SToMerge << "\n\tWith "
<< *SToMergeWith << "\n");
const ElemMapping &InfoAboutTemporaryS = getElemMappingFor(*SToMergeWith);
// Every element of the structure SToMerge will be substituted with
// element from the structure SToMergeWith and/or new elements from
// SToMergeWith will be placed in SToMerge.
for (ListOfSplitElements &ElementsList : InfoAboutS) {
for (SElement &Element : ElementsList) {
IGC_ASSERT_MESSAGE(!Element.isUnwrapped(),
"Attempt to merge unwrapped type.");
IGC_ASSERT_MESSAGE(Element.getIndex() < InfoAboutTemporaryS.size(),
"Attempt to get element out of borders.");
const ListOfSplitElements &NewElement =
InfoAboutTemporaryS.at(Element.getIndex());
auto EIt = NewElement.rbegin();
// Changes current element and, if on this 'Element.Index' lots of new
// elements are to be placed, extends list with new elements.
// Pushes front new element not to invalidate iterations.
// Iterates from end to begin (rbegin to rend) to keep order of
// elements.
// eg. merges information
// G : (G_BS, 0) (...)
// (...)
// G_BS : (SomeS, 5) (Gf, 0) (Gi, 0)
//
// Will become
// G : (SomeS, 5) (Gf, 0) (Gi, 0) (...)
// Element (G_BS, 0) will become (Gi, 0).
Element = *EIt;
// Elements (SomeS, 5) (Gf, 0) will be placed before (G_BS, 0) in the
// same order as in G_BS.
while (++EIt != NewElement.rend())
ElementsList.push_front(*EIt);
}
}
}
InfoToMerge.emplace(It->first, It);
}
}
//
// * We are able to merge two struct's records only if new elements of struct
// are the same.
// * C : (C_BS, 0)
// (C_BS, 1)
// (C_BS, 2)
// (C_BS, 3)
// (C_BS, 4) (C_BS, 5)
// * C_BS : (Cf, 0)
// (Ci, 0)
// (Cf, 1)
// (Ci, 1)
// (Cf, 2)
// (Ci, 2)
//
StructType *
DependencyGraph::checkAbilityToMerge(const ElemMapping &NewSTypes) const {
IGC_ASSERT_MESSAGE(NewSTypes.size(), "Merging empty structs.");
IGC_ASSERT_MESSAGE(NewSTypes.begin()->size(), "Merging empty structs.");
auto FirstElem = NewSTypes.begin()->begin();
if (FirstElem->isUnwrapped())
return nullptr;
StructType *STyToCheck = FirstElem->getStructTy();
// Checks that all split structs are same. It is the main criteria for
// iterations of splitting to be merged.
bool AreSameStructs = llvm::all_of(
vc::make_flat_range(NewSTypes), [STyToCheck](auto &&Element) {
return Element.getStructTyIfPossible() == STyToCheck;
});
if (AreSameStructs && isStructProcessed(*STyToCheck))
return STyToCheck;
return nullptr;
}
//
// Constructor gets all initial information about structures in Module.
//
DependencyGraph::DependencyGraph(Module &M, const StructFilter &Filter)
: Ctx{M.getContext()}, NodeMM{M} {
for (auto &&STy : M.getIdentifiedStructTypes())
if (!Filter.isStructBanned(*STy))
setInfoAboutStructure(*STy);
}
//
// Launches structure dependencies processing.
//
void DependencyGraph::run() {
generateGraph();
recreateGraph();
mergeStructGenerationInfo();
}
//__________________________________________________________________
// Block of Substituter definition.
//__________________________________________________________________
//
// Collects all information of structs, allocas and launches struct splittting,
// based on this information.
//
Substituter::Substituter(Module &M)
: Ctx{M.getContext()}, DL{M.getDataLayout()}, Filter{M}, Graph{M, Filter},
DIB{M} {
Graph.run();
LLVM_DEBUG(Graph.print(dbgs()));
// Visit should be after graph processing.
visit(M);
}
//
// Collects all allocas that allocate memory for structure to split.
//
void Substituter::visitAllocaInst(AllocaInst &AI) {
if (StructType *STy = dyn_cast<StructType>(AI.getAllocatedType()))
if (Graph.isStructProcessed(*STy)) {
LLVM_DEBUG(dbgs() << "Collecting alloca to replace: " << AI << "\n");
Allocas.emplace_back(&AI);
}
}
//
// Generates new allocas.
// Returns Instruction set within base types for easy access
// and Instruction vector in order of generation.
//
Substituter::TypeToInstrMap
Substituter::generateNewAllocas(AllocaInst &OldInst) {
LLVM_DEBUG(dbgs() << "Generating allocas to replace: " << OldInst << "\n");
StructType &STy = *cast<StructType>(OldInst.getAllocatedType());
std::unordered_set<Type *> UniqueSplitTypes;
TypeToInstrMap NewInstructions;
for (auto &&BaseTy : vc::make_flat_range(Graph.getElemMappingFor(STy))) {
Type *NewTy = BaseTy.getTy();
auto [_, IsTypeInserted] = UniqueSplitTypes.emplace(NewTy);
if (IsTypeInserted) {
// Generating one alloca to each unique type.
AllocaInst *NewAlloca = generateAlloca(OldInst, BaseTy);
auto [_, IsAllocaInserted] =
NewInstructions.emplace(getBaseTy(NewTy), NewAlloca);
IGC_ASSERT_MESSAGE(IsAllocaInserted,
"Alloca instruction responsible for structure(type) "
"has already been created.\n");
}
}
return NewInstructions;
}
// Help function to print info about unsupported debug intrinsics.
static void reportUnsupportedDbgIntrinsics(
raw_ostream &Os, StringRef Reason,
const SmallVectorImpl<DbgVariableIntrinsic *> &DbgIntrinsics) {
Os << Reason << ":\n";
for (auto *DbgIntrinsic : DbgIntrinsics)
Os << '\t' << *DbgIntrinsic << '\n';
}
// Finds DbgDeclareInst in mix of debug intrinsics
// that Val points to. Can return only one dbg.declare.
