File: GenXUtil.h

package info (click to toggle)
intel-graphics-compiler 1.0.12504.6-1%2Bdeb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 83,912 kB
  • sloc: cpp: 910,147; lisp: 202,655; ansic: 15,197; python: 4,025; yacc: 2,241; lex: 1,570; pascal: 244; sh: 104; makefile: 25
file content (753 lines) | stat: -rw-r--r-- 29,078 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
/*========================== begin_copyright_notice ============================

Copyright (C) 2020-2021 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

#ifndef GENX_UTIL_H
#define GENX_UTIL_H

#include "FunctionGroup.h"
#include "GenXRegionUtils.h"
#include "GenXSubtarget.h"

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"

#include "llvmWrapper/IR/DerivedTypes.h"

#include "Probe/Assertion.h"

#include <algorithm>
#include <cstdint>
#include <iterator>
#include <unordered_map>
#include <vector>

namespace llvm {
namespace genx {

// Utility function to get the integral log base 2 of an integer, or -1 if
// the input is not a power of 2.
inline int exactLog2(unsigned Val)
{
  unsigned CLZ = countLeadingZeros(Val, ZB_Width);
  if (CLZ != 32 && 1U << (31 - CLZ) == Val)
    return 31 - CLZ;
  return -1;
}

// Utility function to get the log base 2 of an integer, truncated to an
// integer, or -1 if the number is 0 or negative.
template<typename T>
inline int log2(T Val)
{
  if (Val <= 0)
    return -1;
  unsigned CLZ = countLeadingZeros((uint32_t)Val, ZB_Width);
  return 31 - CLZ;
}

// Common functionality for media ld/st lowering and CISA builder
template <typename T> inline T roundedVal(T Val, T RoundUp) {
  T RoundedVal = static_cast<T>(1) << genx::log2(Val);
  if (RoundedVal < Val)
    RoundedVal *= 2;
  if (RoundedVal < RoundUp)
    RoundedVal = RoundUp;
  return RoundedVal;
}

// createConvert : create a genx_convert intrinsic call
CallInst *createConvert(Value *In, const Twine &Name, Instruction *InsertBefore,
                        Module *M = nullptr);

// createConvertAddr : create a genx_convert_addr intrinsic call
CallInst *createConvertAddr(Value *In, int Offset, const Twine &Name,
                            Instruction *InsertBefore, Module *M = nullptr);

// createAddAddr : create a genx_add_addr intrinsic call
CallInst *createAddAddr(Value *Lhs, Value *Rhs, const Twine &Name,
                        Instruction *InsertBefore, Module *M = nullptr);

CallInst *createUnifiedRet(Type *Ty, const Twine &Name, Module *M);

// getPredicateConstantAsInt : get a vXi1 constant's value as a single integer
unsigned getPredicateConstantAsInt(const Constant *C);

// getConstantSubvector : get a contiguous region from a vector constant
Constant *getConstantSubvector(const Constant *V, unsigned StartIdx,
                               unsigned Size);

// concatConstants : concatenate two possibly vector constants, giving a vector
// constant
Constant *concatConstants(Constant *C1, Constant *C2);

// findClosestCommonDominator : find latest common dominator of some
// instructions
Instruction *findClosestCommonDominator(const DominatorTree *DT,
                                        ArrayRef<Instruction *> Insts);

// convertShlShr : convert Shl followed by AShr/LShr by the same amount into
// trunc+sext/zext
Instruction *convertShlShr(Instruction *Inst);

// splitStructPhis : find struct phi nodes and split them
//
// Return:  whether code modified
//
// Each struct phi node is split into a separate phi node for each struct
// element. This is needed because the GenX backend's liveness and coalescing
// code cannot cope with a struct phi.
//
// This is run in two places: firstly in GenXLowering, so that pass can then
// simplify any InsertElement and ExtractElement instructions added by the
// struct phi splitting. But then it needs to be run again in GenXLiveness,
// because other passes can re-insert a struct phi. The case I saw in
// hevc_speed was something commoning up the struct return from two calls in an
// if..else..endif.
//
// BTW There's also GenXAggregatePseudoLowering pass that does the same.
bool splitStructPhis(Function *F);
bool splitStructPhi(PHINode *Phi);

// Get original value before bit-casting chain.
Value *getBitCastedValue(Value *V);