// Returns nullptr it there is no any dbg.declare or more than one.
static DbgDeclareInst *getDbgDeclare(Value &Val) {
// Gets the mix of dbg.declare and dbg.addr.
SmallVector<DbgVariableIntrinsic *, 4> DbgIntrinsics;
findDbgUsers(DbgIntrinsics, &Val);
// If there is no DI at all, returns nullptr without warning.
if (DbgIntrinsics.empty())
return nullptr;
SmallVector<DbgVariableIntrinsic *, 4> DbgDeclares;
llvm::copy_if(
DbgIntrinsics, std::back_inserter(DbgDeclares),
[](DbgVariableIntrinsic *Intr) { return isa<DbgDeclareInst>(Intr); });
// Returns nullptr if there is no dbg.declare at all.
if (DbgDeclares.empty()) {
LLVM_DEBUG(reportUnsupportedDbgIntrinsics(
dbgs(), "No dbg.declare for value", DbgIntrinsics));
return nullptr;
}
// Returns nullptr if there are more than one dbg.declares.
if (DbgDeclares.size() > 1) {
LLVM_DEBUG(reportUnsupportedDbgIntrinsics(
dbgs(), "Too many dbg.declare for value", DbgDeclares));
return nullptr;
}
return cast<DbgDeclareInst>(DbgDeclares.front());
}
//
// Generates new alloca for TyElem to replace AI - the old one.
// For TyElem generates DI.
//
AllocaInst *
Substituter::generateAlloca(AllocaInst &AI,
const DependencyGraph::SElement &TyElem) {
IRBuilder<> IRB{&AI};
Type *NewTy = TyElem.getTy();
AllocaInst &NewAI = *IRB.CreateAlloca(
NewTy, 0, AI.getName() + "." + getTypePrefix(*getBaseTy(NewTy)));
NewAI.setAlignment(IGCLLVM::getAlign(AI));
DbgDeclareInst *DbgDeclare = getDbgDeclare(AI);
if (!DbgDeclare)
return &NewAI;
// *NewTy can be:
// - base type, non-split struct (also base type).
// - split struct (for each element to generate DI).
std::vector<Type *> TypesToGenerateDI;
if (TyElem.isUnwrapped()) {
TypesToGenerateDI.push_back(NewTy);
} else {
StructType &STy = *TyElem.getStructTy();
llvm::copy(STy.elements(), std::back_inserter(TypesToGenerateDI));
}
updateDbgInfo(TypesToGenerateDI, AI, NewAI, *DbgDeclare);
return &NewAI;
}
//
// Help-function to go other the list and check if Type with possition Idx is
// found. FirstMatch is for search regardless of index. Finds the firts match of
// type.
//
static bool isElementInList(const DependencyGraph::ListOfSplitElements &List,
Type *Ty, unsigned Idx, bool FirstMatch) {
auto ListIt = llvm::find_if(
List, [Idx, Ty, FirstMatch](const DependencyGraph::SElement &Elem) {
// FirstMatch is needed only for searching in
// substructures, where the first occurrence of type is to
// be found.
if (FirstMatch)
return Elem.getTy() == Ty;
// If element is unwrapped -> only checks on types match.
// If element is not unwrapped -> additionaly checks Index.
return Elem.getTy() == Ty &&
(Elem.isUnwrapped() ||
!Elem.isUnwrapped() && Elem.getIndex() == Idx);
});
return ListIt != List.end();
}
//
// Finds record in IdxMap of Ty placed on Idx position.
// FirstMatch is for search regardless of index.
//
static auto findRecord(const DependencyGraph::ElemMapping &IdxMap, Type *Ty,
unsigned Idx, bool FirstMatch) {
auto FindIt = llvm::find_if(IdxMap, [Ty, Idx, FirstMatch](auto &&List) {
return isElementInList(List, Ty, Idx, FirstMatch);
});
IGC_ASSERT_MESSAGE(FindIt != IdxMap.end(), "Record has to be found!");
return FindIt;
};
//
// For NewAI for each TypesToGenerateDI (elements of the new structure/type)
// generates DI based on DI about AI. Calculates proper fragments of the
// elements for new types.
// TODO: Cannot proper handle cases when order of elements is in mess.
// ex:
// A = {i, f, f, i}; B = {i, A, f};
// A will split to: Ai = {i, i};
// Af = {f, f};
// B will split to: Bi = {i, Ai};
// Bf = {Af, f};
// DI fragments about B will be:
// - about Bi:
// dbg.declare(..., ..., fragment(0, 32)) <- the first element of B.
// dbg.declare(..., ..., fragment(32, 64)) <- problem:
// should be like fragment(32, 32) <- from the first element of A
// and fragment(128, 32) <- from the last element of A.
// But as Bi consists of { i, Ai }: elements of Bi are i and
// Ai, that already contains { i, i } so fragment is (32, 64).
// B actually is {i, {i, f, f, i}, f}, but after splitting
// ^- from A
// B is {i, {i, i}, {f, f}, f}
// ^- Ai ^- Af
//
void Substituter::updateDbgInfo(ArrayRef<Type *> TypesToGenerateDI,
AllocaInst &AI, AllocaInst &NewAI,
DbgDeclareInst &DbgDeclare) {
LLVM_DEBUG(dbgs() << "Rewritting dbg info about: " << AI << "\n");
DILocalVariable &Var = *DbgDeclare.getVariable();
DIExpression &Expr = *DbgDeclare.getExpression();
DILocation &DbgLoc = *DbgDeclare.getDebugLoc();
Type *NewTy = NewAI.getAllocatedType();
StructType &STy = *cast<StructType>(AI.getAllocatedType());
const ElemMapping &IdxMap = Graph.getElemMappingFor(STy);
// For each element of the new structure generates DI.
for (auto &&TypeEnum : enumerate(TypesToGenerateDI)) {
unsigned Offset{0};
// Type and position of the element.
Type *TyToGenDI = TypeEnum.value();
unsigned ElemIdx = TypeEnum.index();
auto getOffsetInBits = [this](unsigned Idx, StructType *STy) {
return DL.getStructLayout(STy)->getElementOffsetInBits(Idx);
};
// Finds original type from which element came.
auto VecIt = findRecord(IdxMap, NewTy, ElemIdx, false);
unsigned IdxOfOrigStruct = VecIt - IdxMap.begin();
Type *OrigTy = STy.getElementType(IdxOfOrigStruct);
// If it is processed Structure, offset of the element in this substructure
// has to be calculated.
if (StructType *OrigSTy = dyn_cast<StructType>(OrigTy);
OrigSTy && Graph.isStructProcessed(*OrigSTy)) {
const ElemMapping &SubSIdxMap = Graph.getElemMappingFor(*OrigSTy);
// Offset from OrigStruct + Offset from SubStruct.
auto SubSVecIt =
findRecord(SubSIdxMap, TyToGenDI, /*does not matter*/ 0, true);
unsigned IdxOfSubStruct = SubSVecIt - SubSIdxMap.begin();
Offset = getOffsetInBits(IdxOfOrigStruct, &STy) +
getOffsetInBits(IdxOfSubStruct, OrigSTy);
} else
// Offset from OrigStruct.
Offset = getOffsetInBits(IdxOfOrigStruct, &STy);
auto FragExpr = DIExpression::createFragmentExpression(
&Expr, Offset, DL.getTypeAllocSizeInBits(TyToGenDI));
IGC_ASSERT_MESSAGE(FragExpr.hasValue(), "Failed to create new expression");
Instruction &NewDbgDeclare =
*DIB.createDbgDeclare(NewAI, Var, *FragExpr.getValue(), DbgLoc, AI);
LLVM_DEBUG(dbgs() << "New dbg.declare is created: " << NewDbgDeclare
<< '\n';);
}
}
//
// Returns Instruction responsible for processing Type.
//
static Instruction *findProperInstruction(
Type *Ty, const std::unordered_map<Type *, Instruction *> &NewInstr) {
auto FindInstrIt = NewInstr.find(Ty);
IGC_ASSERT_MESSAGE(
FindInstrIt != NewInstr.end(),
"Cannot find instruction according to split structure type.");
return FindInstrIt->second;
}
//
// Creating new GEPI instruction.
// GEPI - instruction to replace.
// PlainType - the result type of new gep work.
// IdxPath - the sequence of indices to recive needed type.
// NewInstr - instruction map to set proper uses.
// PlainTyIdx - index of the first plain type.
//
Instruction *
Substituter::generateNewGEPs(GetElementPtrInst &GEPI, Type &PlainType,
const DependencyGraph::SElementsOfType &IdxPath,
const TypeToInstrMap &NewInstr,
unsigned PlainTyIdx) const {
LLVM_DEBUG(dbgs() << "Generating GEP to replace: " << GEPI << "\n");
IGC_ASSERT_MESSAGE(PlainTyIdx <= IdxPath.size(),
"Index of the plain type is out of boundaries.");
SElementsOfType LocalIdxPath{IdxPath.size()};
// Generates new indices path till PlainTyIdx.
std::for_each(IdxPath.begin(), IdxPath.begin() + PlainTyIdx,
[&PlainType, &LocalIdxPath, this](auto &&Elem) {
auto [Ty, Idx] = Elem;
StructType *STy = cast<StructType>(Ty);
const ListOfSplitElements &ListOfPossibleTypes =
Graph.getElementsListOfSTyAtIdx(*STy, Idx);
auto FindIt = llvm::find_if(
ListOfPossibleTypes, [&PlainType](auto &&PosElem) {
Type *PossibleTy = PosElem.getTy();
// For now getBaseTy is similar to getting type from
// structure info, but in further it may be different
// while processing arrays and vectors of structures.
return getBaseTy(PossibleTy) == &PlainType;
});
IGC_ASSERT_MESSAGE(FindIt != ListOfPossibleTypes.end(),
"No substitution type.");
// Skip indices if it gives unwrapped type.
if (!FindIt->isUnwrapped())
LocalIdxPath.emplace_back(*FindIt);
});
std::copy(IdxPath.begin() + PlainTyIdx, IdxPath.end(),
std::back_inserter(LocalIdxPath));
// If Size == 0 then we do not need to create a GEP. Just find proper previous
// instruction.
Instruction *ToInsert = findProperInstruction(&PlainType, NewInstr);
const unsigned Size = LocalIdxPath.size();
if (!Size) {
LLVM_DEBUG(dbgs() << "Instruction has been reused: " << *ToInsert << "\n");
return ToInsert;
}
// Generates new IdxList for instruction.
std::vector<Value *> IdxList;
IdxList.reserve(Size + 1);
IdxList.emplace_back(*GEPI.idx_begin());
for (unsigned Idx : LocalIdxPath.indices())
// TODO how to chose i32 or i64 for indices value?