// normalize g_load with bitcasts.
//
// When a single g_load is being bitcast'ed to different types, clone g_loads.
bool normalizeGloads(Instruction *Inst);

// fold bitcast instruction to store/load pointer operand if possible.
// Return this new instruction or nullptr.
Instruction *foldBitCastInst(Instruction *Inst);

class Bale;

bool isGlobalStore(Instruction *I);
bool isGlobalStore(StoreInst *ST);

bool isGlobalLoad(Instruction *I);
bool isGlobalLoad(LoadInst* LI);

// Check that V is correct as value for global store to StorePtr.
// This implies:
// 1) V is wrregion W;
// 2) Old value of W is result of gload L;
// 3) Pointer operand of L is derived from global variable of StorePtr.
bool isLegalValueForGlobalStore(Value *V, Value *StorePtr);

// Check that global store ST operands meet condition of
// isLegalValueForGlobalStore.
bool isGlobalStoreLegal(StoreInst *ST);

bool isIdentityBale(const Bale &B);

// Check if region of value is OK for baling in to raw operand
//
// Enter:   V = value that is possibly rdregion/wrregion
//          IsWrite = true if caller wants to see wrregion, false for rdregion
//
// The region must be constant indexed, contiguous, and start on a GRF
// boundary.
bool isValueRegionOKForRaw(Value *V, bool IsWrite, const GenXSubtarget *ST);

// Check if region is OK for baling in to raw operand
//
// The region must be constant indexed, contiguous, and start on a GRF
// boundary.
bool isRegionOKForRaw(const genx::Region &R, const GenXSubtarget *ST);

// Skip optimizations on functions with large blocks.
inline bool skipOptWithLargeBlock(const Function &F) {
  return std::any_of(F.begin(), F.end(),
                     [](const BasicBlock &BB) { return BB.size() >= 5000; });
}

bool skipOptWithLargeBlock(FunctionGroup &FG);

// getTwoAddressOperandNum : get operand number of two address operand
llvm::Optional<unsigned> getTwoAddressOperandNum(CallInst *II);

// isPredicate : test whether an instruction has predicate (i1 or vector of i1)
// type
bool isPredicate(Instruction *Inst);

// isNot : test whether an instruction is a "not" instruction (an xor with
//    constant all ones)
bool isNot(Instruction *Inst);

// isPredNot : test whether an instruction is a "not" instruction (an xor
//    with constant all ones) with predicate (i1 or vector of i1) type
bool isPredNot(Instruction *Inst);

// isIntNot : test whether an instruction is a "not" instruction (an xor
//    with constant all ones) with non-predicate type
bool isIntNot(Instruction *Inst);

// getMaskOperand : get i1 vector type of genx intrinsic, return null
//    if there is no operand of such type or for non genx intrinsic.
//    If there are multiple operands of i1 vector type then return first
//    oparand.
Value *getMaskOperand(const Instruction *Inst);

// invertCondition : Invert the given predicate value, possibly reusing
//    an existing copy.
Value *invertCondition(Value *Condition);

// if V is a function pointer return function it points to,
//    nullptr otherwise
Function *getFunctionPointerFunc(Value *V);

// return true if V is a const vector of function pointers
// considering any casts and extractelems within
bool isFuncPointerVec(Value *V);

// isNoopCast : test if cast operation doesn't modify bitwise representation
// of value (in other words, it can be copy-coalesced).
bool isNoopCast(const CastInst *CI);

// ShuffleVectorAnalyzer : class to analyze a shufflevector
class ShuffleVectorAnalyzer {
  ShuffleVectorInst *SI;

public:
  ShuffleVectorAnalyzer(ShuffleVectorInst *SI) : SI(SI) {}
  // getAsSlice : return start index of slice, or -1 if shufflevector is not
  //  slice
  int getAsSlice();
  // Replicated slice descriptor.
  // Replicated slice (e.g. 1 2 3 1 2 3) can be parametrized by
  // initial offset (1), slice size (3) and replication count (2).
  struct ReplicatedSlice {
    unsigned InitialOffset;
    unsigned SliceSize;
    unsigned ReplicationCount;
    ReplicatedSlice(unsigned Offset, unsigned Size, unsigned Count)
        : InitialOffset(Offset), SliceSize(Size), ReplicationCount(Count) {}
  };