IdxList.emplace_back(ConstantInt::get(Ctx, APInt(32, Idx)));
Type *Inserted = LocalIdxPath.getTyAt(0);
IRBuilder<> IRB{&GEPI};
Instruction *NewGEP = cast<Instruction>(
IRB.CreateGEP(Inserted, ToInsert, IdxList, GEPI.getName() + ".split"));
LLVM_DEBUG(dbgs() << "Instruction has been created: " << *NewGEP << "\n");
return NewGEP;
}
//
// An entry point of replacement instructions.
// First replaces allocas, then replaces GEP and so one.
//
bool Substituter::processAllocas() {
bool Changed{false};
for (AllocaInst *Alloca : Allocas)
Changed |= processAlloca(*Alloca);
return Changed;
}
//
// Processes Alloca and all users of it. If processing current alloca fails,
// process the next one.
//
bool Substituter::processAlloca(AllocaInst &Alloca) {
LLVM_DEBUG(dbgs() << "Processing alloca: " << Alloca << "\n");
auto InstUses = getInstUses(Alloca);
if (!InstUses)
return false;
auto [UsesGEP, UsesPTI] = std::move(InstUses.getValue());
TypeToInstrMap NewInstrs = generateNewAllocas(Alloca);
InstsToSubstitute InstToInst;
for (GetElementPtrInst *GEP : UsesGEP)
if (!processGEP(*GEP, NewInstrs, InstToInst))
return false;
for (PtrToIntInst *PTI : UsesPTI)
if (!processPTI(*PTI, NewInstrs, InstToInst))
return false;
for (auto [InstToReplace, ToInst] : InstToInst)
InstToReplace->replaceAllUsesWith(ToInst);
return true;
}
//
// Retrieves information of Type gotten within each index access.
// eg.
// %a = gep C, 0, 4, 0
// (C, 4) -> D
// (D, 0) -> A
//
Optional<std::tuple<DependencyGraph::SElementsOfType, std::vector<Type *>>>
Substituter::getIndicesPath(GetElementPtrInst &GEPI) {
const unsigned Size = GEPI.getNumIndices() - 1;
DependencyGraph::SElementsOfType IdxPath{Size};
std::vector<Type *> GottenTypeArr;
GottenTypeArr.reserve(Size);
// Skips first operator as it always 0 to deref poiterTy and get to structTy.
Type *CurrentType = GEPI.getSourceElementType();
for (auto It = GEPI.idx_begin() + 1, End = GEPI.idx_end(); It != End; ++It) {
Value *VIdx = *It;
if (Constant *CIdx = dyn_cast<Constant>(VIdx)) {
const APInt &Int = CIdx->getUniqueInteger();
// Naive assumption that all indices are unsigned greater then zero and
// scalar.
uint64_t Idx = Int.getZExtValue();
// This approach can fail in case of dynamic indices.
// To use table in that case.
Type *GottenType{nullptr};
if (CurrentType->isVectorTy() || CurrentType->isArrayTy())
GottenType = CurrentType->getContainedType(0);
else
GottenType = CurrentType->getContainedType(Idx);
IdxPath.emplace_back(*CurrentType, Idx);
GottenTypeArr.emplace_back(GottenType);
CurrentType = GottenType;
} else {
LLVM_DEBUG(dbgs() << "WARN:: Non constant indices do not supported!\n");
return None;
}
}
return std::make_tuple(std::move(IdxPath), std::move(GottenTypeArr));
}
//
// Gets GEP and PTI users of instruction I.
//
Optional<
std::tuple<std::vector<GetElementPtrInst *>, std::vector<PtrToIntInst *>>>
Substituter::getInstUses(Instruction &I) {
// Checks That users of Instruction are appropriate.
std::vector<GetElementPtrInst *> UsesGEP;
std::vector<PtrToIntInst *> UsesPTI;
UsesGEP.reserve(I.getNumUses());
UsesPTI.reserve(I.getNumUses());
for (const auto &U : I.uses())
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U.getUser()))
UsesGEP.push_back(GEP);
else if (PtrToIntInst *PTI = dyn_cast<PtrToIntInst>(U.getUser()))
UsesPTI.push_back(PTI);
else if (BitCastInst *BC = dyn_cast<BitCastInst>(U.getUser())) {
auto UnsupportedBCUser = llvm::find_if_not(BC->users(), [](User *BCU) {
auto IID = vc::getAnyIntrinsicID(BCU);
return IID == llvm::Intrinsic::lifetime_start ||
IID == llvm::Intrinsic::lifetime_end;
});
if (UnsupportedBCUser != BC->users().end()) {
LLVM_DEBUG(
dbgs()
<< "WARN:: Bitcast is used where it cannot be used!\n\tBitcast: "
<< *BC << "\n\tUser: " << **UnsupportedBCUser << "\n");
return None;
}
} else {
LLVM_DEBUG(
dbgs()
<< "WARN:: Struct is used where it cannot be used!\n\tInstruction: "
<< *U.getUser() << "\n");
return None;
}
return std::make_tuple(std::move(UsesGEP), std::move(UsesPTI));
}
//
// * Generates new instructions that use split struct.
// * If result of old instruction is a struct to be split:
// generates new instructions and results of them are split structs.
// * If result of old instruction is unsplit struct or data:
// just generates new instruction with proper access indices.
// * FE1: %d = gep C, 0, 4
// -> %di = gep Ci, 0, 2
// -> %df = gep Cf, 0, 1
// * FE2: %a = gep C, 0, 4, 0
// -> %a = gep Cf, 0, 2, 0
//
bool Substituter::processGEP(GetElementPtrInst &GEPI,
const TypeToInstrMap &NewInstr,
InstsToSubstitute /*OUT*/ &InstToInst) {
LLVM_DEBUG(dbgs() << "Processing uses of instruction: " << GEPI << "\n");
auto IndicesPath = getIndicesPath(GEPI);
if (!IndicesPath)
return false;
auto [IdxPath, GottenTypeArr] = std::move(IndicesPath.getValue());
const unsigned Size = GottenTypeArr.size();
IGC_ASSERT_MESSAGE(
IdxPath.size() == Size,
"IdxPath and GottenTypeArr must be consistent with each other.");
// Finds the first index of plain type.
// All indices after PlaintTyIdx can be copied.
auto FindIt = llvm::find_if(GottenTypeArr, [this](Type *Ty) {
StructType *STy = dyn_cast<StructType>(Ty);
return !STy || !Graph.isStructProcessed(*STy);
});
unsigned PlainTyIdx = FindIt - GottenTypeArr.begin();
if (PlainTyIdx == Size) {
// Case of FE1
auto InstUses = getInstUses(GEPI);
if (!InstUses)
return false;
auto [UsesGEP, UsesPTI] = std::move(InstUses.getValue());
// That means that we are getting split struct so we need to create GEPs.
// STyToBeSplit is the result of the instruction.
Type *PrevType = IdxPath.getTyAt(Size - 1);
unsigned Idx = IdxPath.getIdxAt(Size - 1);
StructType *STyToBeSplit = cast<StructType>(PrevType);
const ListOfSplitElements &ListOfPossibleTypes =
Graph.getElementsListOfSTyAtIdx(*STyToBeSplit, Idx);
TypeToInstrMap NewInstructions;
NewInstructions.reserve(ListOfPossibleTypes.size());
// For each substruct we have to generate it's own IdxPath and GEP.
for (auto &&DestETy : ListOfPossibleTypes) {
Type *PlainType = DestETy.isUnwrapped()
? getBaseTy(DestETy.getTy())
: Graph.getPlainSubTy(*DestETy.getStructTy());
Instruction *ToInsert =
generateNewGEPs(GEPI, *PlainType, IdxPath, NewInstr, PlainTyIdx);
NewInstructions.emplace(PlainType, ToInsert);
}
// Runs user processing on GEP and PTI users.
// All uses has to be changed.
for (GetElementPtrInst *GEP : UsesGEP)
if (!processGEP(*GEP, NewInstructions, InstToInst))
return false;
for (PtrToIntInst *PTI : UsesPTI)
if (!processPTI(*PTI, NewInstructions, InstToInst))
return false;
} else {
Type *PrevType = IdxPath.getTyAt(PlainTyIdx);
unsigned Idx = IdxPath.getIdxAt(PlainTyIdx);
StructType *STyToBeSplit = cast<StructType>(PrevType);
IGC_ASSERT_MESSAGE(
Graph.getElementsListOfSTyAtIdx(*STyToBeSplit, Idx).size() == 1,
"Access to element of Struct does not get unsplit type.");
Type *PlainType = getBaseTy(GottenTypeArr[PlainTyIdx]);
Instruction *ToInsert =
generateNewGEPs(GEPI, *PlainType, IdxPath, NewInstr, PlainTyIdx + 1);
InstToInst.emplace_back(cast<Instruction>(&GEPI), ToInsert);
}
return true;
}
//
// Verifies that element does not violate restrictions for PTI to be
// substituted. Checks that:
// 1. Unwrapped element can be only the first.
// 2. Element type matches the FirstElementType.
// 3. Indices are sequential.
// Returns false if one of the point is violated.
//
// STy - Processing structure just for debbuging information.
// NewElem - Current element to be verified.
// TheFirstElemTy - The first element type of the structure.
// IdxOfSplitStructElem - Index of the current element to be verified in
// the original structure.
//
static bool verifyElement(StructType &STy,
const DependencyGraph::SElement &NewElem,
Type *TheFirstElemTy, unsigned IdxOfSplitStructElem) {
if (NewElem.isUnwrapped() && IdxOfSplitStructElem) {
// Ai { Bi, i32 };
// ptr = &Ai;
// ptr += sizeof(bi);
// Prohibeted as poiter covers unsequential types.
// Unwrapped type can be only at the first position.
LLVM_DEBUG(dbgs() << "WARN:: Struct (" << STy
<< ") cannot be split as pointer offset covers "
"unsequential types and base type("
<< *NewElem.getTy()
<< ") can be only in the begining.\n");
return false;
}
if (NewElem.getTy() != TheFirstElemTy) {
// A {i32, i32, float}; Offset = 8byte
// Prohibited as offset covers i32 and float.
LLVM_DEBUG(dbgs() << "WARN:: Struct (" << STy
<< ") cannot be split as pointer offset covers "
"different split types.\n");
return false;
}
if (!NewElem.isUnwrapped() && NewElem.getIndex() != IdxOfSplitStructElem) {
LLVM_DEBUG(dbgs() << "WARN:: Struct (" << STy
<< ") cannot be split as pointer offset covers "
"unsequential types.\n");
return false;
}
return true;
}
//
// Checks if accessing by ptr covers one unsplit block and substitutes
// struct. Tracks max offset of ptr until ptr goes to function. If function is
// read/write, then checks if max offset lies within unsplit block. If it
// does, then substitutes the struct. Otherwise we cannot split the struct.
//
bool Substituter::processPTI(PtrToIntInst &PTI, const TypeToInstrMap &NewInstr,
InstsToSubstitute /*OUT*/ &InstToInst) {
StructType &STy = *cast<StructType>(
PTI.getPointerOperand()->getType()->getPointerElementType());
uint64_t MaxPtrOffset{0};
if (!processPTIsUses(PTI, MaxPtrOffset))
return false;
const ElemMapping &IdxMapping = Graph.getElemMappingFor(STy);
const SElement &TheFirstNewElem = *IdxMapping.begin()->begin();
// Previously, this rule was a limitation on the PTI instruction, now when
// strict element order in list has been introduced, it is essential logical
// part of pass.