  // isReplicatedSlice : check whether shufflevector is replicated slice.
  // Example of replicated slice:
  // shufflevector <3 x T> x, undef, <6 x i32> <1, 2, 1, 2, 1, 2>.
  bool isReplicatedSlice() const;

  static bool isReplicatedSlice(ShuffleVectorInst *SI) {
    return ShuffleVectorAnalyzer(SI).isReplicatedSlice();
  }

  // When we have replicated slice, its parameters are ealisy deduced
  // from first and last elements of mask. This function decomposes
  // replicated slice to its parameters.
  ReplicatedSlice getReplicatedSliceDescriptor() const {
    IGC_ASSERT_MESSAGE(isReplicatedSlice(), "Expected replicated slice");
    const unsigned TotalSize =
        cast<IGCLLVM::FixedVectorType>(SI->getType())->getNumElements();
    const unsigned SliceStart = SI->getMaskValue(0);
    const unsigned SliceEnd = SI->getMaskValue(TotalSize - 1);
    const unsigned SliceSize = SliceEnd - SliceStart + 1;
    const unsigned ReplicationCount = TotalSize / SliceSize;
    return ReplicatedSlice(SliceStart, SliceSize, ReplicationCount);
  }

  static ReplicatedSlice getReplicatedSliceDescriptor(ShuffleVectorInst *SI) {
    return ShuffleVectorAnalyzer(SI).getReplicatedSliceDescriptor();
  }

  // getAsUnslice : see if the shufflevector is an
  //     unslice where the "old value" is operand 0 and operand 1 is another
  //     shufflevector and operand 0 of that is the "new value" Returns start
  //     index, or -1 if it is not an unslice
  int getAsUnslice();
  // getAsSplat : if shufflevector is a splat, get the splatted input, with the
  //  element's vector index if the input is a vector
  struct SplatInfo {
    Value *Input;
    unsigned Index;
    SplatInfo(Value *Input, unsigned Index) : Input(Input), Index(Index) {}
  };
  SplatInfo getAsSplat();

  // Serialize this shuffulevector instruction.
  Value *serialize();

  // Compute the cost in terms of number of insertelement instructions needed.
  unsigned getSerializeCost(unsigned i);

  // To describe the region of one of two shufflevector instruction operands.
  struct OperandRegionInfo {
    Value *Op;
    Region R;
  };
  OperandRegionInfo getMaskRegionPrefix(int StartIdx);
};

// class for splitting i64 (both vector and scalar) to subregions of i32 vectors
// Used in GenxLowering and emulation routines
class IVSplitter {
  Instruction &Inst;

  Type *ETy = nullptr;
  Type *VI32Ty = nullptr;
  size_t Len = 0;

  enum class RegionType { LoRegion, HiRegion, FirstHalf, SecondHalf };

  // Description of a RegionType in terms of initial offset and stride.
  // Both ELOffset and ElStride are in elements.
  struct RegionTrait {
    size_t ElOffset = 0;
    size_t ElStride = 0;
  };

  // describeSplit: given a requested RegionType and a number of source elements
  // returns the detailed descripton of how to form such a split (in terms of
  // an initial offset and stride).
  // Example:
  //    describeSplit(SecondHalf, 10) should return RegionTrait{ 5, 1 }
  static RegionTrait describeSplit(RegionType RT, size_t ElNum);

  // splitConstantVector: given a vector of constant values create
  // a new constant vector containing only values corresponding to the
  // desired RegionType
  // Example:
  //    splitConstantVector({ 1, 2, 3, 4}, HiRegion) -> {2, 4}
  // Note: since every RegionType needs half of the original elements, the
  // size of the input vector is expected to be even.
  static Constant *splitConstantVector(const SmallVectorImpl<Constant *> &KV,
                                       RegionType RT);
  // createSplitRegion: given a type of the source vector (expected to be
  // vector of i32 with even number of elements) and the desired RegionType
  // returns genx::Region that can be used to construct an equivalent
  // rdregion intrinsic
  static genx::Region createSplitRegion(Type *SrcTy, RegionType RT);

  std::pair<Value *, Value *> splitValue(Value &Val, RegionType RT1,
                                         const Twine &Name1, RegionType RT2,
                                         const Twine &Name2,
                                         bool FoldConstants);
  Value* combineSplit(Value &V1, Value &V2, RegionType RT1, RegionType RT2,
                      const Twine& Name, bool Scalarize);

public:

  struct LoHiSplit {
    Value *Lo;
    Value *Hi;
  };
  struct HalfSplit {
    Value *Left;
    Value *Right;
  };