IGC_ASSERT_MESSAGE(TheFirstNewElem.isUnwrapped() ||
!TheFirstNewElem.getIndex(),
"The first element of the original structure has to be "
"mathced with the first element of the split structure.");
Type *TheFirstElemTy = TheFirstNewElem.getTy();
// If MaxPtrOffset covers elements, which will be laid sequitially within one
// new struct, then we can substitute PTI.
for (auto &&ElemEnum : enumerate(vc::make_flat_range(IdxMapping))) {
const SElement &Elem = ElemEnum.value();
if (!verifyElement(STy, Elem, TheFirstElemTy, ElemEnum.index()))
return false;
if (!MaxPtrOffset)
break;
const uint64_t SizeOfElem =
vc::getTypeSize(Elem.retrieveElemTy(), &DL).inBytes();
MaxPtrOffset = SizeOfElem > MaxPtrOffset ? 0 : MaxPtrOffset - SizeOfElem;
}
Instruction *ToInsert =
findProperInstruction(getBaseTy(TheFirstElemTy), NewInstr);
IRBuilder<> IRB{&PTI};
Value *NewPTI =
IRB.CreatePtrToInt(ToInsert, PTI.getType(), PTI.getName() + ".split");
LLVM_DEBUG(dbgs() << "New Instruction has been created: " << *NewPTI << "\n");
InstToInst.emplace_back(cast<Instruction>(&PTI), cast<Instruction>(NewPTI));
return true;
}
//
// Callculates offset after add instruction.
//
Optional<uint64_t> Substituter::processAddInst(Instruction &User,
BinaryOperator &BO) {
// Do Ptr Offset calculation.
uint64_t LocalPtrOffset{0};
Value *V0 = BO.getOperand(0);
// If the one of operands is the Instruction then the other is ptr offset.
// It can be vector or scalar.
// "add V 5" or "add 5 V"
Value *ToCalculateOffset =
dyn_cast<Instruction>(V0) != &User ? V0 : BO.getOperand(1);
Constant *ConstantOffsets = dyn_cast<Constant>(ToCalculateOffset);
if (!ConstantOffsets) {
LLVM_DEBUG(dbgs() << "WARN:: Calculation of the pointer offset has to "
"be staticly known\n. Bad instruction: "
<< BO << "\n");
return None;
}
Type *OffsetTy = ToCalculateOffset->getType();
if (OffsetTy->isVectorTy()) {
const unsigned Width =
cast<IGCLLVM::FixedVectorType>(OffsetTy)->getNumElements();
for (unsigned i = 0; i != Width; ++i) {
Value *OffsetValue = ConstantOffsets->getAggregateElement(i);
Constant *COffsetValue = cast<Constant>(OffsetValue);
uint64_t Offset = COffsetValue->getUniqueInteger().getZExtValue();
LocalPtrOffset = std::max(LocalPtrOffset, Offset);
}
} else if (OffsetTy->isIntegerTy()) {
uint64_t Offset = ConstantOffsets->getUniqueInteger().getZExtValue();
LocalPtrOffset = std::max(LocalPtrOffset, Offset);
} else {
LLVM_DEBUG(
dbgs()
<< "Offset is unsupported type. Has to be Integer or Vector, but: "
<< *OffsetTy << "\n");
return None;
}
return LocalPtrOffset;
}
//
// Checks for appropreate operations on ptr and calculates max offset of ptr.
// Calculation has to be done staticly.
// ptr may only go to read/write funcitons.
//
bool Substituter::processPTIsUses(Instruction &I,
uint64_t /*OUT*/ &MaxPtrOffset) {
uint64_t LocalPtrOffset{0};
for (const auto &U : I.uses()) {
Instruction *User = dyn_cast<Instruction>(U.getUser());
if (User->getOpcode() == Instruction::FAdd ||
User->getOpcode() == Instruction::Add) {
BinaryOperator *BO = dyn_cast<BinaryOperator>(User);
auto Offset = processAddInst(I, *BO);
if (!Offset)
return false;
LocalPtrOffset = std::max(LocalPtrOffset, Offset.getValue());
} else if (GenXIntrinsic::isGenXIntrinsic(User) &&
User->mayReadOrWriteMemory()) {
// We can read/write from/to unsplit block.
continue;
} else if (User->getOpcode() != Instruction::ShuffleVector &&
User->getOpcode() != Instruction::InsertElement) {
// These extensions are to fit the pattern of using ptrtoint:
// %pti = ptrtoint %StructTy* %ray to i64
// %base = insertelement <16 x i64> undef, i64 %pti, i32 0
// %shuffle = shufflevector <16 x i64> %base, <16 x i64> undef, <16 x i32>
// zeroinitializer %offset = add nuw nsw <16 x i64> %shuffle, <i64 0, i64
// 4, ...>
// Anything else is prohibited.
return false;
}
// Does next processing.
if (!processPTIsUses(*User, LocalPtrOffset))
return false;
}
MaxPtrOffset += LocalPtrOffset;
return true;
}
//__________________________________________________________________
// Block of SElement definition.
//__________________________________________________________________
DependencyGraph::SElement::SElement(StructType *const &InTy,
unsigned InIndex)
: Ty{InTy}, Index{InIndex}, IsUnwrapped{false} {}
DependencyGraph::SElement::SElement(Type *const &InTy)
: Ty{InTy}, IsUnwrapped{true} {}
// Returns element as structure type. Returns nullptr, if element is unwrapped
// type.