  // Instruction is used as an insertion point, debug location source and
  // as a source of operands to split.
  // If BaseOpIdx indexes a scalar/vector operand of i64 type, then
  // IsI64Operation shall return true, otherwise the value type of an
  // instruction is used
  IVSplitter(Instruction &Inst, const unsigned *BaseOpIdx = nullptr);

  // Splitted Operand is expected to be a scalar/vector of i64 type
  LoHiSplit splitOperandLoHi(unsigned SourceIdx, bool FoldConstants = true);
  HalfSplit splitOperandHalf(unsigned SourceIdx, bool FoldConstants = true);

  LoHiSplit splitValueLoHi(Value &V, bool FoldConstants = true);
  HalfSplit splitValueHalf(Value &V, bool FoldConstants = true);

  // Combined values are expected to be a vector of i32 of the same size
  Value *combineLoHiSplit(const LoHiSplit &Split, const Twine &Name,
                          bool Scalarize);
  Value *combineHalfSplit(const HalfSplit &Split, const Twine &Name,
                          bool Scalarize);

  // convinence method for quick sanity checking
  bool IsI64Operation() const { return ETy->isIntegerTy(64); }
};

// adjustPhiNodesForBlockRemoval : adjust phi nodes when removing a block
void adjustPhiNodesForBlockRemoval(BasicBlock *Succ, BasicBlock *BB);

/***********************************************************************
 * sinkAdd : sink add(s) in address calculation
 *
 * Enter:   IdxVal = the original index value
 *
 * Return:  the new calculation for the index value
 *
 * This detects the case when a variable index in a region or element access
 * is one or more constant add/subs then some mul/shl/truncs. It sinks
 * the add/subs into a single add after the mul/shl/truncs, so the add
 * stands a chance of being baled in as a constant offset in the region.
 *
 * If add sinking is successfully applied, it may leave now unused
 * instructions behind, which need tidying by a later dead code removal
 * pass.
 */
Value *sinkAdd(Value *V);

// Check if this is a mask packing operation, i.e. a bitcast from Vxi1 to
// integer i8, i16 or i32.
static inline bool isMaskPacking(const Value *V) {
  if (auto BC = dyn_cast<BitCastInst>(V)) {
    auto SrcTy = dyn_cast<IGCLLVM::FixedVectorType>(BC->getSrcTy());
    if (!SrcTy || !SrcTy->getScalarType()->isIntegerTy(1))
      return false;
    unsigned NElts = SrcTy->getNumElements();
    if (NElts != 8 && NElts != 16 && NElts != 32)
      return false;
    return V->getType()->getScalarType()->isIntegerTy(NElts);
  }
  return false;
}

void LayoutBlocks(Function &func, LoopInfo &LI);
void LayoutBlocks(Function &func);

// Metadata name for inline assemly instruction
constexpr const char *MD_genx_inline_asm_info = "genx.inlasm.constraints.info";

// Inline assembly avaliable constraints
enum class ConstraintType : uint32_t {
  Constraint_r,
  Constraint_rw,
  Constraint_i,
  Constraint_n,
  Constraint_F,
  Constraint_a,
  Constraint_cr,
  Constraint_unknown
};

// Represents info about inline asssembly operand
class GenXInlineAsmInfo {
  genx::ConstraintType CTy = ConstraintType::Constraint_unknown;
  int MatchingInput = -1;
  bool IsOutput = false;

public:
  GenXInlineAsmInfo(genx::ConstraintType Ty, int MatchingInput, bool IsOutput)
      : CTy(Ty), MatchingInput(MatchingInput), IsOutput(IsOutput) {}
  bool hasMatchingInput() const { return MatchingInput != -1; }
  int getMatchingInput() const { return MatchingInput; }
  bool isOutput() const { return IsOutput; }
  genx::ConstraintType getConstraintType() const { return CTy; }
};

// If input input constraint has matched output operand with same constraint
bool isInlineAsmMatchingInputConstraint(const InlineAsm::ConstraintInfo &Info);

// Get matched output operand number for input operand
unsigned getInlineAsmMatchedOperand(const InlineAsm::ConstraintInfo &Info);

// Get joined string representation of constraints
std::string getInlineAsmCodes(const InlineAsm::ConstraintInfo &Info);

// Get constraint type
genx::ConstraintType getInlineAsmConstraintType(StringRef Codes);

// Get vector of inline asm info for inline assembly instruction.
// Return empty vector if no constraint string in inline asm or
// if called before GenXInlineAsmLowering pass.
std::vector<GenXInlineAsmInfo> getGenXInlineAsmInfo(CallInst *CI);

// Get vector of inline asm info from MDNode
std::vector<GenXInlineAsmInfo> getGenXInlineAsmInfo(MDNode *MD);

bool hasConstraintOfType(const std::vector<GenXInlineAsmInfo> &ConstraintsInfo,
                         genx::ConstraintType CTy);

// Get number of outputs for inline assembly instruction
unsigned getInlineAsmNumOutputs(CallInst *CI);

Type *getCorrespondingVectorOrScalar(Type *Ty);

// Get bitmap of instruction allowed execution sizes
unsigned getExecSizeAllowedBits(const Instruction *Inst,
                                const GenXSubtarget *ST);

// VC backend natively supports half, float and double data types
bool isSupportedFloatingPointType(const Type *Ty);

// Get type that represents OldType as vector of NewScalarType, e.g.
// <4 x i16> -> <2 x i32>, returns nullptr if it's inpossible.
IGCLLVM::FixedVectorType *changeVectorType(Type *OldType,
                                           Type *NewScalarType,
                                           const DataLayout *DL);

// Check if V is reading form predfined register.
bool isPredefRegSource(const Value *V);
// Check if V is writing to predefined register.
bool isPredefRegDestination(const Value *V);

/* scalarVectorizeIfNeeded: scalarize of vectorize \p Inst if it is required
 *
 * Result of some instructions can be both Ty and <1 x Ty> value e.g. rdregion.
 * It is sometimes required to replace uses of instructions with types
 * [\p FirstType, \p LastType) with \p Inst. If types don't
 * correspond this function places BitCastInst <1 x Ty> to Ty, or Ty to <1 x Ty>
 * after \p Inst and returns the pointer to the instruction. If no cast is
 * required, nullptr is returned.
 */
template <
    typename ConstIter,
    typename std::enable_if<
        std::is_base_of<
            Type, typename std::remove_pointer<typename std::iterator_traits<
                      ConstIter>::value_type>::type>::value,
        int>::type = 0>
CastInst *scalarizeOrVectorizeIfNeeded(Instruction *Inst, ConstIter FirstType,
                                       ConstIter LastType) {
  IGC_ASSERT_MESSAGE(Inst, "wrong argument");
  IGC_ASSERT_MESSAGE(std::all_of(FirstType, LastType,
                     [Inst](Type *Ty) {
                       return Ty == Inst->getType() ||
                              Ty == getCorrespondingVectorOrScalar(
                                        Inst->getType());
                     }),
         "wrong arguments: type of instructions must correspond");

  if (Inst->getType()->isVectorTy() &&
      cast<IGCLLVM::FixedVectorType>(Inst->getType())->getNumElements() > 1)
    return nullptr;
  bool needBitCast = std::any_of(
      FirstType, LastType, [Inst](Type *Ty) { return Ty != Inst->getType(); });
  if (!needBitCast)
    return nullptr;
  auto *CorrespondingTy = getCorrespondingVectorOrScalar(Inst->getType());
  auto *BC = CastInst::Create(Instruction::BitCast, Inst, CorrespondingTy);
  BC->insertAfter(Inst);
  return BC;
}
/* scalarVectorizeIfNeeded: scalarize of vectorize \p Inst if it is required
 *
 * Result of some instructions can be both Ty and <1 x Ty> value e.g. rdregion.
 * It is sometimes required to replace uses of instructions of [\p
 * FirstInstToReplace, \p LastInstToReplace) with \p Inst. If types don't
 * correspond this function places BitCastInst <1 x Ty> to Ty, or Ty to <1 x Ty>
 * after \p Inst and returns the pointer to the instruction. If no cast is
 * required, nullptr is returned.
 */
template <typename ConstIter,
          typename std::enable_if<
              std::is_base_of<
                  Instruction,
                  typename std::remove_pointer<typename std::iterator_traits<
                      ConstIter>::value_type>::type>::value,
              int>::type = 0>
CastInst *scalarizeOrVectorizeIfNeeded(Instruction *Inst,
                                       ConstIter FirstInstToReplace,
                                       ConstIter LastInstToReplace) {
  std::vector<Type *> Types;
  std::transform(FirstInstToReplace, LastInstToReplace,
                 std::back_inserter(Types),
                 [](Instruction *Inst) { return Inst->getType(); });
  return scalarizeOrVectorizeIfNeeded(Inst, Types.begin(), Types.end());
}