StructType *DependencyGraph::SElement::getStructTyIfPossible() const {
return IsUnwrapped ? nullptr : getStructTy();
}
// Returns element as structure type. Generates assertion, if element is
// unwrapped type.
StructType *DependencyGraph::SElement::getStructTy() const {
IGC_ASSERT_MESSAGE(!IsUnwrapped, "Getting unwrapped type.");
return cast<StructType>(Ty);
}
Type *DependencyGraph::SElement::getTy() const { return Ty; }
// Returns real element type.
// If SElement is unwrapped, returns Ty itself.
// Otherwise, extracts type from the structure by Index.
Type *DependencyGraph::SElement::retrieveElemTy() const {
return IsUnwrapped ? Ty : getStructTy()->getTypeAtIndex(Index);
}
unsigned DependencyGraph::SElement::getIndex() const {
IGC_ASSERT_MESSAGE(!IsUnwrapped, "Getting Index of unwrapped type.");
return Index;
}
bool DependencyGraph::SElement::isUnwrapped() const {
return IsUnwrapped;
}
//__________________________________________________________________
// Block of SElementsOfType definition.
//__________________________________________________________________
DependencyGraph::SElementsOfType::SElementsOfType(unsigned Size) {
Types.reserve(Size);
IndicesOfTypes.reserve(Size);
};
// Automaticaly matches Types with sequential Indices.
DependencyGraph::SElementsOfType::SElementsOfType(
const std::vector<Type *> &InTypes)
: Types{InTypes}, IndicesOfTypes(Types.size()) {
std::iota(IndicesOfTypes.begin(), IndicesOfTypes.end(), 0);
}
void DependencyGraph::SElementsOfType::emplace_back(Type &Ty, unsigned Index) {
Types.emplace_back(&Ty);
IndicesOfTypes.emplace_back(Index);
}
void DependencyGraph::SElementsOfType::push_back(const value_type &Elem) {
emplace_back(*Elem.first, Elem.second);
}
void DependencyGraph::SElementsOfType::emplace_back(const SElement &Elem) {
IGC_ASSERT_MESSAGE(
!Elem.isUnwrapped(),
"Element is unwrapped and cannot be placed in indices chain.");
emplace_back(*Elem.getTy(), Elem.getIndex());
}
unsigned DependencyGraph::SElementsOfType::size() const {
const unsigned Size = Types.size();
IGC_ASSERT_MESSAGE(Size == IndicesOfTypes.size(),
"Size of Types and Indices has to be the same.");
return Size;
}
Type *DependencyGraph::SElementsOfType::getTyAt(unsigned Index) const {
IGC_ASSERT_MESSAGE(Index < size(), "Attempt to get element out of borders.");
return Types.at(Index);
}
unsigned DependencyGraph::SElementsOfType::getIdxAt(unsigned Index) const {
IGC_ASSERT_MESSAGE(Index < size(), "Attempt to get element out of borders.");
return IndicesOfTypes.at(Index);
}
std::pair<Type *&, unsigned &>
DependencyGraph::SElementsOfType::at(unsigned Index) {
IGC_ASSERT_MESSAGE(Index < size(), "Attempt to get element out of borders.");
return std::make_pair(std::ref(Types.at(Index)),
std::ref(IndicesOfTypes.at(Index)));
}
std::pair<Type *const &, const unsigned &>
DependencyGraph::SElementsOfType::at(unsigned Index) const {
IGC_ASSERT_MESSAGE(Index < size(), "Attempt to get element out of borders.");
return std::make_pair(std::ref(Types.at(Index)),
std::ref(IndicesOfTypes.at(Index)));
}
//__________________________________________________________________
// Block of const_iterator definition for SElementsOfType
//__________________________________________________________________
DependencyGraph::SElementsOfType::const_iterator::const_iterator(
const_ty_iterator TyItIn, const_idx_iterator IdxItIn)
: TyIt{TyItIn}, IdxIt{IdxItIn} {}
DependencyGraph::SElementsOfType::const_iterator::reference
DependencyGraph::SElementsOfType::const_iterator::operator*() const {
return std::make_pair(*TyIt, *IdxIt);
}
DependencyGraph::SElementsOfType::const_iterator &
DependencyGraph::SElementsOfType::const_iterator::operator++() {
++TyIt;
++IdxIt;
return *this;
}
DependencyGraph::SElementsOfType::const_iterator
DependencyGraph::SElementsOfType::const_iterator::operator++(int) {
const_iterator Tmp = *this;
++(*this);
return Tmp;
}
DependencyGraph::SElementsOfType::const_iterator
DependencyGraph::SElementsOfType::const_iterator::
operator+(difference_type RHS) const {
return const_iterator{TyIt + RHS, IdxIt + RHS};
}
bool operator==(const DependencyGraph::SElementsOfType::const_iterator &LHS,
const DependencyGraph::SElementsOfType::const_iterator &RHS) {
IGC_ASSERT_MESSAGE((LHS.TyIt == RHS.TyIt) == (LHS.IdxIt == RHS.IdxIt),
"Iterators are not in accordance with each other.");
return LHS.TyIt == RHS.TyIt;
};
bool operator!=(const DependencyGraph::SElementsOfType::const_iterator &LHS,
const DependencyGraph::SElementsOfType::const_iterator &RHS) {
return !(LHS == RHS);
};
//__________________________________________________________________
// Block of Node definition.
//__________________________________________________________________
void DependencyGraph::Node::insertParent(Node &ParentNode) {
auto &&[It, IsInserted] = ParentSTys.emplace(&ParentNode);
// Insertion may not occur in similar case like insertChild.