CastInst *scalarizeOrVectorizeIfNeeded(Instruction *Inst, Type *RefType);

CastInst *scalarizeOrVectorizeIfNeeded(Instruction *Inst,
                                       Instruction *InstToReplace);


// Returns log alignment for align type and target grf width, because ALIGN_GRF
// must be target-dependent.
unsigned getLogAlignment(VISA_Align Align, unsigned GRFWidth);
// The opposite of getLogAlignment.
VISA_Align getVISA_Align(unsigned LogAlignment, unsigned GRFWidth);
// Some log alignments cannot be transparently transformed to VISA_Align. This
// chooses suitable log alignment which is convertible to VISA_Align.
unsigned ceilLogAlignment(unsigned LogAlignment, unsigned GRFWidth);

// Checks whether provided wrpredregion intrinsic can be encoded
// as legal SETP instruction.
bool isWrPredRegionLegalSetP(const CallInst &WrPredRegion);

// Checks if V is a CallInst representing a direct call to F
// Many of our analyzes do not check whether a function F's user
// which is a CallInst calls exactly F. This may not be true
// when a function pointer is passed as an argument of a call to
// another function, e.g. genx.faddr intrinsic.
// Returns V casted to CallInst if the check is true,
// nullptr otherwise.
const CallInst *checkFunctionCall(const Value *V, const Function *F);
CallInst *checkFunctionCall(Value *V, const Function *F);

// Get possible number of GRFs for indirect region
unsigned getNumGRFsPerIndirectForRegion(const genx::Region &R,
                                        const GenXSubtarget *ST, bool Allow2D);
// to control behavior of emulateI64Operation function
enum class EmulationFlag {
  RAUW,
  // RAUW and EraseFromParent, always returns a valid instruction
  // either the original one or the last one from the result emulation sequence
  RAUWE,
  None,
};
// transforms operation on i64 type to an equivalent sequence that do not
// operate on i64 (but rather on i32)
// The implementation is contained in GenXEmulate pass sources
// Note: ideally, i64 emulation should be handled by GenXEmulate pass,
// however, some of our late passes like GetXPostLegalization or GenXCategory
// may introduce additional instructions which violate Subtarget restrictions -
// this function is intended to cope with such cases
Instruction *emulateI64Operation(const GenXSubtarget *ST, Instruction *In,
                                 EmulationFlag AuxAction);
// BinaryDataAccumulator: it's a helper class to accumulate binary data
// in one buffer.
// Information about each stored section can be accessed via the key with
// which it was stored. The key must be unique.
// Accumulated/consolidated binary data can be accesed.
template <typename KeyT, typename DataT = uint8_t, DataT Zero = 0u>
struct BinaryDataAccumulator final {
  struct SectionInfoT {
    int Offset = 0;
    ArrayRef<DataT> Data;

    SectionInfoT() = default;
    SectionInfoT(const DataT *BasePtr, int First, int Last)
        : Offset{First}, Data{BasePtr + First, BasePtr + Last} {}

    int getSize() const { return Data.size(); }
  };

  struct SectionT {
    KeyT Key;
    SectionInfoT Info;
  };

private:
  std::vector<DataT> Data;
  using SectionSeq = std::vector<SectionT>;
  SectionSeq Sections;

public:
  using value_type = typename SectionSeq::value_type;
  using reference = typename SectionSeq::reference;
  using const_reference = typename SectionSeq::const_reference;
  using iterator = typename SectionSeq::iterator;
  using const_iterator = typename SectionSeq::const_iterator;

  iterator begin() { return Sections.begin(); }
  const_iterator begin() const { return Sections.begin(); }
  const_iterator cbegin() const { return Sections.cbegin(); }
  iterator end() { return Sections.end(); }
  const_iterator end() const { return Sections.end(); }
  const_iterator cend() const { return Sections.cend(); }
  reference front() { return *begin(); }
  const_reference front() const { return *begin(); }
  reference back() { return *std::prev(end()); }
  const_reference back() const { return *std::prev(end()); }

  // Pad the end of the buffer with \p Size zeros.
  void pad(int Size) {
    IGC_ASSERT_MESSAGE(Size >= 0,
                       "wrong argument: size must be a non-negative number");
    std::fill_n(std::back_inserter(Data), Size, Zero);
  }

  // Align the end of the buffer to \p Alignment bytes.
  void align(int Alignment) {
    IGC_ASSERT_MESSAGE(Alignment > 0,
                       "wrong argument: alignment must be a positive number");
    if (Alignment == 1 || Data.size() == 0)
      return;
    pad(alignTo(Data.size(), Alignment) - Data.size());
  }

  // Append the data that is referenced by a \p Key and represented
  // in range [\p First, \p Last), to the buffer.
  // The range must consist of DataT elements.
  // The data is placed with alignment \p Alignment.
  template <typename InputIter>
  void append(KeyT Key, InputIter First, InputIter Last, int Alignment = 1) {
    IGC_ASSERT_MESSAGE(
        std::none_of(Sections.begin(), Sections.end(),
                     [&Key](const SectionT &S) { return S.Key == Key; }),
        "There's already a section with such key");
    IGC_ASSERT_MESSAGE(Alignment > 0,
                       "wrong argument: alignment must be a positive number");

    align(Alignment);

    SectionT Section;
    Section.Key = std::move(Key);
    int Offset = Data.size();
    std::copy(First, Last, std::back_inserter(Data));
    Section.Info =
        SectionInfoT{Data.data(), Offset, static_cast<int>(Data.size())};
    Sections.push_back(std::move(Section));
  }

  void append(KeyT Key, ArrayRef<DataT> SectionBin) {
    append(std::move(Key), SectionBin.begin(), SectionBin.end());
  }

  // Get information about the section referenced by \p Key.
  SectionInfoT getSectionInfo(const KeyT &Key) const {
    auto SectionIt =
        std::find_if(Sections.begin(), Sections.end(),
                     [&Key](const SectionT &S) { return S.Key == Key; });
    IGC_ASSERT_MESSAGE(SectionIt != Sections.end(),
                       "There must be a section with such key");
    return SectionIt->Info;
  }

  // Get offset of the section referenced by \p Key.
  int getSectionOffset(const KeyT &Key) const {
    return getSectionInfo(Key).Offset;
  }
  // Get size of the section referenced by \p Key.
  int getSectionSize(const KeyT &Key) const { return getSectionInfo(Key).Size; }
  // Get size of the whole collected data.
  int getFullSize() const { return Data.size(); }
  int getNumSections() const { return Sections.size(); }
  // Data buffer empty.
  bool empty() const { return Data.empty(); }
  // Emit the whole consolidated data.
  std::vector<DataT> emitConsolidatedData() const & { return Data; }
  std::vector<DataT> emitConsolidatedData() && { return std::move(Data); }
};

// Get size of an struct field including the size of padding for the next field,
// or the tailing padding.
// For example for the 1st element of { i8, i32 } 4 bytes will be returned
// (likely in the most of layouts).
//
// Arguments:
//    \p ElemIdx - index of a struct field
//    \p NumOperands - the number of fields in struct
//                     (StructLayout doesn't expose it)
//    \p StructLayout - struct layout
//
// Returns the size in bytes.
std::size_t getStructElementPaddedSize(unsigned ElemIdx, unsigned NumOperands,
                                       const StructLayout &Layout);

// Determine if there is a store to global variable Addr in between of L1 and
// L2. L1 and L2 can be either vloads or regular stores.
bool hasMemoryDeps(Instruction *L1, Instruction *L2, Value *Addr,
                   const DominatorTree *DT);

// Return true if V is rdregion from a load result.
bool isRdRFromGlobalLoad(Value *V);

// Return true if wrregion has result of load as old value.
bool isWrRToGlobalLoad(Value *V);

} // namespace genx
} // namespace llvm

#endif // GENX_UTIL_H