}
void DependencyGraph::Node::insertChild(Node &ChildNode) {
auto &&[It, IsInserted] = ChildSTys.emplace(&ChildNode);
// Insertion may not occur if there is a dependency like : G {C, C};
}
// Checks if STy is one of the Node definitions.
bool DependencyGraph::Node::containsStruct(StructType &InSTy) const {
return (STy == &InSTy) ? true
: PreviousNames.find(&InSTy) != PreviousNames.end();
}
// Sets STy as new definition of the Node.
void DependencyGraph::Node::substitute(StructType &InSTy) {
PreviousNames.emplace(STy);
STy = &InSTy;
}
void DependencyGraph::Node::eraseChild(Node &ChildNode) {
size_t ElCount = ChildSTys.erase(&ChildNode);
IGC_ASSERT(ElCount);
}
//__________________________________________________________________
// Block of NodeMemoryManager definition.
//__________________________________________________________________
DependencyGraph::NodeMemoryManager::NodeMemoryManager(Module &M) {
Nodes.reserve(M.getIdentifiedStructTypes().size());
}
// Allocates memory and holds pointer.
DependencyGraph::Node *
DependencyGraph::NodeMemoryManager::create(StructType &STy) {
Nodes.emplace_back(std::make_unique<Node>(STy));
return Nodes.back().get();
}
//
// Retrieves base type. It tries to unwrap structures and arrays.
//
Type *getBaseTy(Type *Ty) {
IGC_ASSERT(Ty);
Type *BaseTy{getArrayFreeTy(Ty)};
while (StructType *STy = dyn_cast<StructType>(BaseTy)) {
// Empty structure.
if (!STy->getNumElements())
return STy;
BaseTy = getBaseTy(*STy->element_begin());
// Check that all elements in struct are the same type/subtype.
if (llvm::any_of(STy->elements(), [BaseTy](Type *Elem) {
return BaseTy != getBaseTy(Elem);
}))
return STy;
}
return BaseTy;
}
//
// Retrieves base type of array or vector.
//
Type *getArrayFreeTy(Type *Ty) {
IGC_ASSERT(Ty);
while (isa<ArrayType>(Ty) || isa<VectorType>(Ty))
Ty = Ty->getContainedType(0);
return Ty;
}
//
// Help function to get type-specific prefix for naming
//
const char *getTypePrefix(Type &Ty) {
Type::TypeID ID = Ty.getTypeID();
switch (ID) {
case Type::VoidTyID:
return "void";
case Type::HalfTyID:
return "h";
case Type::FloatTyID:
return "f";
case Type::DoubleTyID:
return "d";
case Type::X86_FP80TyID:
return "x86fp";
case Type::FP128TyID:
return "fp";
case Type::PPC_FP128TyID:
return "ppcfp";
case Type::LabelTyID:
return "l";
case Type::MetadataTyID:
return "m";
case Type::X86_MMXTyID:
return "mmx";
case Type::TokenTyID:
return "t";
case Type::IntegerTyID:
return "i";
case Type::FunctionTyID:
return "foo";
case Type::StructTyID:
return "s";
case Type::ArrayTyID:
return "a";
case Type::PointerTyID:
return "p";
default:
return "unnamed";
}
}
//__________________________________________________________________
// Block of data printing.
//__________________________________________________________________
void StructFilter::print(raw_ostream &Os) const {
Os << "Banned structs:\n";
for (auto *STy : BannedStructs)
Os << "\t" << *STy << "\n";
Os << "\n";
}
void DependencyGraph::SElement::print(raw_ostream &Os) const {
if (Ty) {
Os << "Ty: " << *Ty;
if (!IsUnwrapped)
Os << " Index: " << Index;
}
}
void DependencyGraph::SElementsOfType::print(raw_ostream &Os) const {
for (auto &&[Type, Idx] : *this)
Os << "\t\tTy: " << *Type << " at pos: " << Idx << "\n";
}
void DependencyGraph::Node::dump(int Tab, raw_ostream &Os) const {
if (!STy)
return;
for (int i = 0; i != Tab; ++i)
Os << " ";
Tab++;
Os << "Node: " << *STy << "\n";
if (!ChildSTys.empty()) {
for (int i = 0; i != Tab; ++i)
Os << " ";
Os << "With children\n";
}
for (auto Child : ChildSTys)
Child->dump(Tab, Os);
}
void DependencyGraph::printData(raw_ostream &Os) const {
for (auto &&[Struct, SubTypes] : AllStructs) {
Os << "Struct " << *Struct << " consists of:\n";
for (auto &&[SubType, Tys] : SubTypes) {
Os << "\t"
<< "BaseTy: " << *SubType << "\n";
Tys.print(Os);
}
}
}
void DependencyGraph::print(raw_ostream &Os) const {
Os << "\n _________________________________";
Os << "\n/ \\\n";
Os << "Data:\n";
printData(Os);
Os << "\nGraph:\n";
printGraph(Os);
Os << "\nGenerations:\n";
printGeneration(Os);
Os << "\\_________________________________/\n";
}
void DependencyGraph::printGraph(raw_ostream &Os) const {
for (auto Head : Heads) {
Os << "Head:\n";
Head->dump(1, Os);
}
}
void DependencyGraph::printGeneration(raw_ostream &Os) const {
for (auto &&SplitStruct : SplitStructs) {
Os << "Split struct: " << *SplitStruct.first << " to: \n";
for (auto &&ChangedTo : SplitStruct.second) {
for (auto &&Elem : ChangedTo) {
Os << " ";
Elem.print(Os);
Os << ", ";
}
Os << "\n";
}
}
}
void Substituter::printAllAllocas(raw_ostream &Os) {
Os << "Allocas\n";
for (auto &&Alloca : Allocas)
Os << *Alloca << "\n";
Os << "\n";
}
|